WU T LWWa il B weE 244l MU LVE 2 weE e W WWY -

SECTION 14

Stack Groups

14.1 INTRODUCTIGN

This chapter explains stack groups. the building blocks of
multiprocessing. .

4 stack group is the fundamental wunit of computation in the
Explorer. It is the main data structure behind the
implementation of a process. Interrupt context—-switching, co-
routines, and generators are facilitated by the use of stack
gTOuUpS.

At all +times, there 1is exactly one active stack group. which
corresponds to the process currently being run on a time-sharing
system. Although there is no time—sharing between users on the
Explorer, it is still useful to support multiple processes. For
example, when a message is received from the network, some other
stack group is activated to handle it.

i4. 2 THE STACK GROUP DATA STRUCTURE

The term stack group refers to the fact that each process must
have 1its own control stack for remembering function call/return
data and arguments and local data, and each process must have a
Linear Binding stack to save the values of special variables. A
stack group is a pointer of datatype DTP-STACK-GROUP, which
points to an array header word the same way a DTP-ARRAY would.
The reason for using an additional datatype 1is so that any
routine will always be able to distinguish a stack group array
from all other arrays. The array also has its own array type,
ART-STACK-GROUP-HEAD: for the same rTeason.

The stack group structure 1is an array with no body, only a
ieader. The array leader holds many relevant data including a
pointer to the regular push down list, a pointer to another array
holding the Linear Binding PDL for the stack group., the PDL
pointers for both PDLs: and wvarious saved microcode registers
{the Linear Binding PDL -is also called the Special PDL or
SPECPDL; see description below).

A useful feature 1is that by binding appropriate special
variables, such as the default cons area and debugging

14-1




wea LR WU UUE 2 o . wW@l bWal © JESdyll IvWdived

information, an error handler can be made a function of which
stack group 1is active; each may have its own. This is because
each stack group has a separate Linear Binding PDL.

The array leader contains miscellaneous data related to running
and maintaining & stack group in the system. This data is
divided up into sections according to how the data is used. The
static section contains data such as the stack group name, and
size and limits on the PDLs. This data is set up when the stack
group is created and doesn’t normally change during the course of
system operation. This information 1is 1loaded when the stack
group is entered; but since it doesn’t change, the data needn’t
be saved when the stack group is left. The debugging section has
information that the error handler needs to determine what error
has occured and how to restart the stack group. This information
is read directly by the error handler as needed and will not be
loaded or saved on stack group entry or exit. The next section
of the stack group contains information used to determine which
operations are valid on this stack group. A layout of the stack
group data structure follows:

id4. 2.1 Static Section.

SG~-NAME Name of stack group for
conversing with user.

SG-REGULAR-PDL The array serving as the
regular PDL of this
stack group. It must be

an ART-REG-PDL array.

SG-REGULAR-PDL-LIMIT Max PDL pointer value
before overflow.

SG-5PECIAL-PDL Special PDL for stack group.
It must be an
ART-SPECIAL-PDL array.

S6~-SPECIAL-PDL-LIMIT Max special PDL pointer
value before overflouw.

SG-INITIAL-FUNCTION-INDEX Position in regular PDL
of the topmost function
pointer cell (normally 3).

i4. 2.2 Debugging Section.
5G-TRAP-TAG Symbolic tag corresponding
to S6-TRAP-MICRO-PC.

Determined by looking up
the trap PC in the

14-2




-l T WS -l -S43 "W EES

14

14.

P

microcode error table.
Properties of this
symbol drive error
reporting and recovery.
SG-RECOVERY-HISTORY Available for complex 56
debugging routines to
leave tracks in for debugging
purposes. (This
may be done away with
in the future.)
SG-FOOTHOLD-DATA Structure which saves
dynamic section of "real”
SG when executing in
the error handler foothold.

.3 High Level Section.

SG-STATE The stack—-group state.
This has fields
describing the high-level
state of this stack
group. Stack group states
are listed in Table 14-1.

SG~-PREVIOUS-STACK-GROUP SG which caused Tesumption
of this one.

SG-CALLING-ARGS-POINTER Pointer to argument-block
which last called
this 56.

SG-CALLING-ARGS-NUMBER Number of args in last
call to this S6G.
S56-TRAP-AP-LEVEL Used for stepping. When
stepping compiled
functions, will cause a
STEP-BREAK trap when
PDL pointer is below this
virtual address.

.4 Dynamic Section.

5G-REGULAR-PDL-POINTER Saved PDL pointer. stored
as fixnum index into
SG~-REGULAR-PDL.

SG-SPECIAL-PDL-POINTER Saved special PDL pointer,
stored as fixnum index

14-3




- W W =@

S6-TRAP-MICRO-PC

S56-SAVED-M-FLAGS

SG-PDL-PHASE

S56-5AVED-VMA

S6-VMA-M1-M2-TAGS

56-M3-M4-TAGS

5G-AC-1

S6-AC-2
56-AC-3
SG-AC-4
SG-AC-A
SG—-AC-B
56-AC-C
56--AC-D
S6~AC-E
56~-AC-F

56-aC-G

Wl Wl = MR weNtt TRWVES &

into SG-SPECIAL-PDL.

Micro—address from which a
trap was signalled.

Used as a key to lookup the
TRAP-TAG in the

microcode error table.

Saved processor flags as fixnum,
The flags are shown in Table 14-2.

The index into the hardware

PDL buffer cache of

the Q@ at the top of the PDL.
This preserves

index—phasing of the pdl buffer
across SG switches.

VUMA register in a locative.
The data type is
stored in SG-VMA-M1-M2-TAGS.

Tags of VMA, M-1, and M-2
packed into a fixnum.

Tags of M-3 and M—4 packed
into a fixnum.

Pointer fields of "raw"
accumulators packed into

fixnums. Tags are in one
of previous packed-tag regs.

Accumulators . ..

14-4




20T TwaTe vesigilt nNnowve> -t VS N W WWY -

S6-AC-H
SG-AC-1
85G-AC-J
S6-AC-K
56-AC~-L

56-AC-@Q
86-AC-R
Se-AC-S
SG-AC-ZR

SG-AC-T Result register, pseudo
indicators.

SG~-CATCH-POINTER Typed pointer to catch
block.

14-5




wedLh VI UWY =

Value

Table 14-1 Stack Group States

Name Meaning

L8]

SG-STATE-ERROR Should never get this.
SG-STATE-ACTIVE Actually executing on
the machine.
SG-STATE-RESUMABLE Reached by interrupt
OoT erTOT TecoveTy
completed. Just
restore state and
continue.
SG-STATE-AWAITING-RETURN
After doing a "legitimate"
sg—-call. To resume this,
reload sg, then return
a value.
SG-STATE-INVOKE-CALL-ON-RETURN
To resume this, reload sg.
then simulate a store in
destination-last. The error
system can produce this state
when it wants to activate the
foothold or perform a retry.
SG-STATE-INTERRUPTED-DIRTY
Get this if forced to take an
interrupt at an inopportune
time.
SG-STATE-AWAITING~-ERROR-RECOVERY
Immediatedly after error, before
TEeCOVeTyY.
SC~-STATE-AWAITING-CALL
The S6 is ready to be called.
SG-STATE-AWAITING-INITIAL~-CALL
Initial state of the 5G, before
it has been called.
SG-STATE-EXHAUSTED GState when the 56 has finished
Tunning.

14-4




WiV VWDl » &Mewex't TTWERE o T T T TR

Table 14-2 Processor Flags

Bit(s) Name Meaning
0 QBBFL This flag is no longer
used. »
1-2 CAR~S5YM-MODE CAR of symbol mode:
0: error

1. error except
{(CAR NIL) is NIL

2: NIL
3: error
3-4 CAR-NUM-MODE CAR of number mode:
Q: error
1: NIL
2: error
3: error
o-6 CDR-SYM-MODE CDR of symbol mode:

0. error
1: error except
{CDR NIL) is NIL

2: NIL
— 3: property-list
’ 7-8 CDR-NUM-MODE CDR of number mode:
Q: errtor
1: NIL

2. error
3: error

2 DONT-SWAP-IN Flag for creating fresh
pages.
10 TRAP—-ENABLE When set, enable error
trapping.
11-12 MAR—-MODE i-bit = read-trap.,
2-bit = write-trap
13 PGF-WRITE Flag used by page fault
routine.
14 INTERRUPT-FLAG In a microcode interrupt.
15 SCAVENGE-FLAG In scavenger.
16 TRANSPORT-FLAG In transporter.
17 STACK-GROUP-SWITCH-FLAG
Switching stack groups.
i8 DEFERRED-SEGUENCE-BREAK-FLAG

Sequence break pending
but inhibited.

19 METER-ENABLE Metering enabled for
this stack group.
20 TRAP-ON-CALL Trap on attempting to

activate new frame.

14-7




Stack Groups : a0ftware vesign nNoves

14. 3 SPECIAL PDL

The Special PDL, also known as the Linear Binding PDL, is used to
hold saved bindings of special variables. The Explorer wuses
shallow binding, so the current value of any symbol is always
found in the symbol’s value cell. When a symbol is bound, its
previous value is saved on the Special PDL, and the new value is
placed in the wvalue cell. When a stack group switch is
performed, the current process’s Special PDL is saved in the
stack group.

The Special PDL also serves some other functions. When a micro-—
to-macro call is made, the processor micro—-stack (UPCS) of the
machine is stored there (this is needed because the hardware UPCS
is of a small fixed size).

The Special PDL is block oriented. The blocks are delimited by
setting the SPECPDL-BLOCK-START-FLAG in the first binding made in
a block. The data type of the top word (last pushed) of a block
determines what kind of block this is. as shown in Table 14-3.

SPECPDL-BLOCK-START-FLAG and SPECPDL~-CLDSURE-BINDING are stored
in the CDR-Code field of Q's on the Special PDL. The CDR-Code is
not otherwise used on the Special PDL. SPECPDL-CLOSURE-BINDING
(bit 31) indicates that this binding was made "before" entering
the function (i.e., by closure binding, or by the binding of SELF
for a method). SPECPDL-BLOCK~-START-FLAG is bit 30.

A normal binding block is stored as a pair of Q’s for each
binding; the first Q@ is a locative pointer to the bound location.
and the second is the saved contents of the location. Note that
any location can be bound; usually these locations will be the
value cells of symbols, but they can also be array elements., etc.
{only of arrays of type ART-Q@ or ART-Q-LIST).

The processor micro-stack (UPCS) blocks are always pushed onto
the Special PDL all at once, and so are never "gpen. " However.
the normal binding blocks are created one pair at a time. To
keep track of this, when a macrocompiled function is running., the
binding—block—pushed bit is set in the call-info-word if a
binding block has been opened on the Special PDL. This assures
that when a compiled function is done, the call-info-word will
correctly reflect whether it has done any bindings that must be
popped off the Special PDL. I1# the bit is set, all of the
bindings of the top-most block of the Special PDL must be undone.
I1# not set, it means that no pairs have yet been pushed.

Micro-ta-micro calls can also cause bindings, and in order to
keep that straight, a bit on the UPCS is set to indicate that a
block was bound.

The Special PDL is pointed to by the location SG-SPECIAL-PDL-~-
POINTER in +the stack group and by A-GLBNDP when the stack group

14-8




w0rltware vesign nouved 2Lalk TOUpPpS

is executing on processor. There is an area devoted to storing
both Special PDLs and stack groups called the SG-AND-BIND-PDL-
AREA.

Table 14-3 Special PDL Block Type

DATATYPE USE
LOCATIVE The block is a normal binding block.
F IXNUM This is a block transferred from the

processor micro-stack (UPCS). Each

word in the block should be a fixnum
containing the old contents of the

UPCS. Only the active part of the stack
stack is transferred.

14-9




