——

Software Design Notes Closures

SECTION 12

Closures

12.1 INTRODUCTION

A closure is a functional object with some extra information

attached to it. In simplest terms, it is a function coupled with
some Trepresentation of the environment in which it was created.
The Explorer system supports two kinds of closures: Dynamic

Closures which capture some part of the dynamic variable binding
environment in which they are created, and Lexical Closures which
capture the surrounding lexical (textual) variable environment in
which the closure function was written.

Each of these closures is a separate primitive functional object
having a dedicated data type and a unique storage format for its
environment structure. Each also implies a different set of
support operations which must occur when the closure 1is
funcalled. This section covers these topics.

12. 2 DYNAMIC CiLOSURES

Conceptually, a dynamic <closure object is a function and a
Tremembered binding environment. The remembered binding
environment is necessary to resolve possible binding conflicts
caused by free references to variables in functions passed as
arguments (funargs). The implementation of dynamic <closures on
the Explorer system is closely tied with the variable binding
method chosen for the system.

Some implementations of Lisp use deep binding, where the binding
stack can be thought of as an a-list of symbol/value pairs. In
this case accessing a variable requires an ASSOC, and takes time

proportional to the number of bindings on the a-list. In a deep
binding implementation, there is one global binding stack (or one
per process: in multi-processing systems). Dynamic closures in

such a system can "close over" the entire environment simply by
saving a pointer to the current global binding a-list when the
dynamic closure is created.

Explorer system Lisp, like MacLisp, uses shallow binding. The
goal of shallow binding is to keep the time needed to access a
symbols value to a small constant: typically only that of a

single memory reference. Conceptually, shallow binding can be

Closures Software Design Notes

thought of as a scheme where there is a stack associated with
each symbol which contains a history of the symbol’s bindings.
The top of the symbol‘s binding stack (which can be accessed
quickly) always contains its current binding.

Shallow binding on the Explorer is a slight variation on this
conceptual model. Each symbol’s value cell (called the symbol’s
internal value cell since it is the internal physical 1location
within the symbol data structure itself) always contains the
current binding for the function being run. Previous bindings
are saved on the binding stack (the Special PDL or SPECPDL) by
the BIND primitive and are restored when the binding construct is
exited. BIND does this by saving the actual contents of the
symbol’s internal value cell on the Special PDL along with a
pointer (of type DTP-LOCATIVE) to the internal value cell.

Dynamic closure binding is a special kind of binding which may be
shared; that is, other functions and dynamic closures in the same
binding environment as the CLOSURE function can access and change

the dynamic closure’s closed over variables. This sharing 1is
accomplished by using a new data type called DTP-EXTERNAL-VALUE-
CELL-POINTER (EVCP). It can be thought of as a kind of
"environment pointer," referring to the symbol’s value when it

was closure—-bound.

Since bindings are associated with the symbol and not on a global
a-list, dynamic closure binding on the Explorer system is on a
per—symbol basis. The function CLOSURE takes two arguments: the
first argument 1is a list of symbols (the symbols whose bindings
are to be saved), and the second is a function object (such as a
LAMBDA expression, or a compiled-code obgject). First, CLOSURE
CDRs down its first argument, assuring that each of the symbols
has an external value cell. Whenever it finds one which doesn’t,
it allocates a word from free storage. places the contents of the
symbol’s internal value <cell into the word, and replaces the
internal value cell with a DTP-EXTERNAL-VALUE-CELL-POINTER to the
word. Then, CLOSURE allocates a block of 2#%N+1 words of storage,
where N is the length of CLOSURE’s first argument. In the first

word of the block, CLOSURE stores its second argument. Then for

each symbol in its first argument, it stores a pointer to the
internal value <cell, and a copy of the symbols EVCP. Finally,
CLOSURE returns an object of datatype DTP-CLOSURE which points at
the block. This is the dynamic closure itseléf.

A symbol‘’s internal value cell contains an EVCP only when its
binding is being rtemembered by some dynamic closure; at other
times the internal value cell just contains the symbol’s value.
The presence of the EVCP when a variable is closure-bound allows
any modifications to the wvariable by functions or dynamic
closures in CLOSURE’s binding environment to be seen by the
function closed over. An EVCP is treated in the wusual manner
{(described above) by the BIND and UNBIND operations, but is
treated as an invisible pointer by SET (the primitive function

ig2-2

[N

L

Software Design Notes Closures

for updating a symbol’s value) and by SYMEVAL (the primitive
function for accessing a symbol’s value). The word pointed to by
the EVCP is called the sumbol’s external value cell. Thus, SET
and GSYMEVAL access and modify the symbol’s external value cell,
while BIND and UNBIND refer to the internal value cell.

When a CLOSURE is invoked as a function. the first thing that
happens 1is that the saved environment is restored: the contents
of the internal value cells of the current environment are saved
on the binding PDL. Then the EVCPs stored in the dynamic closure
are placed in the symbols’ internal value cells, restoring the
saved environment. Finally, the function 1is invoked with the
arguments passed to the dynamic closure.

12. 3 LEXICAL CLOSURES

While a dynamic closure is a function and an environment which
captures a set of dynamic bindings, a lexical «closure 1is a
function and a lexical environment which captures a set of
variables shared between the function and 1its lexical parent
(and/or any higher lexical grandparents). A dynamic closure
takes a snapshot of the global, fluid dynamic binding environment
at the point in time that it is created. The environment of a
lexical <closure, on the other hand, is neither #fluid nor
temporally changing. A lexical environment is fully defined when
the functions are written. Hence all environment is statically
determined at compilation time.

When discussing lexical closures it is convenient to distinguish
between a closure function, which is the functional part of a
lexical «closure, and a closure parent function, or just parent
function, which is a function inside whose textual context the
lexical <closure is defined. Any time a function defined within
an outer (parent) function freely refers to a local variable name
or argument name belonging to its parent function, the function
is considered a lexical closure. In the SILLY-ADDER function
shown in Table 12-1, SILLY-ADDER is the parent function, and the
internal anonymous LAMBDA function is a lexical closure.

widUawvt ©o Wy VR wm EmT T . T e

Table 12-1 Some Lexical Closure Examples
(DEFUN silly-adder {(num)
(funcall #‘(lambda () (+ num 1))))
(DEFUN make—summer ()
(LET ((sum 0))
#/(lambda (n) (INCF sum n))))

(SETF (SYMBOL-FUNCTION ‘add-to—sum) (make-summer))

{add—to-sum 5) == 5
{add—to-sum 2) ==> 7
(add—-to-sum &) == 13

However, such extremely simple creations of lexical closures as
that in SILLY-ADDER can be completely "compiled out” and reduced
to in-line code. Although the anonymous LAMBDA function accesses
its parent’s argument, the compiler can statically determine that
neither it nor its shared binding of NUM needs to be protected or
preserved outside of the execution environment of SILLY-ADDER
itself. Hence, it can just compile into a simple (+ NUM 1).

On the other hand. the MAKE-SUMMER parent function creates a
lexical closure which is returned as the value of a call to MAKE-
SUMMER, so the internal LAMBDA function cannot be compiled out.
Furthermore, it shares the variable SUM with its 1lexical parent
MAKE-SUMMER. hence it is a lexical closure. Let’s call the
closure returned by a call to MAKE-SUMMER ADD-TO-SUM. Calls to
ADD-TO-SUM now side—effect the 8SUM variable in its lexical
parent. The lexical closure ADD-TO-SUM, then, must contain both
a functional object to perform the computation, and an
environment object which captures the referenced variables in its
textual scope. The lexical closure environment data structure
must provide links back to the defining 1lexical parent.
Moreover, the defining lexical parent MAKE-SUMMER must have a way
of keeping track of the closures it «creates (since subsequent
calls will create more closures). Each such closure must have a
separate, protected lexical environment. Hence stack frames of
lexical parent functions must have reserved slots for maintaining
information about their offspring. The following discussion
covers the data structures for maintaining these links.

NOTE

The implementation of 1lexical closures is
quite different in Explorer Release 3 from
earlier releases. The following discussion
applies to Release 3 and later only.

Software Design Notes Closures

1i2. 3.1 Lexical Closure Implementation. The lexical closure
object is represented by a word of type DTP-LEXICAL-CLOSURE which
points to a cons cell whose car is the function and whose cdr is
a locative to the environment. The layout of a lexical closure
can be seen in Figure 12-1.

Closures Software Design Notes

LEXICAL CLOSURE OBJECT

! DTP-Lexical-Closure

+ -~ +
+ -~ +

i
+
+ -

+ == -

-

LEXICAL CLOSURE STORAGE (A CONS CELL)

N it 2

+->i{Norm! DTP-Function Pointer to FEF storage

4 = =
+ -+ -+

lErr | DTP-Locative H
m——— !
!
+ +
!
! LEXICAL CLOSURE ENVIRONMENT
1 + + +
! INext! Environment-Vectors—-All-Vectors—-Link P -2
R SRS +
H iNext! Environment-Vector-Frame—-Pointer i -1
T+ - +
+=>1Next! Link to Parent Environment i 0
+ - +
INext! Oth Lexical Variable Slot L |
——— +
+ - +
INil ¢} lLast Lexical Variable Slot i N
Environment-Vectors—All-Vectors—Link -— Link used to thread

together LEX-ALL-
VECTORS (not needed
if next one is NIL).

Environment-Vector-Frame—Pointer —— Locative to LEX-ALL-
VECTORS slot of frame
or NIL if already
unshared.

Link to Parent Environment -= Link to parent
environment or NIL
if there is no

' parent.

Lexical Variable Slots —— EVCPs to the lexical
variables on the stack
or actual values if
unshared.

Figure 12-1 Lexical Closure Structure

12-6

Software Design Notes v Closures

12.3.2 Dedicated Locals.

The implementation of lexical closures makes use of wup to four
dedicated local variable slots the function‘s runtime stack
frame. In all cases it is determinable at compile time exactly
which of these locations need be dedicated/reserved within a

function. Whenever a particular one (or more) of these is not
required, its location is available for general local storage
within the function. These locals, if present. have the

following uses:

Dffset Name Description

2 LEX-PARENT-ENV-REG Parent lexical environment
pointer and primary lexical
"hbase register”

3 LEX-ENV-B-REG Secondary lexical "base
register”

4 LEX-CURRENT-VECTOR-REG Current environment pointer

5 LEX-ALL-VECTORS-REG Head of environment list

Note that local slot O is reserved for %REST args and local 1 to
hold the mapping table in combined flavor methods. The symbolic
names are in the GSYSTEM package and are defined in file
SYS: UCODE; LROY-QCOM.

Compile time conditions for dedicating locals:
LEX-PARENT-ENV-REG {Initialized by CALL microcode)

Dedicated if function is a closure or if function contains
a MAKE-LEXICAL~-CLOSURE macroinstruction.

LEX-ENV-B-REG (Initialized to NIL)

Dedicated if compiler determines that a second lexical base
register is needed.

LEX-ALL-VECTORS-REG (Initialized to NIL)

Dedicated if any MAKE-LEXICAL-CLOSURE macroinstruction is
emitted which indicates a push onto the environment list.

LEX-CURRENT-VECTOR-REG (Initialized to NIL)

Dedicated if function contains a MAKE-LEXICAL-CLOSURE
macro instruction.

Closures ‘Doftware lesign Notes

i2.3.3 Calling a Lexical Closure.

When a lexical closure is called, the microcode will store the
new environment pointer in LEX-PARENT-ENV-REG of the called
function. This allows efficient access to the environment from
within the function. ‘This approach requires that all lexical
closures dedicate LEX-PARENT-ENV-REG as an environment pointer.
Furthermore, any function creating an environment must use LEX-
PARENT-ENV-REG as an environment "parent" pointer. Simple
functions (non closures) are called with no special treatment of
LEX-PARENT-ENV-REG in the called function.

i2. 3.4 Free Lexical References.

References to non—-local 1lexical variables must specify the
variable being referenced and which higher lexical environment
the variable belongs to. Such references can be compiled 1into
one of the general form instructions LOAD-FROM-HIGHER-CONTEXT,
STORE-IN-HIGHER-CONTEXT, or LOCATE-IN-HIGHER-CONTEXT (returns a
locative to the variable). Each of these takes from the stack a
context descriptor, which is a FIXNUM whose lower 12 bits are the
offset within a particular lexical environment. This defines the
variable itself. The next 12 bits specify which environment An
environment value of O represents the immediate parent (taken
from LEX-PARENT—-ENV-REG); 1 represents the grandparent. and so
forth.

The majority of non—-local lexical references, however, are either
to variables in the immediate lexical parent or in the lexical

grandparent. Hence, most non—local 1lexical references are
handled more efficiently by wusing MAIN-OP instructions with a
special base register field which specifies "higher lexical

context"” addressing (register value 3). The &6-bit offset field
of the instruction is then used divided into a 5-bit lexical
environment offset and one bit which specifies the base register
{0 = LEX-FARENT-ENV-REG, 1 = LEX-ENV-B-REG) These base registers
(actually in the function’s local block) are assumed to point to
valid environment structures. The D5-bit displacement field
allows reference to the ¢first 32 slots of the lexical
environments pointed to by LEX-PARENT-ENV-REG or LEX-ENV-B-REG.
The compiler will revert to the {access>—~HIGHER-CONTEXT form
instruction orly when the shert form addresses cannot be wused;
that 1is, the lexical environment displacement is greater than 31
or when access to a third environment frame not covered by a base
register is required.

It is left up to the compiler to determine which particular
environment pointers will reside in LEX-PARENT-ENV-REG and LEX-
ENV-B~REG at given points in the code. While it is unlikely that
the compiler would choose to have other than the parent pointer

oortware LDesign Nowves walloalli' €0

reside in LEX-PARENT-ENV-REG, it 1is quite possible that other
than the grandparent pointer might reside in LEX-ENV-B-REG.
(Remember that LEX-PARENT-ENV-REG must point to the lexical
parent when MAKE-LEXICAL-CLOSURE is executed.) The compiler
makes the choice based on the number of references to each
lexical level.

Environment pointers are obtained by the instruction LOCATE-
LEXICAL-ENVIRONMENT, which accepts an integer specifying the
number of generations to go back (0O = parent, 1 = grandparent,
etc.) and returns a pointer to the requested environment object
on the PDL. This instruction, of course, begins its search at
LEX-PARENT-ENV-REG. The simplest approach for the compiler would
be to allocate LEX-ENV-B-REG on a global basis, although for some
functions local allocation might win. The anticipated "typical"®
code sequence on entry to a closure would be something like:

LOCATE-LEXICAL-ENVIRONMENT 1 i Grandparent
POP LOCAL 3 i LEX-ENV-B-REG

aFter‘which we could have:
PUSH LEX-A!7 ; 7¢h slot of PARENT
POP LEX-B!4 i 4th slot of GRANDPARENT

Should the compiler determine that a closure has no need of LEX-
ENV~-B-REG (as a base register) then it is free to use it as a
normal local slot. The short form lexical reference instructions
reduce the size of the code {1 instruction vs. 2) as well as
reducing the time required to access grandparent (or higher)
environments. The use of the LEX-ENV-B-REG base register allows
us to incur the lookup cost only once; thereafter references cost
the same as references to the parent environment.

12. 3.5 Constructing Lexical Closures.

Lexical closure objects are constructed using the MAKE-LEXICAL-
CLOSURE ot MAKE~-EPHEMERAL -LEXICAL-CLOSURE macroinstruction.
These instructions take two arguments from the stack: the
environment descriptor list and the FEF pointer to wuse. They
return (on the stack) a pointer to the constructed lexical
closure obgject. These instructions also use three implicit
arguments, found 1in the invoking function’s local slots, as
follows:

1. LEX-CURRENT-VECTOR-REG is accessed to retrieve the
pointer to the lexical environment to be used in the

Closvures Software Design Notes

constructed lexical closure. If LEX-CURRENT-VECTOR-REG
contains NIL, then it is necessary to construct a new
environment object according to the descriptor list
mentioned above. In this case the pointer to the new
environment object 1is stored into LEX-CURRENT-VECTOR-
REG as a side effect of the macro instruction.

n

LEX-ALL-VECTORS-REG is used to maintain a list of
environment objects constructed by the current
function. See below for details.

3. LEX-PARENT-ENV-REG 1is wused as the lexical parent
pointer should it be necessary to construct a new
environment object.

The two instructions differ in whether the (possibly new)
environment object will be pushed onto the environment list at
LEX-ALL-VECTORS-REG. For MAKE-LEXICAL-CLOSURE, the environment
object (whether new or old) is pushed onto the list at LEX-ALL-
VECTORS-REG, provided that it is not already the first element of
the list. For MAKE-EPHEMERAL-LEXICAL-CLOSURE, no attempt is made
to push the environment onto the LEX-ALL-VECTORS-REG list.

The decision as to whether an environment object needs to be
added to the environment 1list is made by the compiler and is
based on whether the closure being created can possibly outlive
the current function’s stack. frame.

12.3. 46 Lexical Environments

Lexical environment objects are constructed as a side effect of
the MAKE-LEXICAL-CLOSURE macroinstruction. Environment objects
are always consed in the heap. Each object is a cdr-coded list
containing a pointer to its parent environment followed by some
number of slots which may contain either the value of a variable
or an indirect pointer (EVCP) to the variable’s value cell.

Value entries in a freshly constructed environment correspond to
locals/args of the current function which are freely referenced
and which the compiler has determined are "read only"; i.e.. they
are never stored into. In this case each constructed environment
gets its own copy of the value of the local/arg rather than the
EVCP used in the general case.

12. 3.7 Environment Descriptor List.

The environment descriptor 1list is wused as a template when
constructing an environment object. The first element of the
list is the number of slots to be created, and each remaining
element is a FIXNUM which defines one lexical variable slot. in
the format shown in Figure 12-2.

12-10

Software Design Notes Closures

222 ,
bit 4 3 2 65 0
b + +
IAIVIDOODOO0O00000000O0O0O0 0! offset i
+=t—+ + +
/ \
arg value

Figure 12-2 Lexical Variable Slot Descriptor

The sign bit is O for a local variable, or i for an argument.
The next bit is the value/reference flag; when it is O, the slot
will hold a DTP-EXTERNAL-VALUE-CELL-POINTER to the variable; when
1. the value of the wvariable is copied directly into the
environment slot. If the number of slots is greater than the
number of of slot descriptors provided. then the remaining slots
are initialized with a value of NIL and do not correspond to any
local variables; the compiler uses such slots as value cells for
lexical variables which are in excess of the maximum number of &4
that can be allocated in the stack.

12. 3.8 Managing Environments.

We have already discussed the creation of new environments in our
discussion of the operation of MAKE-LEXICAL-CLOSURE with respect
to LEX-CURRENT-VECTOR-REG, although we did not indicate how LEX-
CURRENT-VECTOR-REG might ever be set back to NIL once an
environment had been constructed. The motivation for forcing a

new environment object to be constructed is to allow
representation of environments containing different instances of
selected variables. To accomplish this also requires the use of

the LEXICAL-UNSHARE instruction.

The LEXICAL-UNSHARE instruction creates an instance of a variable
by copying its value (from the stack) into the heap and then
relocating all references (from environments in the environment
list) to point to the heap allocated value. References to this
variable in subsequent environments will point (via EVCPs) into
the stack, thus referencing a different instance of the variable.
There is also a LEXICAL-UNSHARE-ALL instruction which can be used
to unshare all of the local variables at once.

Thus we need to set LEX-CURRENT-VECTOR-REG to NIL whenever we
have reason to unshare any of the variables of the environment.
This is done implicitly by the LEXICAL-UNSHARE and LEXICAL-
UNSHARE-ALL microcode.

The UNSHARE instructions will access the environment list via
LEX-ALL-VECTORS—-REG. This list is also accessed implicitly upon
RETURNing from a frame when the environment pointer points here

- W R s s = e aP I

widODUITEDS

(EPPH) +#lag 1is set in the frame’s Call-Info word. This flag is
set only when an environment object is pushed onto the
environment list at LEX-ALL-VECTORS-REG. The microcode must

perform an UNSHARE-ALL operation when this flag is set.
COMPILER NOTE: Locals/args which are determined to be read only

need not be wunshared since copies of the values will have been
distributed at the time the environment was constructed.

12-12

