2o0ftware Design Notes Compiler Notes

SECTION 19

Compiler Notes

This section supplements Section 21 of the Explorer Lisp
Reference manual with some additional information that might be
of interest to system programmers.

i9. 1 COMPILE-TIME PROPERTIES OF SYMBOLS

When symbol properties are referred to during macro expansion,
properties defined in a #file should be in effect for the
compilation of the rest of the file. This does not happen if GET
and DEFPROP are used. because the DEFPROP is not executed wuntil
the +file 1is 1loaded. Instead, you can use GETDECL and DEFDECL.
These are normally the same as GET and DEFPROP, but during file-
to-file compilation., they also refer to and create declarations.

SYS: FILE-LOCAL-DECLARATIONS
During file—to-file compilation, the value of this variable
is a list of all declarations that are in effect for the
rest of the file. Macro definitions, DEFDECL’s, PROCLAIM’s
and special declarations that come from DEFVAR’s are all
recorded on this list.

GETDECL function—-spec property
This function is a version of GET that allows the properties
of a function to be overridden by local declarations.

I# LOCAL-DECLARATIONS or SYS: FILE-LOCAL-DECLARATIONS contain
a declaration of the following form:

(property function-spec value)

GETDECL returns value. Otherwise, GETDECL returns the
result of the following form:

(function—-spec—get function-spec property)

The GETDECL function is typically used in macro definitions.
For example:. the SETF macro uses GETDECL to obtain the SETF

property of the function in the expression for the field to
be set. '

19-1




Compiler Notes .-Software Design Notes

PUTDECL function—-spec property value
The PUTDECL function causes (GETDECL function-—spec property)
to return yvalue.

The PUTDECL function makes an entry on §SYS:FILE-LOCAL-
DECLARATIONS of the following form: -

(property function-spec value)

This form stores value where GETDECL can find it; but if
PUTDECL is called during compilation, it affects only the
rest of that compilation.

DEFDECL symbol property value
When executed, DEFDECL resembles PUTDECL except that the
arguments are not evaluated. This special form 1is wusually
the same as DEFPROP except for the order of the arguments.

Unlike DEFPROP. when DEFDECL is encountered during file—-to-
file compilation, it is executed. creating a declaration
that remains in effect for the rest of the compilation.
(The DEFDECL form also goes into the xld file to be executed
when the file is loaded). The DEFPROP special form would
have no effect whatever at compile time.

The DEFDECL special form is often useful as a part of the
expansion of a macro. It is also wuseful as a top-level
expression in a source file.

Consider the following form:

(DEFDECL FOO SETF ((FOO X) . (SET-FDO X SI:VALUE)))

The preceding form in a source file allows the following
form to be used in functions in that source file;i and by
anyone, once the file is loaded:

(SETF (FOO ARG) VALUE)

COMPILER: #LOCAL—-DECLARATIONS-SPECIFIERS#*

This variable is a list of declaration specifier symbols for

~which the compiler will push the declaration onto the LOCAL-
DECLARATIONS 1list for access by GETDECL. Users can define
new declarations by pushing the name onto this 1list.
Compatibility note: in Explorer Releases 1 and 2, all
declarations were pushed on LOCAL-DECLARATIONS, but Release
3 is more selective for the sake of efficiency.

19-2




.

Software Design Notes Compiler Notes

19. 2 DECLARATIONS

The following declaration specifiers are wused internally in
addition to those documented in section 13 of the Explorer Lisp
Reference manuval.

: EXPR-8XHASH number

At the beginning of the body of a DEFMACRO, DEFSUBST. or
inline function., a (DECLARE (:EXPR-S5XHASH <number>) may be
used to specify the hash code that will be recorded for the
macro. This hash code is used for giving warnings when
loading a file that uses macros whose definitions have
changed: it is normally computed by hashing the definition.
The :EXPR-SXHASH declaration can be used to cause a slightly
modified version of a macro to have the same hash code as
the previous version (obtained from the debug—info) in order
to suppress these warnings.

COMPILER: TRY-INLINE function-name ...

This is similar to an INLINE declaration except that the
inline expansion will be used only if, after optimization,
it is not significantly larger than the original function
call. This is wuseful for functions that can be optimized
down to something trivial when some of the arguments are
constants or known to be of a particular type, but are too
big to be included inline in the general case.

5YS: DOWNWARD-FUNCTION

The declaration (DECLARE SYS: DOWNWARD—-FUNCTION) can be wused
at the beginning of the body of a LAMBDA expression or local
function to inform the compiler that the lexical closure
which is being created is only being passed downward and
there will be no references to it after execution leaves the
context in which it was created. This enables the compiler
to wuse the instruction MAKE-EPHEMERAL-LEXICAL-CLOSURE
instead of MAKE-LEXICAL-CLOSURE, thereby saving some rtun-—
time overhead. Note that in many cases, the compiler is
able to figure this out for itself without needing the
declaration, and that incorrect use of the declaration could
cause severe problems.

19-3




Compiler Notes Software Design Notes

19.3 XLD FILES

All x1ld files are composed of 16-bit bytes. The first two bytes
in the #file contain fixed values, which are present so that the
system can tell a proper xld file. The next byte 1is the
beginning of the first group. A group starts with a byte that
specifies an operation. It can be followed by other bytes that
are arguments.

Most of the groups in an xld file are present to construct

objects when the file is loaded. These objects are recorded in
the fasl-table. Each time an object is constructed, it is
assigned the next sequential index in the fasl-table. The

indices are used by other groups later in the file to refer back
to objects already constructed.

To prevent the fasl-table from becoming too large, the xld file
can be divided into whacks. The fasl—-table is cleared out at the
beginning of each whack.

The other groups in the xld file perform operations such as
evaluating a list previously constructed or storing an object
into a symbol’s function cell or value cell.

19.4 OPTIMIZATION

Besides the functions COMPILER: ADD-OPTIMIZER and
COMPILER: OPTIMIZE-PATTERN which are described in section 21.8 of
the Explorer Lisp Reference manual, the following functions may
be used to specify optimizations:

COMPILER: FOLD-CONSTANT-ARGUMENTS function—-name
Tells the compiler that if it sees a call to the designated
function in which all of the arguments are constants, then
it can call the function at compile—time and replace the
function «call with a QUOTE form containing the resulting
value. This also implies that the function has no side-
effects, so calls can be deleted if their value is not used.

COMPILAR: DEFCOMPILER-SYNONYM &quote function synonym—function
Both arguments should be symbols, and are not evaluated.
When the compiler sees the first argument used as the name
of a function to be called, it will compile code to call the
function named by the second argument instead.

COMPILER: OPTIMIZE-STATUS

This function «can be called to find out the current values
of the OPTIMIZE switches. The value returned is in the form

19-4




Software Design Notes Compiller NoOtves

of a declaration specifier so that one can do:
(SETQ@ SAVE-OPT (COMPILER:OPTIMIZE-STATUS))

(PROCLAIM SAVE-OPT)

to save and restore the switches.

19.5 COLD-LOAD ATTRIBUTE

Putting the attribute COLD-LOAD:T in the mode line of a file lets
the compiler know that the file is part of the minimal kernel, or
in other words, it is loaded by Genasys into the cold band. This
knowledge is used in the following ways:

1. The compiler can warn you about usingi features that
Genasys does not support. For example:

a. Genasys can’t handle 1load-time evaluation of
constants [reader macro #, 1.

b. (PROCLAIM ‘{(TYPE ...)) doesn’t work until after
the compiler is loaded.

n

The compiler can give special handling where needed.
For example, package commands such as EXPORT that don’t
supply an explicit package argument are avtomatically
given one by the compiler because defaulting to
#P ACKAGE * is not appropriate during “crash-list"
evaluation.

3. The compiler can warn you about wusing functions that
are not 1in the cold load. Anyone who has ever had to
debug a band that won’t boot because it 1is trying to
call an undefined function should appreciate the value
of this. More about this below.

4. Since the COLD-LOAD attribute identifies the file as
part of the kernel, style warnings for use of internal
functions are suppressed. For example, you can wuse
microcoded functions such as MEMQ and FIND-POSITION-IN-
LIST without getting a complaint that they are
obsolete.

5. Top—level forms which are going to be evaluated at load
time will be fully macro-expanded at compile time in
order to minimize the amount of work done in evaluating
the ‘"crash-list" when the band is booted and to avoid
potential problems with macros that are undefined or
that use things that aren‘t initialized yet.

Warnings about use of functions that are not in the cold load are

i9-5




Lompiier Notes oortware Design Notes

implemented by checking the source file pathname of each function
that is <called to see if it has the COLD-LOAD attribute also.
Thus, for these warnings to be meaningful, it is essential that
all the files that are part of the cold load have the attribute.
To avoid getting irrelevant warnings, functions that are not
really needed in the cold load should be in separate files from
those that are. Currently, these warnings are suppressed in
COMPILE-FILE (they appear only when compiling in an editor buffer
or with GAFETY>1) to avoid getting a great many warnings during
system builds. For cases where you really do need to reference a
function that won’t really be called in the cold band, you can
suppress the warning by binding the INHIBIT-STYLE-WARNINGS-SWITCH
flag. For example:

(IF (FBOUNDP ‘FOO)

(COMPILER-LET ((INHIBIT-STYLE-WARNINGS-SWITCH T))
(FOO X)))

19-6




