SECTION 18

Crash Handling

18.1 ILLEGAL OPERATION

When the microcode detects an irrecoverable or "can’t happen”
error, it will crash the system. This process is known as ILLOP

after the Illegal Instruction Operation microcode routine that
performs it. ,

ILLOP causes the machine to halt. Further operation in the
presence of the irrecoverable error may only worsen the situation
or complicate it beyond analysis. Instead, ILLOP will make notes
about the error in a crash record stored in the nonvolatile NVRAM
on the System Interface Board, and then halt the machine.

ILLOP is a very low level routine. It assumes very little about
the state of the machine and it will just halt if it detects that
any of its assumptions are wrong. It does not require that any
of interrupts, device support, virtual memory. storage
allocation, garbage <collection, Lisp object support, function
calling, or instruction execution be intact. It does assume that
the processor is functioning properly; that the registers A-Zero,
M~Zero, A-Ones, and M-Ones are set up to contain O or -1 as
appropriate; that the NuBus is available; and the the NVRAM can
be read and written.

After the crash RAM has been written, the crash is indicated by
complementing the video sense of the screen. The effect is
dramatic. This may fail if the memory interface or the screen
interface 1is not functioning properly but a failure of this
operation will not affect the proper recording of the crash in
the crash record.

The analysis of crash records 1is performed by the Lisp crash

analyzer. The crash analyzer functions are documented fully in
the Explorer Tools and Utilities manual, as are many of the
higher 1level details of «crash reporting. This section is
intended to be a supplement to that discussion directed at
systems programmers. For the final word, consult the Lisp code
in 8YS:NVRAM; CRASH and the other files in the NVRAM system.

18-1

wigoall iIgliud dily Wl bPWEIT © WU R4y INVIVE 2

NOTE .

Unless otherwise indicated, all symbols and
functions named here are in the SYSTEM
package.

18. 2 CRASH RECORDING

ILLOP stores some of the machine state in the NVRAM soc that the
next successful startup can explain the cause of the crash. If
the system cannot be successfully started, field service can read
the crash reason from diagnostic hardware and/or software. This

data is called a crash record.

In order that an unsuccessful attempt to restart the system will
not lose the original crash data, crash records for the last few
system shutdowns are kept in a circular buffer in NVRAM. Each
time the system is started a record is allocated from the buffer.
When the system halts, the reason 1is rtecorded in the crash
record.

NOTE

In order +for proper recording of crash
information +to take place, the structure of
NVRAM must first be initialized wusing the
SETUP-NVRAM function. Only then can valid
crash records be recorded. Since NVRAM is
non-volatile memory., the SETUP-NVRAM function
should only need to be run when the system is
first installed or after service maintenance
has been performed on the System Interface
Board.

18.2.1 Crash Record Allocation.
Allocation of a crash record for the current system startup is
performed by the microcode during the boot process. It occurs as

early in the boot as possible so that useful information can be
recorded by ILLOP if the machine crashes during the boot

18-2

20ttware vesign hotves “rasn Randéiing

Allocation of the <c¢rash record is controlled by four 16-bit
numbers that are stored at a known place within the NVRAM. These
are shown in Table 18-1. All of the allocation registers contain
16-bit byte offsets into the NVRAM, which 1is accessed wusing
physical memoTy references. Offsets are expressed in
hexadecimal.

MVRAM is actually 8-bit memory mapped into +the NuBus address
space one-byte-per-32-bit-NuBus—word; hence only multiple—of-four
byte addresses are used {(eg. O, 4, 8, #xC, #x10, ...). A 16-bit
quantity (such as the crash record allocation registers) is
stored with its low order bits in the lowest address and its high
order bits in the address 4 higher. For example. #xF4B2 would be
stored in NVRAM-CRASH-BUFF-POINTER with #xB2 in NVRAM-BASE + #x90
and #xF4 in NVRAM-BASE + #x94.

NVRAM—-CRASH-BUFF-POINTER 1is the offset into the NVRAM (in bytes)
of the beginning of the currently selected <crash record. The
currently selected crash record describes the current system
startup. When the system is running, it points to the record
that will be filled in when the system next halts. When the
system is not running, it points to the crash record for the last
system shutdown.

NVRAM-CRASH-BUFF-REC-LEN is the size of a crash record. It is
the amount by which to increase NVRAM-CRASH-BUFF-POINTER to reach
the next record.

NVRAM-CRASH-BUFF~LAST is the offset to the beginning of the last
crash record in the buffer. This is used by allocation and also
when scanning the buffer backward to see the history of
shutdowns.

NVRAM-CRASH-BUFF-BASE is the offset to the beginning of the first
crash record in the buffer. This is used by allocation to "wrap
around" the buffer.

The algorithm to allocate a new crash record, then, is: Add
NVRAM-CRASH-BUFF~-REC-LEN to NVRAM-CRASH-BUFF-POINTER. The result
is the new NVRAM-CRASH-BUFF-POINTER. If the new NVRAM-CRASH-
BUFF-POINTER is greater than NVRAM-CRASH-BUFF-LAST then it should
be reset to NVRAM-CRASH-BUFF-BASE.

The algorithm for finding the previous crash record is: Subtract
NVRAM-CRASH-BUFF-REC-LEN from NVRAM-CRASH-BUFF-POINTER. If this
is less than NVRAM-CRASH-BUFF-BASE, it should be set to NVRAM-
CRASH-BUFF-LAST.

18-3

wirasn Mangilailly S0riware uvesign NOTes

Table 18-1 Crash Record Allocation Registers

NVRAM-BASE
plus (hex) Allocation Register
80 NVRAM-CRASH-BUFF-FORMAT-PROCESSOR
88 NVRAM-CRASH-BUFF-FORMAT-REV
0 NVRAM-CRASH-BUFF-POINTER
98 NVRAM-CRASH-BUFF-REC-LEN
AOQ ' NVRAM-CRASH-BUFF-LAST
A8 NVRAM-CRASH-BUFF-BASE

18. 2.2 Crash Record Contents.

The <crash record format is shown in Table 18-2. The templates
for the crash table, for the rest of NVRAM: and for other
information used by crash record support can be found in the file
SYS: UCODE; LROY-QDEV. The 1list CRASH-RECORD-OFFSETS contains a
list of symbolic names whose values are these offsets.

18-4

Software Design Notes Crash Handling

Table 18-2 Crash Record Format

NVRAM-CRASH-BUFF-POINTER Contents

plus (hex)

General information

0 Progress field. Indicates houw
far into the boot process the
system progressed before halting.
Load information

4 Disk controller slot number

8 Disk device number for microload

C Disk device number for Load Band

10 Microload name (4)

20 Load Band name (4)

30 Microload version (2)

38 l.oad Band version (2)

40 LLoad Band revision (2)
Date and time information

a8 Month of boot

4C Day of boot

S50, Year of boot

54 Hour of boot

S8 Minute of boot

SC Month of crash

60 Day of crash

b4 Year of crash

68 Hour of crash

6C Minute of crash
Flags field

70 Report Flags
Shutdown information

74 Halt Location (2)

7C Halt Kind
Saved Registers

80 contents of M-1 (4)

90 contents of M-2 (4)

AO contents of MD (4)

BO contents of VMA (4)

CO contents of M-FEF (4)

DO contents of UPC-1 (2)

18-5

WwTa ol NMaltldi iy . wWT LbWal € WEadyll INGVLVE D

D8 contents of UPC-2 (2)
EO Location counter (4)
FO contents of M-T (4)
100 lLength of crash record

The progress field indicates how far into the boot process the
system progressed before <crashing. Currently supported values
for this field are listed in the variable CRASH-RECORD-PROGRESS-
CODES.

The load information fields are initialized during crash record
allocation by the microcode. They reflect the 1load information
saved by the boot process.

The boot time is written to the crash record by a function on the
WARM-INITIALIZATIONS-LIST after the system time base has been
initialized. The crash time fields are updated about every five
minutes #from Lisp by the TM-Update process so that they will
accurately reflect the time if the machine halts

The report flags are used to store information about which crash
records have been logged to a crash—-log file by the crash

analyzer (see section on crash analyzer below). It is also
contains a flag that is set if this boot was a warm boot so that
information can be displayed in the crash record. Crashs that

occur_ after a warm boot or warm boot attempt are often caused by
problems in the warm booted environment, and hence are not as
interesting as crashes that occur in a cold booted environment.

The halt kind field indicates the type of the last shutdown. The
field is initialized to the System Boot state by the crash record
allocation microcode, then updated during ILLOP to reflect the
crash kind. Possible values for halt kind are:

BSystem Boot. The last shutdown was caused by a cold
boot sequence or by a warm boot sequence during normal
operation (that is, not a warm boot initiated after the
machine crashed). Note that since +the crash record
allocation routine is called from warm-boot, the system
can be warm booted after an abnormal shutdown and still
retain all the «crash record information from that

shutdown. However, if the machine was in a hung state
when warm or cold booted, ILLOP processing will not be
done, and the shutdown will be reported in this

category. META-CONTROL-META-CONTROL-C can be wused to
force a crash from a hard run, and therefore produces a
crash record.

18-6

Software Design Notes Crash Handling

Microcode Halt. This indicates that the last crash was
called from the microcode when it detected an

unrecoverable error condition. In this case, ILLOP
stores the micro-pc address from which ILLOP was called
in the halt address field. This micro-pc is later

looked uvp in the «crash table database by the crash
analyzer in order to provide the wuser with a text
description of the microcode «crash reason. See the
section on the crash analyzer., below.

Hardware Halt. This halt kind is currently unsupported.
All detectable hardware halt conditions (such as memory
parity errors, illegal page faults, and so forth)
currently fall into the microcode halt category.

Lisp Halt. The last halt was called by Lisp through the
si: %crash function. In this case. a Lisp crash code
(which 1is one of the arguments to ZCRASH) is stored in
the halt address field. The second argument to %“CRASH
(an object) is stored in the M-1 field. Currently, the
only valid Lisp crash code is O which indicates a normal
system shutdown called from Lisp. This code is seen
when the system was halted by a user—initiated call to
either SHUTDOWN or SYSTEM-SHUTDOWN.

The saved registers fields contain the values of the indicated
processor rtegisters when ILLOP was called. Their values can
appear in the microcode crash descriptor +text reported by the
crash analyzer, and in any case their values are labeled and
displayed in the crash analysis report.

18.2.3 The Crash Table

The crash analysis database consists of the table of crash codes
and crash descriptions produced by the micro assembler. This
table is kept in the file 8YS:UBIN;<ucode-name>. CRASH#nnn where
nnn is the microcode revision number and ucode-name is obtained
by looking up the microcode name associated with the current
value of MICROCODE-TYPE-CODE in the #MICROCODE-NAME-ALIST#.. The
crash analyzer loads the appropriate version of this file into
memory when & microcode crash is being reported. The crash table
file contains a complete list of all current crash descriptor
texts.

Note that there may be some microcode crashes that will not have
a description in the crash database. This fact will be reported
by the «c¢rash analyzer. The crash micro—-pc for such crashes is
valid. however, and can be used to determine the path taken to
ILLOP.

18-7

Crash Handling ooftware Design Notes

The «crash table file 1is generated by the microassembler. At
points in the microcode where ILLOP may be called a CRASH-TABLE
pseudo—op 1is generated. From this a Crash Table Entry (CTE) is
generated and added to the list of CTEs that make up the <crash
table +file. The format of a CRASH-TABLE pseudo—op and the
resulting CTE are as follows:

Ucode CRASH-TABLE pseudo-op:

General form:
{CRASH-TABLE <format string> <one or more format args>)
Example:
{(CRASH-TABLE "Nasty data type “a Tead from address “x"
(@-DATA-TYPES (LDB %ZQ@-Data-Type MD)) VMA)

Crash Table Entry (in .CRASH file):

General form:
(<{Micro PC> <format string> <one or more format args>)
Example: ,
(34174 "Nasty data type ™~a read from address ™“x"
(Q-DATA-TYPES (LDB %Z%Q-Data-Type MD)) VMA)

The first element of the CTE is the microcode PC address from
which the call to ILLOP was made. The second element is usually
a string. In this case we essentially do the following to format
the crash description.

(APPLY # ’'FORMAT <stream> (CDR <cte>))

This works because the saved register values in the crash record
are bound to special variables named VMA, MD, M-FEF, etc., at the
time this FORMAT i1s executed.

I# the second element of a CTE is a symbol, we look for the
REPORT property on its praoperty list. If present, it will be a
report function to run.

Note that the file SYS: NVRAM; ANALYSIS—-FUNCTIONS contains a number
of crash—description formatting routines that have very detailed
knowledge of the contents of the saved microcode registers.
These routines must be kept in synch with current microcode
usage, Just as with the error handler files.

18-8

