3

Wl LGS T WEeSAiyil IV VR 2 IS8l UV Al Vv WL va WIS

SECTION 20

Macro-Instructions

20. 1 INTRODUCTION

Probably the most confusing thing to new users is determining how
the macro—instruction set differs from the "core”™ Lisp routines
{that 1is, those Lisp routines needed to define a minimum Lisp
kernel). This instruction set (the macro—instructions) is a
"pseudo” subset of the Lisp instruction set. In other words,
these instructions are those that are implemented by microcode
and are at the level below the compiler. It is the set available
to the <compiler in constructing functional content. Some Lisp
instructions map directly into macro-instructions (therefore, you
can get an ample description of what the instruction does by
consulting the Explorer Lisp Reference manual), while others are
a bit more complex and require more effort from the compiler.
Still other macro-instructions don‘t correspond to basic Lisp
functions at all, but are used in other aspects of the virtual
machine implementation <(such as in wvirtual memory or storage
management). There are also some instructions here that are only
available to the compiler and so are not <classified as Lisp
instructions (for example, Exchange).

The purpose of this section is to describe in more detail the
macro—instruction set so that if you were the compiler or
debugging compiler—generated code you <could easily determine
exactly what arguments are needed for a macro—instruction, what
side effects a macro-instruction may have, and finally, what
should be returned to you on the stack. Therefore, you will find
in this section more detail on datatypes, exact error checking
being performed. stack manipulation, and some history behind why
some instructions exist and how they are used.

NOTE

The section entitled The Disassembler in the
Explorer Lisp Reference manual explains how
to use the DISASSEMBLE function, how the
macro—-instruction set works and how to
understand the behavior of code written in
this instruction set. That section should be
read before proceeding with this section.

Macro-Instructions Software Design Notes

NOTE

The instruction set for Release 3 is defined
by the file SYS:UCODE; DEFOP which uses

several macros that are defined in
SYS: COMPILER; TARGET. Byte specifiers for the
instruction fields can be found in

8YS: UCODE;: DEF-ELROY.

20.2 MAIN OPS

MAIN OP instructions (see Figure 20-1) have an operand address as
part of the instruction {(called base—arguments in this document)
and may take additional operands from the stack. The disposition
of the result 1is implied by the oaperation. All the base
registers are O-origin; that is, offset O is the first element.

15 9 8 6 5 0

base offset

+ -+
+ - 4
+ -+

op—code

+ -+

FEF

FEF+464

FEF+128

higher lexical context
SELF mapping table

local variables

arguments

PDL-POP [offset not usedl

base register:

Nk WON~O
o wnuwunn

Figure 20-1 MAIN OP Instruction Format

Software Design Notes Macro-Instructions

For a base register value of 3, the offset field is interpreted
as follows:

15 g 8 65 4 o}

+ - + +—+ + offset 0..31 in immediate

! op-code 10 1 110! offset | lexical parent environment
+ - + +-+ + (pointed to by LOCALI2)

| op~code 101 111! offset | offset 0..31 in environment
——————— + +—+ + pointed to by LOCAL!3

For a base register value of 4, the offset field is interpreted
as follows:

15 98 65 4 0
+—— + +—+ +

i op-code 1 0 0!0! offset | offset in SELF
—— + +—+ + [unmapped]
fm—m————————— t————— +—=+ +

! op-code i1 O O!1! offset | offset in SELF
+—— + +—+ + mapping table

MAIN-OPS are defined by the special form DEFOP.

20. 3 SHORT BRANCHES

The Short Branch instruction format is shown in Figure 20-2. The
op-code identifies the instruction as a branch and specifies the
condition to be tested. The lower 9 bits of the instruction are
a signed displacement relative to the address of the next

instruction.

20-3

Macro-Instructions Software Design Notes

is 13 12 10 9 8 0
- + -t +
i1 1 1itest isi displacement |
— + +—+ +
test: Test Condition
O = NULL [else popl
1 = NULL
2 = ATOM
3 = ZEROP
4 = SYMBOLP
5 = [unusedl
6 = NULL [Clikelyl
7 = unconditional
5 Sense
O = branch when true
1 = branch when false

Figure 20-2 Short Branch Instruction Format

If the displacement cannot be encoded within @ bits, then a Long
Branch is used. Long branches are separate op—codes in the AUX-
OP group (see below).

Short branch instructions are defined using the special form DEF-
BRANCH-0P.

20. 4 IMMEDIATE OPERATIONS

Immediate operations (see Figure 20-3) use the lower 9 bits of
the instruction word in special ways. PUSH-NUMBER uses it as a
FIXNUM operand. Various op—IMMED instructions use it as a signed
integer operand. These are defined by using DEFOP with the :NO-
REG option of Immed.

15 8 0
-
! op—code
+——

valvue

+ -+
+ -+

Figure 20-3 Immediate Operation Instruction Format

20-4

Software Design Notes Macro-Instructions

20.5 CALL INSTRUCTIONS

The instructions CALL-O0 through CALL-6 have the format shown in
Figure 20-4.

111 ‘

5 4 3 1098 & 5 0
f———t + +

11 Olnargsidstibase

+———t + +

offset

+ -+
+ -~ +

nargs: Number of Arguments

dst: Destination

0 set indicators only
push result on stack
return from current frame
replace current frame

1
2
3

[I 1]

Figure 20-4 Call Instruction Format

The base and offset fields are the same as for the MAIN-OPS and
specify the function to be called. The function arguments are
pushed on the stack before executing this instruction. I +the
number—of-arguments field contains a 7, then this is a CALL-N
instruction, and the number of arguments is the last thing that
was pushed on the stack.

The various call instructioﬁs are defined using the special form
DEF-CALLOP.

20. & MISC-0PS
MISC-OPS (see Figure 20-5) take their arguments from the stack

and produce a result value which sets the indicators and is
optionally pushed on the stack.

13 98 0

]
Oid

N
4+ -+
+ - 4+
+ -+

0000 1! misc—op number

¥
]

destination: O
i

set indicators only
push result on stack

Figure 20-5 MISC-0OP Instruction Format

Macro-Instructions - Software Design Notes

The lower @ bits of the instruction specify which of the many
MISC~-0OPS is to be performed.

MISC-0OPS are defined by using the special form DEF-MISC-OP.

20. 7 AUX-0OPS

AUX-0OPS (see Figure 20-6) are similar to MISC-OPS except that
they do not produce any result value.

15 98 0

o —
i0 000000

o

aux—op number

+ -+
+ -+

Figure 20-6 AUX-0OP Instruction Format

The lower @ bits of the instruction specify which of the AUX-OPS
is to be performed.

AUX-0OPS are defined using the special form DEF-AUX-OP. AUX-0OPS -
can be considered to be divided into four groups: simple AUX-
OPS, Complex Calls. Long Branches, and AUX-OPS with a count
field.

20.7.1 AUX-OP Complex Call.

15 g 8 43210
Fm————————— e fm——————— tm———r
10000000001 O Oict idst!
o + ———t -
ct: Call Type

0 = Use call-info word. Push

arguments, mapping table (optional),
call-info word and function.

APPLY (with one argument).

Push argument and function to be called.
[unused 1
LEXPR-FUNCALL-WITH-MAPPING-TABLE

(one argument). Push argument, mapping
table and function.

-
L]

wr

dst: Destination

set indicators only

push rTesult on stack
return from current frame
replace current frame

WM~ O

20-6

Software Design Notes fMactTo=4instrTuctions

See the section on function calling for a description of the
call-info word.

20.7.2 AUX-0OP Long Branch.

15 %8 4 3 10
+— + +
10000000001 1 Litest

+— + +

H address
+—-

S

+ -+

+ -4 - 4

The Test and Sense fields have the same values as for a short
branch. Instead of a signed relative displacement, the second
half-word of the instruction contains the new PC offset from the
start of the FEF.

20.7.3 AUX-0OPS With Count Field.

15 98765 0

+—+

{10 0000 O Oiliop

- + =t

ctount

+ -+
+ -+

op: Operation

unbind “count® special variables
pop "count™ values off stack
return "count” values from stack
Lunusedl

IARCE e

20.8 AREFI INSTRUCTIONS

This group of instructions (see Figure 20-7) is used for single-—
dimension array references having a small constant index. The
index is an immediate value in the instruction, and the other
operands are taken from the stack.

Macro~-Instructions KOrTlware uvesSigit Noves

15 13 9 8 65 0
+=—t—t +
10id!0O 0O 1 1 1} ref
=t +

index

+ -+
+ -+

d: Destination
0 indicators
i push

ref: Reference kind

AREF [Zetalispl
ARRAY~-LEADER
ZINSTANCE-REF

AREF [Common Lispl
{SETF (AREF ...))
(SETF (ARRAY-LEADER
(SETF (ZINSTANCE-REF
Lunused]

NoUub_rWN-O

Figure 20-7 AREFI Instruction Format

20. 9 MODULE GROUP

This group of instructions (see Figure 20-B) are similar to MISC-
0OPS, except that they tend to be specific for certain
applications or environments, and the microcode that implements a
module is not required to be present.

15 13 g8 32 0
+——t + + +
101di0O O O 1 0! module i op |
==t + F———— +

d: Destination
0 = set indicators only
1 = push result on stack

Figure 20-8 Module Group Instruction Format

20-8

Software Design Notes Macro-Instructions

The operation to be performed is specified by a 6-bit module
number and a 3-bit operation <code within that module. The
currently assigned module numbers are:

o TV (various ZDRAW-<{thing> functions)
i Mouse

with more to be defined later.

' 20.10 UCODE ENTRIES

A Ucode entry (which stands for microcode entry) is not really a
macro—instruction at all. Rather it is a functional object: a
word of data type DTP-U-ENTRY. It can be funcalled, applied to
arguments, passed as a value, and so forth just like any other
Lisp functional obgject. The use of the pointer field of a U-
ENTRY is detailed in the section on Internal Storage Formats.

Ucode entries are listed here because they closely resemble MISC-
OPs and for completeness because all such functions must be
defined by the DEFOP file. A Ucode entry, like a MISC-OP, is a
microcoded function which takes 1its arguments from the stack.
However, the number of arguments is variable, so the function can
have an %REST arg.

20-9

Macro—instructions

20. 11

MACROCODE INSTRUCTION SET

The following is the syntax line for a macro-instruction:

QUTLWal’ e UE21yll 1INO

ves

SOME-MACROINSTRUCTION argl arg2 [opcodel FORMAT Level description

The name of the macro—instruction will be in upper
case.

Arguments are listed; they are to be pushed on the
stack, argl being the +first one pushed on the
stack. The last argument listed is the one on top
of the stack. If an argument is described with
the prefix immed-. then the argument is not pushed
on the stack, rather it is included in the
instruction itself (see the IMMEDIATE instruction
description above). If an argument 1is described
with the prefix base— then the argument is also
not pushed on the stack but rather addressed with
the MAIN-OP base-offset scheme described above.

Brackets ([]) are used to enclose the opcode for
the macro-instruction (specified in octal).

The FORMAT of the macro—instruction will be on the
far right and in upper case. It will be MAIN-OP,
SHORT-BRANCH, IMMEDIATE, CALL, MISC-0OP., AUX-OP,
AREFI, or MODULE (MODULE-NAME).

Level is either Lisp—Function or blank. This
indicates if there is a corresponding Lisp
function for this macro-instruction by the same
name. I# there is a corresponding Lisp function
for this macro—-instruction by another name, then
the Lisp function will be referred to in

description.

A brief description will then follow.

All MISC-OP instructions pop arguments that are on
the stack and return a value on the top of stack
unless otherwise indicated.

All MAIN-DP instructions use the base-offset
scheme to address their first argument (base-
argument) and all other arguments are popped off
the stack.

Most instructions set the indicators. Some
exceptions are: branches, (AUX) POP-PDL, (AUX)

20-10

Software Design Notes Macro-Instructions

UNBIND. LEXICAL-UNSHARE, and {AUX) LEXICAL-
UNSHARE-ALL. :

The following is an alphabetic list of macro-instructions.

ABS num [513]1 MISC-OP Lisp-Functio
Returns the absolute value of num which can be
any type of number.

ADD-IMMED num, immed-y [43] IMMEDIATE
Returns the sum of num and the immediate operand,
immed—y., which is part of the ADD-IMMED instruction.

ALOC array. %REST subscripts [2]1 UCODE ENTRY
Returns a locative to the element of array
specified by subscripts.

AP-1 array, index [645] MISC-OF Lisp-Function
Returns a locative to the element of array specified
by index. This is the one—-dimensional case of ALOC.

AP—-1-FORCE array. index £652] MISC-OP Lisp-Function
Returns a locative to the element of array specified by
index. Array is treated (forced) as one-dimensional.

That is, it is indexed with a single subscript regardless
of its rank.

AP-2 array., subl, sub2 [646] MISC-0OP Lisp—Functio
' ‘Returns a locative to the element of array specified by
subscripts subl and sub2.

AP-3 array. subl, sub2, sub3 £6471 MISC-OP Lisp-Functio:
Returns a locative to the element of array specified by
subscripts subl, sub2 and sub3.

AP-LEADER array. index [644]1 MISC-0OP Lisp—~Functios
Returns a locative to the leader element of array
specified by the subscript index.

APPLY-TO-INDS +¢n, args L1041 AUX-0OP
Apply function fn to the list of arguments args.
Set the indicators with the value returned.

APPLY-TO-PUSH #£n, args L1051 AUX-0OP
Apply function fn to the list of arguments args.
Push the returned value on the stack.

APPLY-TO-RETURN #n, args L1061 AUX-0P
Apply function fn to the list of arguments args.
Return the result value from the current function.

APPLY-TO-TAIL-REC +fn. args L1071 AUX-0P
Apply function fn to the list of arguments args.

20-11

Replace the current stack frame and return the
result valve.

ZLC: AR-1 array., index [641]1 MISC-OP Lisp-Function
Returns the element of the one—dimensional array
array specified by index. Array must be a
one—~dimensional array and index must be a FIXNUM.
If index is less than zero or greater than the
largest index permissible, then a SUBSCRIPT-0OB
eTTror is signalled. I# array is not one-dimensional.
then ARRAY-NUMBER-DIMENSIONS is signalled.
The type of result depends on the type of array.

AR-1-FORCE array. index [651]1 MISC-OP Lisp-Function
Returns the element of the array array specified by
index. Array is treated (forced) as a one—-dimensional
array; i.e., it is indexed with a single subscript
regardless of its actual rank.

AR-2 array, subl, sub2 [642]1 MISC-0OP Lisp-Function
Exactly like AR-1 except array must be
two—-dimensional.

ZLC: AR-2-REVERSE array., sub2, subl [6501 MISC-0OP Lisp—-Function
Returns the element of the two-dimensional array

array. See the Explorer Lisp Reference manual for

a discussion of this instruction.

AR-3 array, subl, sub2, sub3 [643]1 MISC-0OP Lisp-Function
Exactly like AR-1 except array must be
three—dimensional.

AREF array, %REST subscripts L1i] UCODE ENTRY
Returns the element of the array array specified by
subscripts.

ARRAY-ACTIVE-LENGTH array [662]1 MISC-OP Lisp-Function

Returns the number of "active" elements in array.

I+ the array has a £ill pointer then the fill pointer
value is returned, else the number of elements is
returned.

ARRAY-DIMENSION array, dimension [6651 MISC-0OP Lisp-Function
Returns the length of dimension dimension of array.
The first dimension is numbher O.

ARRAY-HAS-FILL-POINTER-P array (2411 MISC-0OP Lisp-Function
Returns T if array has a leader and leader element O
is a FIXNUM. Otherwise, teturns the symbol NIL.
I# array is not an array an ARGTYP error is signalled.

ARRAY-HAS—-LEADER-P array [234] MISC-OP Lisp-Function

Software Design Notes Macro-Instructions

Returns T if array has a leader. Otherwise, returns
the symbol NIL. If array is not an array an ARGTYP
error is signalled.

ARRAY-IN-BOUNDS-P array %REST subscripts [S5]1 UCODE ENTRY
Returns T if the indices are in bounds for the dimensions
of array. Otherwise, returns the symbol NIL.

ARRAY-LEADER array. index L4401 MISC-0OP Lisp-Function

Returns the array leader element of array specified

by index. If array is not an array an ARGTYP error

is signalled. If array does not have a leader the
ARRAY-HAS-NO-LEADER errtror is signalled. If index is

not a FIXNUM the ARGTYP error is signalled. Finally,

if index is greater than or equal to the length of

the leader the SUBSCRIPT-00B error is signalled.

ARRAY-LEADER-LENGTH array L6631 MISC-0P Lisp-Function
Returns the length of the array leader of array.
If array is not an array the ARGTYP error is
signalled.

ARRAY-LENGTH array L6601 MISC-OP Lisp-Function
Returns the length of array. Does not take into
account the fill pointer. Compare this
macro—instruction with ARRAY-ACTIVE-LENGTH.

ARRAY-PUSH array. value [340] MISC-OP Lisp-Function
Add value as an element at the end of array.
The fill pointer (leader element O) is the index
of the next element to be added. Returns NIL and
doesn’t update the fill pointer if array is full,
otherwise returns the index of the element
added. Does not automatically increase the size of
the array like ARRAY-PUSH-EXTEND.

ARRAY-RANK array [664] MISC-OP Lisp-Function
Returns the rank or number of dimensions of array.

ARRAYP base-argl [31] MAIN-OP Lisp-Function

argl L6001 MISC-O0P Lisp-Function
Returns T if base—argl (or argl) is an array

(has DTP-ARRAY datatype). Otherwise the symbol NIL
is returned.

AS-1 value, array. index (3213 MISC-OP Lisp-Function
Stores value into the one—-dimensional array
array specified by index. Array must be an array
and index must be a FIXNUM, otherwise the ARGTYP
error is signalled. If index is less than
zero or greater than the largest index permissible,
then a SUBSCRIPT-00B error is signalled. If array

20-13

Macro-Instructions Software Design Notes

is not one—dimensional, then ARRAY-NUMBER-DIMENSIONS
is signalled. Returns value.

AS-1-FORCE value, array. index [324] MISC-0OP Lisp-Functi:
Stores value into the array array specified by
index. Array is treated (forced) as one-dimensional;
i.e., it it indexed with the single subscript index
regardless of its rank. Returns valvue.

AS-2 wvalue, array., subl., sub2 £3221 MISC-OP Lisp-Functi

Exactly like AS—-1 except array is two-dimensional.

AS—-2-REVERSE value, array, subl, sub2 [325]1 MISC-OP Lisp-Functi:
Stores value into the two-dimensional array

array. See the Explorer Lisp Reference manual for a
discussion of this instruction. ,

AS5-3 wvalvue, array, subl, sub2, sub3 [323] MISC-OP Lisp-Functi:
Exactly like AS-1 except array is three-dimensional.

ASET value,varrag. YREST subscripts [0l UCODE ENTRY
Stores value into the array array specified by subscripts

ASH n. nbits £531]1 MISC-OP Lisp-Functit
Shift n arithmetically by nbits. N may be a DTP-FIXNUM
or a DTP-EXTENDED-NUMBER.

AS5Q x, alist L6107 MISC-OP Lisp—Functi
Search alist by comparing the CAR of each element
for being EQ to x. Returns the CDR of the matching
element if a match is found. Otherwise returns the
symbol NIL.

ATOM x [564]1 MISC-0OP Lisp-Functi
Returns the symbol NIL if x is a list.
Otherwise, Teturns T.

BIGNUM~-TO-ARRAY bignum, base [6541 MISC-0OP Lisp—-Functi
Converts bignum into an array. Bignum is
expressed in base and placed into an ART-Q
array. The sign of bignum is ignored.

BIND loc, val L2001 MISC-OF
Set the value of loc to val and save the
old value of loc on the special binding stack.

BIND-CURRENT base-loc £1541 MAIN-OP
Save the value of base—loc on the special
binding stack. Any other stores into base-loc

will not corrupt its previous value.

BIND-NIL base-loc [1511 MAIN-OP
Set the value of base~loc to NIL and save the old value

20~-14

a0rtware vesidgn NOoves macro—=instructions

B IND-POP

on the special binding stack.

newval, base-loc [1531 MAIN-OP
Set the value of base—loc to newval and save the old value
on the special binding stack.

BIND-T 'base-loc ' [1521 MAIN-OP
- Get the value of base-loc to T and save the old value
on the special binding stack.
BIT-VECTOR-P object [250]1 MISC-0OP Lisp-Functic
Returns T if object is a bit vector, otherwise return
NIL. A bit vector is defined to be an array of rank 1
whose elements are restricted to O and 1; i.e.. a
one—dimensional array of array type ART-1b.
BITBLT alu width from—-array from—x from—-y to—array to-x to-y
[345]1 MISC-0OP Lisp-Functic
BOUNDP symbol [2401 MISC-0OF Lisp-Functic
Returns T i1+ the value cell of symbol is unbound.
A cell is unbound if its data type is DTP-NULL.
BREAKPOINT [11 AUX-0OP
T C##R list [4,6]1 MISC-OP Lisp—Functic
. Returns the C##R of list. &Signals the ARGTYP error
if list (or any required intermediary list) is not a
list. The error check may be overridden if
taking the CAR of a symbol or number is allowed.
C##R may be CDAR or CAAR.
C###R list [11-171 MISC-OP Lisp—-Functio
Returns the C###R of list. Signals the ARGTYP error
if list (or any required intermediary list) is not a
list. The error check may be overridden if
taking the CAR of a symbol or number is allowed.
C###R may be CAAAR, CAADR. CADAR., CDAAR. CDADR,
CDDAR, or CDDDR.
CaauauR list [20-371 MISC-OP Lisp-Functio
Exactly like C###R. C##%#%R may be CAAAAR, CAAADR,
CAADAR, CAADDR. CADAAR. CADADR. CADDAR., CADDDR, CDAAAR,
CDAADR, CDADAR, CDADDR. CDDAAR, CDDADR, CDDDAR.,
or CDDDDR.
CALL-% base—-func [100,104,110,114,120,124,1301 CALL-0OP

Call the function base—func. # may be from O to &
respectively, and represents the number of arguments
for base—func that have already been pushed on

the stack. Func may be any functional argument.

20~-15

CALL-N n, base—-func [1341 CALL-0OP
This is used to call functions with greater than 7 arguments.
Call the function base—func with n arguments
The n arguments have already been pushed on the stack.
Base-func may be any functional argument.

- CAR-SAFE object [620] MISC-OP Lisp-Function

CARCDR 1list (6221 MISC-0OP
Returns the cdr of list. Sets the indicators based
on CAR of list.

CDR-SAFE object [6421]1 MISC-0OP Lisp-Function

CEILING-1 dividend, divisor [5511 MISC-OP
Returns dividend divided by divisor rounded up.
The remainder is not returned. To receive both
the quotient and the remainder see CEILING-2.

CEILING-2 dividend, divisor £5551 MISC-OFP
Returns dividend divided by divisor, rounded up,
and the remainder. Therefore; returns 2 values.

CHAR-INT character L7041 MISC-OP Lisp-Function
Returns a FIXNUM whose value corresponds to ™
character.

CHARACTERP object [2541 MISC-OP Lisp-Function

Returns T if object is a character, otherwise returns
NIL. Object is a character if it is defined with
a DTP-CHARACTER data type.

CLOSURE symbol-list, function [7171 MISC-OFP Lisp-Function
Returns a dynamic closure (DTP-CLOSURE),
closing function over the special variables
in symbol-list.

COMMON-AR—-1 array., index [670]1 MISC-OP Lisp-Function
Returns the element of the one-dimensional array
array specified by index. Array must be a

one—dimensional array and index must be a FIXNUM.

If index is less than zero or greater than the

largest index permissible, then a SUBSCRIPT-OOB

error is signalled. If array is not

one—dimensional, then ARRAY-NUMBER-DIMENSIONS is signalled.
The type of result depends on the type of array.

This differs from AR-1 for array types string and fat-string.
AR-1 will return FIXNUMs for elements within these arrays
while the COMMON-LISP-AR-n instructions return characters.

COMMON-LISP-AR~-1-FDRCE array, index [673]1 MISC-OP Lisp-Function
Returns the element of the array array specified by -

20-16

index. Array is treated (forced) as a one—-dimensional
array; i.e., it is indexed with a single subscript
regardless of its actual rank. See COMMON-LISP-AR-1
for the difference between this and AR-1-FORCE.

COMMON-LISP-AR-2 array. subl, sub2 L6711 MISC-OP Lisp-Function
Exactly like COMMON-LISP-AR-1 except array must be
two-dimensional.

COMMON~LISP-AR-3 array.subl,sub2,sub3 [672] MISC-OP Lisp-Function
Exactly like COMMON-LISP-AR-1 except array must be
three—~dimensional.

COMMON-LISP—-AREF array, %REST indices . UCODE ENTRY
This is no longer a macro-instruction but rather a function.

COMMON-LISP-ELT sequence., index [626]1 MISC-0OP Lisp-Function
Returns the element of sequence specified by index,
which must be a positive FIXNUM or the ARGTYP error
is signalled. Sequence may be a one-dimensional
array {(vector) or a list.

COMMON-LISP-LISTP object [243]1 MISC-OP Lisp-Function
The Common Lisp version of LISTP. Returns T if
object is NIL or a cons: otherwise returns NIL.
LISTP returns NIL if object is NIL.

COMPLEX-CALL callinfo, function [1001 AUX-0P
Calls the function function with the supplied
call-info word. If there are arguments for

function then they are already on the stack.
The complex call instructions basically enable
the manipulation of the call-info word.

Thus:, they are used mainly to achieve Lexpr
calls without providing the self-mapping table
{there is another macro—instruction for Lexpr
calls with self-mapping tables:
LEXPR-FUNCALL-WITH-MAPPING-TABLE), and Multiple
value return calls. See the section on function
calling for more information.

COMPLEX~-CALL-TO-# callinfo, function [100-1031 AUX-0OP
The four forms of COMPLEX-CALL.
Calls the function function with the supplied
call-info word. If there are arguments for
function then they are already on the stack.
may be INDS, PUSH, RETURN. or TAIL-REC.
See the section on calling for information
about the four call destinations.

COMPLEXP object [260] MISC-OP Lisp-Function

Returns T if object is a complex number,
ptherwise returns NIL.

20-17

Mt W A3 vl We vaWile il Wt R MR Eea'T 1TTW VS -

CONS car, cdr [412] MISC-OP Lisp—Functic
Constructs a list cell (cons) that has a CAR
of car and a CDR of cdr. The storage is allocated
in the default consing area specified by the
variable DEFAULT-CONS-AREA.

CONS-IN-AREA car, cdr, area [413]1 MISC-0OP Lisp—Functic
Exactly like CONS except the storage is allocated
in the argument area. Signals the ARGTYP error
if area is not a FIXNUM or a symbol with a FIXNUM
in its value cell.

CONSP-OR-POP object [304]1 MISC-OP

COPY-ARRAY-CONTENTS from. to [342] MISC-0P Lisp-Functic
Copy all the elements from the array FROM
to the array TO. I# TO is longer than FROM,
TO is filled with zeros (if a numeric array)
or NILs. If either array is multidimensional,
its elements are used in the order they are
stored in memory.

COPY—-ARRAY-CONTENTS-AND-LEADER from to [343] MISC-OP Lisp—-Functic
Exactly like COPY-ARRAY-CONTENTS except the leader
slots are also copied.

COPY-ARRAY-PORTION from—array from—start from—end to-array
to-start to-end
[344] MISC-0OP Lisp—-Functic
Exactly like COPY-ARRAY-CONTENTS except
from-start and from—end are indices in
#rom—array indicating the portion to copy.
To-start and to—end are indices in to—array
indicating where to place the elements.

DEPOSIT-FIELD value ppss fixnum [526] MISC-0OP Lisp-Functic
Returns a number which in the byte ppss matches
value and the rest matches fixnum. ppss is a
tield specifier as in LDB.

DISPATCH index base-disptable [721 MAIN-OP
Allows a multiway transfer of control.
The address field is an immediate value used
as a 9-bit offset from the beginning of the FEF;
this is the beginning of a table of PC valves.
The table entry at the offset specified by the
index argument becomes the new program counter
value.

DPB value ppss num [5241 MISC-OP Lisp-Functic

The inverse of LDB. The low order ss bits of
value replace the field of the same size in num.

20-18

Dottware Design Notes Macro-Instructions

Never changes the sign of the quantity DPB’ed into.

I# pp is above the current size of num: the quantity

is sign extended until it is long enough to accommodate
the DPB. Returns either a FIXNUM or a BIGNUM.

Value and ppss must be FIXNUMs and ppss specify a field
less than 25 bits. Num must be FIXNUM or a BIGNUM.

ENDP obgject [255]1 MISC-0OP Lisp-Functic
Returns T if object is NIL. Returns NIL if object
is a cons (DTP-LIST). Otherwise, signals the ARGTYP
eTTOT. :

EQ x, base-y [23] MAIN-OP Lisp-Functie
E@ x, y £574]1 MISC-0OP

Returns T if x and base-y are the exact same Lisp

object, otherwise returns NIL.

EQ-IMMED x, immed-—y [31 IMMEDIATE
Exactly like EQ except immed-y is taken from the
instruction itself.

EQ-T obgject [2611 MISC-OP
Returns T if object is the Lisp obgject T,
otherwise returns NIL.

EQL x, base-y [24] MAIN-OP Lisp-Functia

EQL x, y {5731 MISC-OF Lisp-Functio
See the Explorer Lisp Reference manual.

EQUAL x, base-y [25]1 MAIN-OP Lisp-Functio

EQUAL x, y [562]1 MISC-0OP

Returns T if x and base—y are EQ. If x and base—y

are numbers then they are equal if they have the same
value and type. Two conses are equal if the CARs are
equal and their CDRs are equal. Two strings are equal
if they have the same length. and the characters
composing them are the same. All other objects are
equal if and only if they are EQG.

EQUALP x, base—y 261 MAIN-OP Lisp-Functio
EQUALP x., y [5751 MISC-0OP

See the Explorer Lisp Reference manual.
EXCHANGE [10] AUX-0OP

Swaps the top two items on the stack.
Accepts and returns no valvues.

EXPT base, exponent [536]1 MISC-0OP Lisp-Functio
Returns base raised to the power exponent.

FBOUNDP symbol [2371 MISC-OP lisp
Returns T if the function cell of symbol does not

20-19

S T T S R Ee s s T T e T T m T e R FEREST W b aTeSI" TTW Ve -

contain the unbound marker, otherwise return NIL.
Symbol must be a symbol or the ARGTYP error is
signalled.

FIND-POSITION-IN~-LIST element, list [616] MISC-0P Lisp-Function
Returns the numeric index in list at which element
is found (uses EQ), unlike MEMQ which may return
the rest of list beginning with element. Otherwise
returns NIL. The index returned is zero-based.
List must be a list or the ARGTYP error is signalled.

ZLC:FIX number . (5101 MISC-OP Lisp—Function
See the Explorer Lisp Reference manual.

FIXNUMP base-object [34] MAIN-OP Lisp-Function

object [6021 MISC-OP Lisp-Function

Returns T if object is a FIXNUM, otherwise return NIL.

FIXP «x [S&611 MISC-0OP
Returns T if x is an integer, otherwise returns
NIL disregarding the datatype of x.

FLOAT-EXPONENT flonum [5161 MISC-OP Lisp-Function
Returns the exponent of flonum as a FIXNUM.

FLOAT-FRACTION flonum [517]1 MISC-OP Lisp-Function
Returns flonum modified to contain O as its exponent.
The result is either zero or has absolute value at
least 1/2 and less than one.

FLOATP «x [230] MISC-OP Lisp-Function
Returns T if x is a floating point number,
otherwise returns, NIL.

FLOOR-1 dividend. divisor [5501 MISC-0OP
Returns dividend divided by divisor, rounded douwn.

FLOOR-2 dividend, divisor [5511 MISC-OP
Returns dividend divided by divisor, rounded douwn,
and the remainder. Therefore, this instruction
returns 2 values.

FUNCTION-CELL-LOCATION symbol [6331 MISC-OP Lisp-Function
Returns a locative to symbol’s function cell.
Symiol must be a symbol or the ARGTYP error is
signalled.

GCD numl numz2 [5431 MISC-0OP
Returns the GCD (Greatest Common Divisor) of numi
and num2. Therefore, numl or num2 will be returned.
Both arguments must be numbers or the ARGTYP error is
signalled.

Doftware Design Notes ‘ Macro-Instructions

G-L-P array _ [653] MISC-OP Lisp-Function
Returns a list with the contents of array. :
Array must be an array of type ART-Q-LIST or the
ARGTYP error is signalled.

GET-LEXICAL-VALUE-CELL env-list, symbol-cell-location
L7221 MISC-0P Lisp-Function

GET-LOCATION-OR-NIL symbol property [72] MISC-0OP Lisp-Function
Returns a locative to the plist location containing
the value of property. Symbol can be a symbol,
instance, or disembodied property list. I1¢
property is not found, returns NIL.

GETL symbol indicator-list [71]1 MISC-OP Lisp—-Function
Find any of the properties in indicator-list, on
symbol. Whichever of those properties occurs first
in the property list is used. The value is a pointer
to the cell in the property list that points to the
indicator. The CADR of the value is the property’s
value.

HALT L33 AUX-0P
Halts the processor. This is used by hardware
debugging to possibly evaluate the state of the
machine. This should not normally be used to
shutdown the system, rather “CRASH should be used.

HAULONG integer L5151 MISC-0OP Lisp-Function
Returns the number of bits in integer as a FIXNUM.
For example, the size of #0777 is nine. Integer
may be either a FIXNUM or a BIGNUM.

1

INT-CHAR fixnum L7031 MISC-0OP Lisp-Function
Returns a character whose value corresponds to
fixnum.

INTEGERP base—ob ject [351 MAIN-OP Lisp-Function

Returns T if base-object is an integer, otherwise
returns NIL for other numbers and non-numbers.

INTERNAL-CHAR-EQUAL chl ch2 [2321 MISC-OP
Compares two characters that are either FIXNUMs or
DTP-CHARACTER objects. 1If the character codes
are equal then T is returned. Otherwise, if
ALPHABETIC-CASE-AFFECTS-STRING-COMPARISON is non-NIL,
NIL is returned. If the characters are different and
case doesn’‘t matter, T is returned if one is the
alphabetic uppercase of the other, otherwise NIL is
returned. (NOTE: notice how those macro—-instructions
with the prefix INTERNAL- are not defined with the
Lisp-Function level.)

Macro-Instructions ‘ Software Design Notes

INTERNAL-FLOAT number [512]1 MISC-0OP
Returns number if number is already a floating-point.
Otherwise, number is converted to a single—float number
and returned. This is like ZLC:FLOAT.

INTERNAL-GET-2 symbol property . £701 MISC-0OP
Returns symbol’s property property, otherwise NIL is
returned. Returns NIL if symbol does not have a
property list or is of a type that does not have
properties. Symbol may be a symbol, list, locative,
or an instance.

INTERNAL-GET-3 symbol property default [73] MISC-0OP
Similar to INTERNAL-GET-2 except
returns default instead of NIL if property is not
found.

LAST 1list [6111 MISC-0OP Lisp—-Functior
Returns the last cons cell of list.
Signals the ARGTYP error if list is not of
the type list.

LDB ppss: num [520]1 MISC-OP Lisp-Functim
Returns the ss number of bits starting at bit pp.

LDB-IMMED num. immed—ppss [44]1 IMMEDIATE
Exactly like LDB except immed—ppss is taken directly
from the instruction opcode. Immed<B8:4> is the 5 bit
pp (position) and Immed<3:0> is the 4 bit ss (length).

LENGTH list-or-array [612] MISC-OP Lisp-Functior
Returns the number of elements in list-or-array if
list-or—array is a list. Returns the array active
length if list—or—array is an array. The array’s
active length is the value of its fill-pointer if
it exists or the number of elements in the array.

LENGTH-GREATERP list—-or—array value {2311 MISC-0OP Lisp-Functior
Tests whether list—or—array has more than the number
of elements indicated by value without using LENGTH,
and thus without going any farther down the list than
necessary. Returns T if the number of elements is
greater than value, otherwise returns NIL.

LEXICAL-UNSHARE [76]1 MAIN-OP
LEXICAL-UNSHARE-ALL [311] AUX-0P
See the Closures section.

LEXPR-FUNCALL-WITH-MAPPING-TABLE arglist, mapping—-table, fn

[114] AUX-0P
Lexpr—funcalls the function fn with the supplied
mapping—-table and one argument, arglist.

20-22

WWT WWEI R WMuwsyil IWVIVWES Naliro=instructions

See the section on function calling for more information
concerning Lexpr—funcalls.

LEXPR-FUNCALL-WITH-MAPP ING-TABLE-TO-#
arglist mapping—-table fn [114-117] AUX-0P
The four forms of LEXPR-FUNCALL-WITH-MAPPING-TABLE.
may be INDS, PUSH, RETURN, or TAIL-REC, respectively.
LEXPR-FUNCALL-WITH-MAPPING-TABLE-TO-INDS is the
same as LEXPR-FUNCALL-WITH-MAPPING-TABLE.

LIST &REST elements [10] UCODE ENTRY
See the Explorer Lisp Reference manual.
LIST# first, REST elements [11]1] UCODE ENTRY

See the Explorer Lisp Reference manval.

LIST#-IN-AREA area first YREST elements [13] UCODE ENTRY
See the Explorer Lisp Reference manual.

LIST-IN-AREA area, %REST elements [10] UCODE ENTRY
See the Explorer Lisp Reference manual.

LISTP «x [32] MAIN-OP Lisp-Functio

LISTP «x [576]1 MISC-0OP
Returns T if x is a list or NIL, otherwise
returns NIL. Note that this is the Common Lisp
LISTP.

LOAD-FROM-HIGHER-CONTEXT contex—desc L7201 MISC-0OP
LOCATE-IN-HIGHER-CONTEXT contex—desc [721]1 MISC-0OP
See Closures section.

LOCATE~-IN-INSTANCE instance, symbol [710] MISC-OP Lisp-Functio

Returns a locative to the 1nstance variable
symbol of instance.

LOCATE-LEXICAL-ENVIRONMENT env-num £77]1 MAIN-OP
See Closures section.

LONG-BR L1763 AUX-0P
Unconditional macrocode branch. Instead of a signed

relative displacement like short—branches, the
second halfword of the instruction contains the
new PC offset relative to the start of the FEF
(as opposed to relative from the current instruction).

LONG-BR~% [160-175] AUX-0P
Conditional macrocode branch. See LONG-BR for
new PC generation scheme. # may be NULL-ELSE-POP,
NOT-NULL-ELSE-POP, NULL, NOT-NULL, ATOM. NOT-ATGOM,
ZEROP, NOT-ZEROP. SYMBOLP, NOT-SYMBOLP, NULL-LIKELY
or NOT-NULL-LIKELY.
See section on short branches for a description

20-23

of the different conditions.

LONG-PUSHJ L1773 AUX-0P
Unconditional subroutine call. The destination of
the call is computed like in LONG-BR. The macrocode
subroutine will return POPJ.

LSH n, nbits [530] MISC-OP Lisp—Function
Return n logically shifted (zero £ill) by nbits.
The sign of nbits controls the direction of the shift.
If nbits is negative, the shift is to the right.
n and nbits must both be FIXNUMs or the ARGTYP error
is signalled.

MAKE-EPHEMERAL-LEXICAL-CLOSURE envdesc, function
L7241 MISC-OP
MAKE-LEXICAL-CLOSURE envdesc, function [7231 MISC-0OP
See Closures section

MASK-FIELD ppss, fixnum [522] MISC-OP Lisp—-Function
Returns fixnum with all but the ppss byte replaced
with zeros.

MEM@ x, list [613] MISC-OP Lisp-Function
Returns the sublist of list beginning with the first
occurrence of x (using EQ), otherwise return NIL.

MINUS number £5141 MISC-OP Lisp-Function
Returns the negative of number. Number must be
of type number of the ARGTYP error is signalled.

MINUSP base-—x [371 MAIN-OP Lisp-~Function
MINUSP number [567]1 MISC-0OP

Returns T if baserx is negative (strictly less than

zero), otherwise returns NIL. The ARGTYP error is

signalled if number is not of type Number.

MOVEM base-loc £1411 MAIN-OP
Copies the value at the top of stack to base-loc.
Does not pop the top of stack nor does it return
a value.

NAMED-STRUCTURE-P object [603]1 MISC-OP Lisp-Function
Returns the symbol name of object if it is a named-
structure array, otherwise return NIL. See the section
on internal storage for a description of named-structures
and the location of their name. This instruction
will also return NIL if the name of object is not
a symbol or a closure.

NCONS car {4101 MISC-OP Lisp—Function
Constructs a cons (list cell) that has a CAR of car
and a CDR of NIL. The storage is allocated in the

-l WIS - WE EeytY TTWNR Fiv i i W Sffw ¥ WEhB VeoeWitw

area specified by the variable DEFAULT-CONS-AREA.

NCONS-IN-AREA car, area [411] MISC-OP Lisp-Function
Exactly like NCONS except the storage is allocated
in area. area must be a FIXNUM or a symbol that
evaluates to a FIXNUM or the ARGTYP error is
signalled.

NLISTP «x [235]1 MISC-0OP Lisp-Function
Returns T if x is an atom, otherwise returns NIL.
This instruction will return NIL for NIL.

NOT x [563]1] MISC-0P Lisp—-Function
Returns T if x is NIL, otherwise returns NIL.

NOT-INDICATORS £771 MISC-0OP
Returns T if and only if the indicators are null,
otherwise returns NIL.

NSYMBOLP x [236]1 MISC-0OP Lisp-Function
Returns T if x is not a symbol, otherwise returns NIL.

NTH n, list [614] MISC-OP Lisp-Function
Returns the nth element of list (O-origin).

NTHCDR n, list [615]1 MISC-OP Lisp-Function
Returns list with the first n elements discarded.
This is the equivalent of performing the CDR n times.

NUMBERP x [301] MAIN-OP Lisp-Function
NUMBERP «x [565]1 MISC-0OP
Returns T if x is of type Number, otherwise
returns NIL.
PDL-WORD n [40] MISC-0OP
Returns the value on the PDL (cached stack) that is n
below the current PDL-pointer. This assumes that the
selected word is on the PDL (cached stack) and never
fetches from memory.

PLUSP «x [36]1] MAIN-OP Lisp—-Function
PLUSP x ; [566]1 MISC-0OP

Returns T if x is positive (strictly greater

than zero), otherwise returns NIL. The ARGTYP error

is signalled if x is not of type Number.

POP oby, base-loc [140]1 MAIN-OP
Removes {(pops) obj from the top of stack to
base—loc. Nothing is returned.

POP-M-FROM-UNDER-N num-pops. num—to—keep
[131] AUX-0OP
While keeping the top num—to—keep values on the stack,

FMaU iro™T4alis v vawvilio wWW il WS & MuRiygil N PR 2

removes the num—pops values from underneath them.

POP-PDL—-# [500-5171 AUX-0OP
Removes the top # elements from the PDL (stack cache).
may be from 1 to 63.

POPJ return—macropc [14] AUX-OP
Transfer macrocontrol to return-pc. return-pc
is relative to the beginning of the FEF.
Therefore, the next macro—instruction executed will
be at return-pc.

PREDICATE L7611 MISC-0OP
Returns NIL if and only if the indicators are
null, otherwise return T.

PROPERTY-CELL-LOCATION symbol [634] MISC-OP Lisp—-Functio
Returns a locative to symbol’s property-list cell.
If symbol is not a symbol then the ARGTYP error
will be signalled.

PUSH base-ob [50] MAIN-OP
Pushes the value at base-ob) to the
top of stack.

PUSH-AR-1 index, base—array ' [671 MAIN-OP
Pushes the value at the specified
index into the array at base-array.

PUSH-AREFI array, immed—-index [471 AREFI
Returns the value of array specified by immed-index.
This is used for single—-dimension array references
where immed—index is a small constant.
immed—index is an immediate value in the
instruction and the array is popped off the
stack.

PUSH-CADDR base-list [55]1] MAIN-OP
Pushes the CADDR of the list at base-list.

PUSH-CADR base-list [53]1] MAIN-OP
Pushes the CADR of the list at base-list.

PUSH~-CAR base-list [511 MAIN-OP
Pushes the CAR of the list at base-list.

PUSH-CDDR base-list [541 MAIN-OP
Pushes the CDDR of the list at base-list.

PUSH-CDR base-list {521 MAIN-OP
Pushes the CDR of the list at base-list.

PUSH-CDR-STORE-CAR-IF-CONS x,base-dest [147] MAIN-OP

20-26

d AT bl - B TV W = il e GITWw VI W Ve Wil

Returns the CDR of x {(popped from stack)
and stores its CAR at base—dest if x is a cons.
otherwise NIL is left in the indicators.
This is used mainly to implement DOLIST.

PUSH-CONS car, base—cdr [56]1 MAIN-OP
Pushes the cons of car and the cdr at
base—cdr. Car is popped from the stack.

PUSH-GET sym, base-ind [57]1] MAIN-OP
Pushes sym’s base—ind property, otherwise NIL
is returned. Returns NIL if sym does not have a

property list or is of a type that does not have
properties. Sym may be a symbol, list, locative,
or an instance. This instruction corresponds to
the GET function with two arguments.

PUSH-LDOC base-loc £150] MAIN-OP
Pushes a locative that points to base—loc.

PUSH-LONG-FEF base-x 701 MAIN-OP
Pushes what is at base—x plus the current
FEF base address. base—-x is a 9-bit offset.
The current FEF base address is defined to be the
function object of the currently executing stack
frame. The tread of the object at base-x plus FEF
will be transported. This reference. therefore,
can cause a TRANS-TRAP error to be signalled if
the word read contains an invalid object or is

unbound.
PUSH-NEG—-NUMBER [46] MAIN-OP
PUSH-NUMBER [47]1 MAIN-OP
Pushes the specified thing onto the stack. HKnowing

what the thing is means greater efficiency because
these things never have to be TRANSPORTed

These take an immediate operand which is used as

a 9-bit integer.

RATIONALP x [256]1 MISC-0OP Lisp-Function
Returns T if x is a ratio or an integer.
otherwise returns NIL for all other data types.
An error is never signalled.

RATIOP «x [257] MISC-OP Lisp-Function
Returns T if x is a ration, otherwise Teturn NIL.
An error is never signalled.

RETURN base-val [17] MAIN-OP
Causes the current call frame to fold and a
+eturn to the previous call frame. The value
at base-val will be left on top of the stack,
which is exactly where the current (function

20-27

Macro—instructions L0frftware besign Notes

executing RETURN) call frame started.

RETURN-# val0O, vall, ..., val# [600-6371 AUX-0P
Causes the current call frame to fold and a
return to the previous call frame. #-values
will be left on top of the stack.
which is exactly where the current (function
executing RETURN-#) call frame started.
Therefore, this instruction moves the top
values to the new top of stack. Actually no
more values are returned than the caller is
expecting so the number returned may be less.
may be from O to &3 (decimal).

RETURN-LIST 1list [1211] AUX-0P
Causes the current call frame to fold and a
return to the previous call frame. Returns

the elements of list as multiple values.

This instruction will return the exact number

of elements that the caller expects, i.e., if

the number of elements in list is less than

the number the caller expected to be returned.
then NILs are used to pad. Conversely, the caller
never receives more values than it is expecting.

RETURN-N wvall val2 ... valnumvals numvals
£1201] AUX-0P
Exactly like RETURN-# except the number of values
to return is specified with numvals. Again, the
caller will never receive more values than it is
expecting so the number returned may be less
than numvals.

RETURN-NIL . [1221] AUX-0P
Causes the current call frame to fold and a
return to the previous call frame. The value
NIL will be left on top of the stack,
which is exactly where the current (function
executing RETURN~-NIL) call frame started.

RETURN-NOT-INDS [1371] AUX-0P
Causes the current call frame to fold and a
return to the previous call frame. The value
left on top of the stack, which is exactly
where the current (function executing
RETURN-NOT-INDS) call frame started will be
T if the NIL indicator is not set.

Dtherwise NIL is returned.

RETURN-PRED L1361 AUX-0P
Exactly like RETURN-NOT-INDS except returns

T if the NIL indicator is set, otherwise returns
NIL.

20-28

RETURN-T [1231] AUX-0P

Causes the current call frame to fold and a
return to the previous call frame. The value
T will be left on top of the stack.,

which is exactly where the current (function
executing RETURN-T) call frame started.

ROT n, nbits [532] MISC-OP Ligp—Function
Returns n rotated by nbits. The direction of
rotation is controlled by the sign of nbits.
If nbits is positive then a left shift is performed.
otherwise a right shift is performed. n is
treated as a 25-bit number and n and nbits
must both be FIXNUMs.
ROUND-1 dividend, divisor [5531 MISC-0OP
Returns dividend divided by divisor, rounded
to the nearest integer. The remainder is not
returned.
ROUND-2 dividend, divisor £5571 MISC-0OP
Returns dividend divided by divisor, rounded
to the nearest integer and the remainder.
RPLACA cons, newcar [300] MISC-OP Lisp—-Function
Returns cons with its CAR replaced with newcar.
cons must be a list or a locative or the ARGTYP
error is signalled.
RPLACD cons, newcdr [301]1 MISC-OP Lisp—Function
Returns cons with its CDR replaced with newcdr.
cons must be a list or the ARGTYP error is signalled.
SCALE-FLOAT flonum, integer £545] MISC-0OP Lisp-Function
Returns flonum with integer added to its exponent.
SELECT x. selectq-table [71]1 MAIN-OP

Used to implement multi-way branches based on value of x.
Branches are defined by selectq-table which has the
format shown below. It is a cdr—coded list of objects
or EVCPs to objects (cdr coding must be correct).

——— +

{ FIX : Offset to !

' Dispatch Tablel

H <item> ! 1st compare value, CDR-NEXT
:'{ktem} Last compare value, CDR-NIL

1]
FIX : Max item num {{———— Dispatch table only
FIX : Else PC ! from here down

FIX : PC of item O !
FIX : PC of item 1} |

- - - - w-

20-29

! FIX : PC of item 2

! FIX :.bb of item n
+

+ -

SET symbol, value [310]1] MISC-0OP Lisp-Functiol
Sets the value cell of symbol to value. Signals
the ARGTYP error if symbol is not a symbol or is
NIL (since it is illegal to set NIL).

SET-%ZINSTANCE-REF instance. index. value
: [354]1 MISC-0OP
Sets the slot at index into the instance data
structure to value.

SET—-AR-1 array, subscript. value [331] MISC-0OP Lisp-Functio
Sets the element of the one—-dimensional array array
specified by subscript to value. Array must be a
one—-dimensional array and subscript must be a FIXNUM.

I+ index is less than zero or greater than the largest
index permissible then a SUBSCRIPT-00B error is signalled
If array is not one—-dimensional then
ARRAY-NUMBER~-DIMENSIONS is signalled.

SET-AR-1-FORCE array., subscript, value
[3351 MISC-OF Lisp—-Functior
Sets the element of the array array specified by
subscript to value. Array is treated (forced) as a
one-dimensional array; i.e., it is indexed with a
single subscript regardless of its actual rank.

SET-AR-2 array. subscriptl, subscript2, value
[332] MISC-0P Lisp-Functior
Exactly like SET-AR-1 except array must be
two—-dimensional.

SET-AR-3 array subscriptl subscript2 subscript3 value
[334]1 MISC-OP Lisp-Functior
Exactly like SET-AR-1 except array must be
three—dimensional.

SET-AREF array, %REST subscripts—and-values UCODE ENTRY

SET-ARRAY-LEADER array index value [3301 MISC-0OP Lisp-Functior
Sets the array leader element of array specified
by index to value. If array is not an array an
ARGTYP error is signalled. If array does not
have a leader the ARRAY-HAS-NO-LEADER error is
signalled. If index is not a FIXNUM the ARGTYP
error is signalled. Finally, if index is greater
than or equal to the length of the leader the
SUBSCRIPT-00B error is signalled.

20-30

L0 ritware vesign NOtves) rlieacro—instructions

SET-NIL base-loc [155]1] MAIN-OP
Sets the value at base-~loc to NIL.

SET-T base-loc [1561 MAIN-OP
Sets the value at base-loc to T.

SET—-ZERO base-loc . £1571 MAIN-OP
Sets the value at base—loc to a FIXNUM zero.

SETCAR cons, newcar [302]1 MISC-0OP Lisp-Functiac
Replaces the CAR of cons with newcar and returns newcar.
Compare with RPLACA which returns a different value.

SETCDR cons, newcdr [3031 MISC-0OP Lisp-Functic
Replaces the CDR of cons with newcdr and returns newcdr.
Compare with RPLACD which returns a different value.

SETE-1+ base-1loc [144]1 MAIN-OP
Increments the contents at base—-loc and stores the result
back at base-loc. This is called a read-modify~write
instruction. The contents at base-loc must be
of the numeric type or an ARGTYP error is signalled.

SETE-1- base-loc £145]1 MAIN-OP
Exactly like SETE-1- except the contents at base-loc
is decremented.

SETE-CDDR base-loc) L1431 MAIN-OP
Replaces base—loc with the CDDR of base-loc. This
is called a read-modify-write instruction. (setq

frob (cddr frob)) translates to this instruction.
The contents at base—loc and its CDR must be of the
list type or the ARGTYP error is signalled.

SETE-CDR base-loc [1421 MAIN-OP
Replaces base—loc with the CDR of base-loc. This
is called a read-modify—write instruction. (setq

frob {(cdr frob)) translates to this instruction.
The contents at base-loc must be of the list
type or the ARGTYP error is signalled.

SETELT sequence, index, value [3071 MISC-0OP Lisp-Functio
Sets the element of sequence at index to value. This
corresponds to SETF on ELT.

SHRINK-PDL-SAVE-TOP n-slots value-to-move ,
[41]1 MISC-0OP
Pops n—slots (after popping the 2 arguments above)
from the PDL and moves value—to-move to the
new top of the stack.

SIMPLE~-ARRAY-P object (2461 MISC-0OP Lisp-Functio
Returns T if object is a simple array, otherwise

20-31

Al A ey s T W W R 7T T B e~ B

returns NIL. A simple array is an array that does
not have a fill-pointer and is not displaced or
indirect. This is a Common Lisp instruction.

SIMPLE-BIT-VECTOR-P object [251] MISC-0P Lisp-Function
Returns T if object is a simple bit vector, otherwise
returns NIL. A simple bit vector is a one—-dimensional
array of array type ART—IB with no fill-pointer that
is also not displaced or indirect.
This is a Common Lisp instruction.

SIMPLE~STRING-P obgject [247]1 MISC-OP Lisp-Function
Returns T if object is a simple string. otherwise
returns NIL. A simple string is a one—-dimensional
array of array type ART-STRING or ART-FAT-STRING
with no fill-pointer that is alsoc not displaced
or indirect. This is a Common Lisp instruction.

SIMPLE-VECTOR-P object [245] MISC-OP Lisp-Function
Returns T if object is a simple vector, otherwise
returns NIL. A simple vector is a one—-dimensional
numeric array with no fill-pointer that is also not
displaced or indirect. This is a Common Lisp instruction.

SMALL-FLOAT number £5111 MISC-OP Lisp-Function
Converts number to a short float.

SMALL-FLOATP object . [2531 MISC-OP Lisp—-Function
Returns T if object is of type SHORT-FLOAT (small-float).
otherwise returns NIL. (Small-float is Zetalisp
terminology, while short—-float is the Common Lisp
type name.)

SPECIAL-PDL-INDEX \ [405] MISC-0OF Lisp-Function
Returns a locative pointing to the last slot of the
current special PDL that was bound.

STACK-GROUP—-RESUME sg, «x [47]1 MISC-OP Lisp—Function
Resumes the stack group sg with the argument x.
See the stack groups section.

STACK—-GROUP-RETURN «x (461 MISC-OP Lisp-Function
Resume the stack group which invoked the current
stack group with the argument x. The resumed

stack group’s resumer does not change.

STORE-ARRAY-LEADER value array index [320] MISC-OP Lisp-Function
Sets the array leader element of array specified
by index to value. If array is not an array, an
ARGTYP error is signalled. If array does not have
a leader the ARRAY-HAS-NO-LEADER error is signalled.
If index is not a FIXNUM, the ARGTYP error is
signalled. Finally, if index is greater than or

20-32

W § VWl - M ERctT2 T 7T

equal to the length of the leader, the SUBSCRIPT-UOB
error is signalled.

STORE-IN-HIGHER-CONTEXT value context—desc
[301 AUX-0P
Used for storing into lexical variables in a higher
lexical context.

STRINGP base— v [33] MAIN-OP Lisp-Function
[601]1 MISC-OP Lisp-Function
The STRINGP MAIN-OP sets the indicators if base-x
is a one—-dimensional array of array-type ART-STRING
or ART-FAT-STRING. The STRINGP MISC-OP returns T
if x is a one-dimensional array. of array-type
ART-STRING or ART-FAT-STRING, otherwise return NIL.

SYMBOL~FUNCTION symbol [627]1 MISC-OP Lisp—Function
This is exactly like FSYMEVAL (same MISC-OP number, also).
The difference is that the functionality is known
in the Lisp world under this name.

SYMBOL-NAME symbol [6311 MISC-OP Lisp-Function
Returns the print name of symbol (an array pointer).
Symbol must be a symbol or the ARGTYP error is
signalled. This was called GET-PNAME in Zetalisp.

SYMBOL-PACKAGE symbol [635] MISC-0OP Lisp—Function
Returns the package object of symbol. Symbol
must be a symbol or the ARGTYP error is signalled.

SYMBOL-VALUE symbol [636]1 MISC-OP Lisp-Function
Returns the current value of symbol.
Symbol must be a symbol or the ARGTYP error is
signalled. I# symbol is unbound then the
TRANS-TRAP error is signalled. This was called
SYMEVAL in Zetalisp.

SYMBOLP «x [577]1 MISC-OP Lisp—-Function
Returns T if x is a symbol, otherwise NIL
is returned.

TEST base—oby [10] MAIN-OP
Sets the indicators based on the contents of base-—oby.

TEST-AREF!I [71 AREF1
Sets the indicators based on the contents of an
immediate array element reference.

TEST-CAAR base-list [15] MAIN-OP

Sets the indicators based on the contents of the
CAAR of base-list.

20-33

Macro-Inst

TEST-CAD

TEST-CAR

TEST-CDD

TEST-CDR

TEST-MEM

TIME-IN-

TRUNCATE

TRUNCATE

TYPEP-ST

UNB IND—#

UNBIND-T

UNBIND-T

VALUE-CE

ructions Software Design Notes

R base-list 131 MAIN-OP
Sets the indicators based on the contents of the
CADR of base-list.

base—-list [11]1 MAIN-OP
Sets the indicators based on the contents of the
CAR of base-list. »

R base-list . {141 MAIN-OP
Sets the indicators based on the contents of the
CDDR of base-list.

base—-list [121 MAIN-OP
Sets the indicators based on the contents of the
CDR of base-list.

Q x: base-list [16] MAIN-OP
Sets the indicators based on either the sublist of
base—list beginning with the first occurrence of x
(using EQ), if found. or NIL.

&0THS [472] MISC-0OP Lisp-Functio
Used internally to implement TIME when called
with no arguments.

-1 dividend, divisor [552]1 MISC-0OP
Returns dividend divided by divisor, rounded down to
zero (truncated). The remainder is not returned.

-2 dividend, divisor [556]1 MISC-0OP
Returns dividend divided by divisor, rounded down to
zero {(truncated) and the remainder.

RUCTURE-OR-FLAVOR object, type [252]1 MISC-OP Lisp-Functio
Used for TYPEP when the Compiler knows that the type
being tested for is a flavor or named structure.

[400-4171 AUX-0P
Undo # bindings on the special PDL (binding stack).
may be from 1 to &3.

O-INDEX special-pdl-index [171] AUX-0F
Undo bindings on the special PDL (binding stack)
until the special PDL pointer is less than or equal
to special-pdl-index.

O~INDEX-MOVE (4061 MISC-OP
special-pdl—index, value—to—-move

Exactly like UNBIND-TO-INDEX, except value—to-move
is returned.

LL~-LOCATION symbol [632] MISC-0P Lisp-Functio
Returns a locative to the internal value cell of

20-34

symbol. Symbol must be a symbol or the ARGTYP
error is signalled. Note that this instruction
will return a pointer to the exact contents of
the value cell and will not follow forwarding
pointers.

. VECTOR-PUSH new-element, vector [341] MISC-OP Lisp-Functio

Returns the new fill-pointer for vector after
pushing new—element, otherwise returns NIL if
vector is full. Vector must have a leader or
the ARRAY-HAS-NO-LEADER error is signalled.

The fill-pointer of vector (leader element O)
must be a FIXNUM or the FILL-POINTER-NOT-FIXNUM
error is signalled. This instruction does not
check that vector is a true vector.

This is a Common Lisp instruction.

VECTORP object {2441 MISC-OP Lisp-Functio
Returns T if object is a vector, otherwise
returns NIL. A vector is a one—dimensional array.
This is a Common Lisp instruction.

ZEROP number [560] MISC-OP Lisp-Functio
Returns T if number is equal to the zero of its type,
otherwise returns NIL. Number must be of type Number
{(numeric) or the ARGTYP error is signalled.

%ADD-INTERRUPT device-—desc, level [2111 MISC-0OP
Installs an interrupt for the device described by
the array device-desc at the level level. The
device encoded within device—desc must have a
microcode interrupt handler for it or an error
is signalled. This instruction does not perform
any device initializations.

%ALLOCATE-AND-INITIALIZE data—-type header—type header
second—word area size
£415] MISC-0OP Lisp-Functio

This is the subprimitive for creating most
structured—type objects. Area is the area in
which it is to be created, as a FIXNUM or a
symbol. Size is the number of words to be
allocated. The value returned points to
the first word allocated and is of type
data-type. The words allocated are initialized
with interrupts disallowed so that storage
conventions are preserved at all times. The
first word, the header, is initialized to have
header—type in its data—-type field and header
in its pointer field. The second word is
initialized to second-word. The remaining words
are initialized to NIL. The cdr-codes of all words
except the last are set to cdr—next; the cdr-—code

20-35

of the last word is set to cdr-nil. Note that
programs should not rely on the cdr—code field
of non—-cons cells being in a knouwn state.

%ALLOCATE-AND-INITIALIZE-ARRAY header index-length
leader—-length area ngs
[416]1 MISC-OP Lisp—-Function
This is the subprimitive for creating arrays.,
called only by make—array. It is different
from “allocate—and—-initialize because arrays
have a more complicated header structure.

ZALLOCATE-AND-INITIALIZE-INSTANCE header, area, nqs
[420]1 MISC-OP Lisp-Function
Allocates storage for an instance, sets header
type to DTP-Instance—-Header and sets data type
to DTP-Instance. Fills allocated space with NIL
and places header in word O.

“%AREA-NUMBER x [5001 MISC-OP Lisp-Function
Returns the area number of the area the pointer
x points into, or NIL.

%“ASSURE-PDL-ROOM room [121] AUX-0P Lisp-Function
This instruction will trap if there are not room
more words available in this function frame.

%BLT +from—address, to—address, count, increment
[346] MISC-OFP Lisp—Function
Copy a block of virtual memory. a word at a time,
with no decoding, for untyped data. Use Y“BLT-TYPED
for words which contain Lisp data types. The first
word is copied from from—address to to—address.
Increment is added to each address and then another
word is copied till count is exhausted.

ZBLT-FROM-PHYSICAL source—address destination—address,
number-of-words increment
[224]1 MISC-OP Lisp-Function
Copy @ block of physical memory from source—address
to unboxed virtual memory starting at destination-
address. Not decoded; use on untyped data only.

%BLT-TG-PHYSICAL source-address destination—address
number-of-words increment
[2231 MISC-0OP Lisp—Function
Copy a block of physical memory from unboxed
virtual memory starting at source—-address to
physical memory beginning at destination—address.
Not decoded; use on untyped data only.

LBLT-TYPED [347]1 MISC-OP Lisp-Function
Copy a block of virtuasl memory, a word at a time.

=0-36

=UT vWal © WE 244yl INWVE S i ™ ! W &l

Wi e Wae Wi

The first word is copied from from—address to

to—-address. Increment is added to each address
and then another word is copied till count is
exhausted. Each word copied is transported and

each word written is checked through the the Write
Barrier. Returns NIL.

ZCHANGE-PAGE-STATUS virt—-addr swap-status access—-and-meta
[360]1 MISC-OP Lisp—-Function
Changes the page status bits of the page containing
virt-addr, if it is paged in, to swap-status and
access—and-meta. If either swap-status or
access—and—meta are NIL then that parameter
is not set. Returns T if the page was found in
the page hash table (it was swapped in) or NIL if
it was not found (it was not swapped in). This
does no error checking.

%CLOSE~-CATCH £134] AUX-0P
Close a catch.

%LCLOSE-CATCH-UNWIND-PROTECT . [1351] AUX-0P
Close catch but leave info for
Zunwind-protect—continue.

%“COMPUTE-PAGE-HASH addr £4751 MISC-OP Lisp-Function

Computes the page hash table index that corresponds
to addr and returns it as a FIXNUM.

%“CRASH code, object, paws-up-p [31] AUX-0OP Lisp-Function
Causes machine to crash (like ILLOP) indicating
crash reason as software with code remembered as
the crash code. Object is also remembered for
crash analysis. I# paws—up—p is not NIL then will
display paws—up as ILLOP does. I+ paws-up-p
is NIL then it is presumed that the called has
indicated the lossage to the user. %“CRASH is not
restartable, but you may be able to warm—boot out of it.

%“CREATE-PHYSICAL-PAGE p#fn [1403] AUX-0OP Lisp—-Function
Adds the physical page specified by pfn to the
pool of available page frames. See section on
Paging and Disk Management for more details.

“DATA-TYPE «x [450]1 MISC-OP Lisp-Function
Returns the data type of x as a FIXNUM. Its
value will be less than 32.

%DELETE-PHYSICAL-PAGE pfn £362]1 MISC-OP Lisp-Function
Deletes the physical page specified by pfn from
the page frame pool. Returns T if successful,

otherwise NIL. See section on Paging and Disk
Management for more details.

20-37

Macro—-lnstructions oo0ftware lDesign Notes

%“DISK-RESTORE L1561 AUX-0OP Lisp-Functio
partition—high—-1é6-bits low-1é6-bits physical-unit
Restores the load partition whose name is formed by
concatenating the first two arguments to form a 32-bit
number (4 characters). I# the number is zero then
the default band is restored from the default unit, else
the named partition is restored from physical-unit.

“DIV dividend., divisor [544]1 MISC-OP Lisp—-Functio
Returns the rational number generated by
dividing dividend by divisor.

“DRAW-CHAR font—-array char—-code x—-bitpos y-bitpos
alu—-function sheet
[O] MODULE(TV)

Draws the character char-code of font font-array on
sheet using alu—function. alu—-function is typically
TV: ALU-IOR, TV:ALU-ANDCA, or TV:ALU-XOR. x-bitpos and
y—-bitpos are the position in sheet for the upper left
corner of the character to be drawn.

%“DRAW-FILLED-RASTER-LINE x1 x2 y left—-edge top—edge right—edge
bottom—edge alu draw—-last-point fill-color destination
[51 MODULE(TV) —

%“DRAW-FILLED-TRIANGLE x1 yl1 x2 y2 x3 y3 left—edge top-edge
right—-edge bottom—edge alu draw—third-edge
draw—-second—edge draw—first—edge fill-color destination

[4] MODULE(TV)

%“DRAW-LINE x0 yO x y alu draw—end—point sheet
[2] MODULE(TW)
Draws a straight line from (x0,y0) to (x,y) on sheet

using alu as the ALU function. alu is typically
TV: ALU-I0OR, TV:ALU-ANDCA, or TV: ALU-XOR.

“DRAW-RECTANGLE width height x—bitpos y-bitpos alu—function sheet
[£11 MODULE(TV)
Draws a solid rectangle on sheet using alu—-function.
alu is typically TV:ALU-IOR, TV:ALU-ANDCA, or
TV: ALU-XOR. Height and width are the size of the
rectangle, and x-bitpos and y-bitpos are the location
of the upper left corner.

“EXTERNAL-VALUE-CELL symbol [637] MISC-0OP Lisp-Function
Returns a locative to whatever the value cell of
symbol points to. If symbol is closure bound, this
will be a locative to the external value cell. Does

not check that the internal value cell contains an
external value cell pointer.

ZFIND-STRUCTURE-HEADER ptr [502]1 MISC-OP Lisp-Functior

20-38

-G VWG W WE R4yl 1TV VE @ il ! W All@ VI Ve valWlitla

Returns the object containing the cell addressed by the
locative, ptr. Finds the overall structure containing
the cell addressed by ptr. Does not follow structure
forwarding.

%“FINDCORE 4761 MISC-0OFP Lisp-Functio
Returns the page frame number of an available physical.
page. Makes one available if necessary..

“LF IXNUM-MICROSECOND-TIME [471]1 MISC-OP Lisp-Functio
Returns the 32-bit microsecond time truncated to
25-bits and typed as a FIXNUM.

%FUNCTION-INSIDE-SELF £7141 MISC-OP Lisp-Functio
Returns the functional part of SELF. I# SELF is an
instance, return the contents of the cell referenced by
the ZINSTANCE-DESCRIPTOR-FUNCTION slot of the instance
descriptor. This is usually a funcallable hash array.

If SELF is a closure, return the function from the
closure, otherwise return NIL.

%“GC-CONS—-WORK nqs [1531 AUX-0P Lisp-Functio
Informs the 6C microcode that nqs Q‘s have been allocated.
There is no need to do this if storage is allocated
by the microcoded storage allocation routines.

%“GC-FLIP rtegion L1511 AUX-0OP Lisp-Functio
Flips Tegion converting new space to old space. Ensures
that nothing else in the machine points to old space.

If region is T all new space is converted to old space.

%“GC-FREE-REGION region [1501] AUX-0OP Lisp-Functio
Makes region region free. Used on old space region
after scavenging is complete.

“GC-SCAV-RESET region [57] MISC-0OP
Returns T if the scavenger was looking at this region,
otherwise NIL is returned. This also makes the scavenger

not look at region and removes Tegion from the cons cache.

%“GC-SCAVENGE work—-units £1521 AUX-0OP Lisp-Functio
Scavenge for work-units of work or until a page fault.
Returns NIL if completed work—-units of work or ran
out of work to do. Returns non-NIL if took a page
fault before scavenging was complete. A "work-unit"”
is the scavenging of one Q.

%GET-SELF-MAPPING-TABLE method—flavor-name
[7111 MISC-OP Lisp-Functio
Returns NIL if SELF is not an instance.
Returns the value of SELF-MAPPING-TABLE
if the mapping table is already this value.
Otherwise, Tteturns the table located by searching the

20-39

- - S itTw Wy T =TS TS e S -

mapping table alist of the instance descriptor for SELF
for method-flavor—-name and getting its CDDR.
method-flavor—name is a symbol for the flavor of the
method for which to get a self mapping table.

LINSTANCE-LOC instance, index [713]1 MISC-OP Lisp-Function
Returns a locative to the slot index in instance.
The lowest valid index is 1 (i-origin).

“ZINSTANCE-REF instance., index £7121 MISC-OP Lisp-Function
Returns the contents of the slot index in instance.
The lowest valid index is 1 (i-origin).

%10 rqb, device—-desc [210]1] MISC-0OP Lisp-Function
Initiate 10 request describe rqb (request-block) on the
device described by the array device-desc. The device

handler will interpret the contents of the rqb. Rgb is
often an array but may be a FIXNUM. device—-desc is an
array that serves as the IO-DEVICE-DESCRIPTOR

{see section on devices).

%“L0OGDPB value., ppss, word [5251 MISC-OP Lisp-Function
A FIXNUMs—-only form of DPB. The low order ss bits of .
value replace the field of word. Always returns a

FIXNUM. Does not complain about loading/clobbering
the sign bit. No error checking is performed on the

arguments.

%LOGLDB ppss, word [521] MISC-0OP Lisp-Function
A FIXNUMs-only form of LDB. Returns a FIXNUM obtained
from the 32-bit uninterpreted word. This instruction

only return a field up to 25 bits. The result may be
negative if the field size is 25. Signals the ARGTYP
error if ppss is not a FIXNUM or if it specifies a field
greater than 25 bits wide.

ZMAKE-EXPLICIT-STACK-LIST 1length [401]1 MISC-0OP Lisp-Function
Returns a list pointer to the first element
of the list immediately before the argument length.
The length values prior to length are made into a
list; i.e., the CDR-code of the last one is changed
to CDR-NIL.

LMAKE-EXPLICIT-STACK-LIST#* 1length [402]1 MISC-0OP Lisp—Function

Exactly the same as ZMAKE-EXPLICIT-STACK-LIST except
it makes the last element be the cdr of the list.

YMAKE-LLIST initial-value, area, length ({4141 MISC-0OP Lisp—-Function
Constructs a CDR-coded list of initial-value,
length elements long in area.

ZMAKE~-POINTER dtp. address L4461 MISC-OP Lisp-Function

20-40

Returns a Q whose data type is dtp and whose
pointer field is address; exercise extreme caution.

“MAKE-POINTER-OFFSET new-dtp, pointer, offset
[447] MISC-0OP Lisp-Function
Returns a Q@ whose data type is dtp and whose pointer
field is pointer added to offset; exercise extreme
caution.

“MAKE-REGION bits, size [505]1 MISC-OP
Creates a region whose size is at least size and
whose region bits are set to bits.

“ZMAKE-STACK-LIST n [4001 MISC-OP Lisp-Function
Returns a pointer of data type DTP-STACK-LIST to
the list constructed by pushing n NILS on the stack
with CDR-NEXT on them all except the last one. which
receives a CDR-NIL. This does not check for PDL room
and therefore the execution of ZASSURE-PDL-ROOM before
this is recommended.

%“MICROSECOND-TIME [4701 MISC-0OP Lisp-Function
Returns the 32-bit microsecond time as an integer,
either a FIXNUM or a BIGNUM.

“MULTIBUS-READ-# multibus-byte—adr [431-433]1 MISC-OP Lisp—-Function
Signals the UNIMPLEMENTED-HARDWARE error.
is 8, 14, or 32

YMULTIBUS~WRITE-# multibus—byte—adr word
[214-216] MISC-0OP Lisp—-Function
Signals the UNIMPLEMENTED-HARDWARE error.
is 8, 16, or 32

%“NUBUS—-READ NuBus-slot slot-byte—adr [434] MISC-0OP Lisp-Function
Returns a signed integer, either a FIXNUM or a BIGNUM,
read from the word (32-bits) at the physical address
formed by taking the low order 24-bits from slot-byte-—adr
and concatenating the low B-bits from NuBus—-slot.

For NuBus slot space accesses, the 4-bits at bit 4 of
NuBus—slot should be ones. I# a NuBus error occurs,
then the USER-NUBUS-ERROR error is signalled. I a
GACBL (Go Away Come Back Later) is encountered, it

is retried. After a very large number of retries,

an error is assumed and the USER-NUBUS-ERROR is
signalled.

%NUBUS-READ-# hi-address low-address
[435-436]1 MISC-OP Lisp—Function
Returns a FIXNUM read from the byte (when # is 8b) or
halfword (when # is 146B) at the physical address
formed by taking the low order 24-bits from low-address
and concatenating the low 8-bits from hi-address.

20-41

For NuBus slot space accesses: the 4-bits at bit 4

of low—address should be ones. If a NuBus error

occurs then the USER-NUBUS-ERROR error is signalled.

I# a GACBL (Go Away Come Back Later) is encountered,

it is retried. After a very large number of retries,

an error is assumed and the USER-NUBUS-ERROR is signalled.

“NUBUS-READ-BB-CAREFUL hi-address low-address
[440] MISC-0OP Lisp-Functio

Returns a FIXNUM read from the byte at the
physical address formed by taking the low order
24-bits from low-address and concatenating the
low B8-bits from hi-address. For NuBus slot
space accesses, the 4-bits at bit 4 of low-address
should be ones. I# a NuBus error occurs then NIL
is returned. I#f a bus timeout occurs then T is
returned. I+ a GACBL (Go Away Come Back Later)
is encountered, it is retried. After a very large
number of retries, an error is assumed and NIL is
returned.

“NUBUS-WRITE NuBus—slot slot-byte—adr word
[217] MISC-0P Lisp-Function

Writes word (32-bits) at the physical address formed
by taking the low order 24-bits from slot-byte—adr
and concatenating the low B8-bits from NuBus—-slot.
For NuBus slot space accesses, the 4-bits at bit 4
of NuBus—-slot should be ones. Word should be a
signed FIXNUM or a BIGNUM. If a NuBus error occurs
then the USER-NUBUS-ERROR error is signalled. I# a
GACBL. (6o Away Come Back Later) is encountered,
it is retried. After a very large number of retries,
an error is assumed and the USER-NUBUS-ERROR is
signalled.

YUNUBUS-WRITE-# hi-address low-address data
[220-221]1 MISC-0OP Lisp-Functiom

Writes word, a FIXNUM byte (if # is 8b) or a
FIXNUM halfword (when # is 1éb), at the physical
address formed by taking the low order 24-bits
from slot—-byte—adr and concatenating the low
8~bits from NuBus—-slot. For NuBus slot space
accesses, the 4-bits at bit 4 of NuBus—slot
should be ones. If a NuBus error occurs then the
USER-NUBUS-ERROR error is signalled. I# a GACBL
(Go Away Come Back Later) is encountered, it is retried.
After a very large number of retries, an error is
assumed and the USER-NUBUS-ERROR is signalled.

“OPEN-CATCH catch-tag:. restart-pc [1241] AUX-0OP
ZOPEN-CATCH-MULTIPLE-VALUE catch-tag restart-pc number-of-values

[1251 AUX-0P
ZOPEN-CATCH-MV~-LIST catch-tag, restart-pc

20T tware Design Notes

[1271
ZOPEN-CATCH-TAIL-RECURSIVE
L1261

Opens a catch block data structure on the stack.

AUX-0OP

catch—-tag restart-pc

AUX-0P

Macro—instructions

Catch—-tag and restart-pc are some of the elements

of that data structure.
catching and throwing.

%OPEN-MOUSE-CURSOR [11
%“P-CDR-CODE pointer £4511]
ZP-CONTENTS-AS-LOCATIVE pointer [4611]

%“P-CONTENTS-AS-LOCATIVE-OFFSET pointer offset

[4621]
%“P-CONTENTS-OFFSET pointer offset [4561
%“P-DATA-TYPE pointer [452]
%“P-DEPOSIT-FIELD value ppss pointer [511]

%P-DEPOSIT-FIELD-OFFSET

£531
%P-DPB wvalue ppss pointer [501]
%P-DPB-OFFSET value ppss pointer offset [52]
%“P-LDB ppss pointer £454]
%“P-LDB-OFFSET ppss pointer offset £4571]
%“P-MASK-FIELD ppss pointer [4551]
%P-MASK-FIELD-OFFSET ppss pointer offset

[4561]
%P-POINTER pointer [453]
WP-STORE-CDR-CODE pointer cdr—code [64]
%P-STORE-CONTENTS pointer value [621]

%P-STORE-CONTENTS-OFFSET value pointer offset
[671
pointer data-type [65]
pointer pointer—-to-store

[&61

%“P-STORE-DATA-TYPE
%P-STORE-POINTER

%*P-STORE-TAG-AND~-POINTER
[631]
These pointer—-manipulation miscops and
Lisp-coded ones are fully described in
section on Storage Subprimitives.

ZPAGE-IN pfn vpn [3631
ZPAGE-STATUS ptr [4741
%“PAGE-TRACE table £3711
“PHYSICAL~ADDRESS ptr [4301

See the discussion on

MODULE {MOUSE)

MISC-OP
MISC-OP

MISC-0OP
MISC-0OP
MISC-0OP
MISC-0P

value ppss pointer offset

MISC-0P
MISC-0P
MISC-0P
MISC-0OP
MISC-0P
MISC-0OP

MISC-0P
MISC-OP
MISC-0OP
MISC-OP

MISC-0OP
MISC-0P

MISC-0OP

MISC-0OP
other
the

MISC-0OP
MISC-0OP
MISC-0P
MISC-0OP

See the section on Paging and Disk Management

for description.

ZPOINTER x [445]

MISC-0P

Returns the pointer field of x as a FIXNUM.

ZPOINTER-DIFFERENCE ptrl ptr2 [4631

MISC-0P

Returns the number of words between pointers

ptr2 and ptri.

20-43

These pointers can be anything.

Lisp—Function
Lisp—-Function

Lisp~Functior
Lisp-Functior
Lisp—~Functior
Lisp-Functior

Lisp—Functior
Lisp-Functior
Lisp—-Functior
Lisp-Functior
Lisp—-Functior
Lisp—-Functior

Lisp~-Functior
Lisp—Functiorn
Lisp—Function
Lisp-Functior

Lisp—-Function
Lisp—Function

Lisp~Functior

pointer misc-fields pointer—field

Lisp-Functior

Lisp-Functior
Lisp-Functior
Lisp—-Functior
Lisp-Functior

Lisp—Functior

. Lisp-Functior

HialL ro=ansevrvciions S0rtware besign Noves

but are usually FIXNUMs or locatives. This number
can change due to GC.

ZRATIO-CONS numerator denominator [10371 MISC-0OP Lisp-Function
Returns a rational number constructed from
numerator and denominator.

ZRECORD-EVENT data-4 data-3 data—-2 data-1 stack-level
event must-be-4
[373] MISC-OP Lisp-Function

%“REGION~-NUMBER x [660]1 MISC-OP Lisp—Function
Returns the region number object x points into.
or NIL.

ASET-MOUSE-SCREEN window [0 MODULE-OP

Sets the current screen for the mouse.

4ASET-SELF-MAPPING-TABLE mapping-table [221 AUX-0P

ZSPREAD list £11] MISC-OP Lisp-Function
Takes a list and pushes its elements on the stack.

ZSTACK-FRAME-POINTER [404]1 MISC-OP Lisp-Function
Returns a locative pointing at the current stack
frame. This happens to be the same as a pointer
to local 0.

ZSTORE-CONDITIONAL pointer old new [464] MISC-OP Lisp-~Function
Store new into pointer if the old contents of
pointer match old. Returns T if the store was
done, otherwise NIL. This is a basic interlocking
primitive, which can be used to simulate any sort
of atomic test-and-modify operation.

AZSTRING-EQUAL stringl index! string2 index2 count
[233]1 MISC-OP Lisp-Function
T if count characters of stringl at indexi match
those of string2 at index2. Similar to STRING-EQUAL.,
but args are slightly different and all required —-
and it’s faster. The comparison ignores case unless
ALPHABETIC-CASE-AFFECTS-STRING-COMPARISON is non-NIL.

ZSTRING-SEARCH-CHAR char string start end
[7011 MISC-OP Lisp-Function
The same as STRING-SEARCH-CHAR, but without
coercion and error checking. Also, all the args
are required. And it’s faster.

ABTRING-WIDTH table offset string start end stop-width
{7021 MISC-OP Lisp-Function

20-44

Software Design Notes Macro-Instructions

ZSTRUCTURE-BOXED-SIZE optr [503] MISC-OP Lisp—-Function
Returns the number of normal Lisp pointers in
the object indicated by ptr. This many words at
the beginning of the object contain normal Lisp data.
The remaining words contain just numbers (such as
the instructions of a compiled function, or the data
in a numeric array).

%“STRUCTURE-TOTAL-SIZE ptr [504] MISC-0OP Lisp-Function
Returns the number of words in the object
indicated by ptr.

ZSXHASH~STRING string character-mask L7001 MISBC-0OP Lisp-Function
Returns a hash code for string computed on a
character-by—-character basis after applying
character mask to each character.

ZTESTYSET-68K slot offset 22731 MISC-QP
Test for 1 (then set it) in high bit of byte
specified by slot and offset. Return T if bit
is not already set. else NIL.

%“THROW tag value [1301] AUX-0OP
%“THROW-N tag %rest values—and-count [1311 AUX-0P
Throw one -or more values to tag. See discussion

of throwing in the Function Calling section.

ZUNWIND-PROTECT-CLEANUP [131] AUX-0P

ZUNWIND-PROTECT-CONTINUE [1321 AUX-0P
Maybe continue throwing after unwind-protect
undo—-forms.

ZUSING-BINDING-INSTANCES binding—instances
[161] AUX-OP Lisp~Function
See section on subprimitives for description.

ZWRITE-INTERNAL-PROCESSOR-MEMORIES code adr d-hi d-low
[370]1] MISC-0OP Lisp-~Function

#BOOLE #n argl arg2 [533]1] MISC-0OP
- Xy [61] MAIN-DP
LOGAND x y [63]1 MAIN-OP
LOGIOR «x y [542] MISC-OP
LOGXOR x y [641 MAIN-OP
MAX numil nume [534]1 MISC-OP
MIN num!l num2 [5351 MISC-0OP
+ xy [60]1 MAIN-OP
QUOTIENT numl num2 [541] MISC-OP
x y [62] MAIN-OP

Limited—-argument instructions and miscop forms
of common functions. See descriptions of
corresponding multi-argument Lisp functions.

20-45

Macro-Instructions Software Design Notes

#UNWIND-STACK tag value frame-count action
[1331 AUX-0P Lisp-Functior
Throw completely out of a computation. running
all unwind protects found along the way. See
section on function calling for details.

i1+ n [65]1 MAIN-OP Lisp-Functior
i- n [66]1 MAIN-OP Lisp-Functio
Pushes on the stack the result of incrementing
or decrementing the operand.

“<-IMMED x immed-—y [6] IMMEDIATE
=-IMMED x immed-—y [4]1 IMMEDIATE
>=IMMED x immed-—y {51 IMMEDIATE

Sets the indicators as a result of comparing
a number popped from the stack to the 9-bit immediate
operand treated as a signed integer.

< numl num2 - [5701 MISC-0OP
= numl num2 £57231 MISC-0OP
> numl num2 £5711 MISC-0OP

Limited-argument miscop forms of common functions.
See descriptions of corresponding multi-argument
LLisp functions.

20-46

