SECTION 11

Function-Calling

11.1 INTRODUCTION

This section explains the functional objects in the Explorer
system and how they are called. It is not necessary to
understand the earlier virtual machine (VM1) +to wunderstand the
mechanisms of this wvirtual machine (VM2), though it may prove
helpful in understanding our motivations. The following sections
describe the various kinds of functional objects,. VM1 function-
calling and the motivations behind the VM2 design, the layout of
stack—frames: the structure of the compiled-function object. and
the actual function-calling mechanisms.

11.2 FUNCTIONAL OBJECTS

Objects of almost every user-visible data-type in the Explorer
system can be called as functions (the exceptions being numbers
and characters); they may be divided into four categories:

1. Compiled functions: the objects which are produced by
the Lisp COMPILE function or by 1loading the file
generated by COMPILE-FILE.

3

Interpreted functions: objects which are fepresented
in list structure.

3. Indirect functions: objects that may be applied ¢to
arguments, but which when applied #find an internal
functional object and apply it instead.

4. Non-functions: objects that may be applied to
arguments, but which do some action specific to the
data type.

11-1

Function-Calling o0rtware lesign Notes

11.2. 1 Compiled Functions.

Compiled #functions are of data-type DTP-FUNCTION, and are
directly interpreted by the microcode. Compiled functions are
the most important part of the function—-calling code. Most of
this chapter deals with calling compiled functions. (The section
on FEF LAYOUT describes the layout of a compiled function
object.) '

11.2.2 Interpreted Functions.

Interpreted functions are produced by DEFUN or LAMBDA, and are
passed on to the Lisp interpreter. Objects of data—-type DTP-
LIST, DTP-STACK-LIST, or DTP-LOCATIVE are treated as interpreted
functions. When the microcode encounters an interpreted
function, it collects a list of the arguments and passes the
argument list and the function to SYS:APPLY-LAMBDA, the
microcode’s interface to the Lisp interpreter, which it finds in
the support vector. (See the section on Support—Vector for more
details).

11.2.3 Indirect Functions.

There are several different kinds of indirect functions:
symbols, closures, instances, named-structures, and funcallable
hash—arrays. They are discussed below in order of complexity.

11.2.3.1 Symbols.

The simplest of the indirect functions 1is the symbol (DTP-
SYMBOL). When a symbol 1is <called, the microcode calls the
contents of its function cell instead. Most compiled code does
not actually call symbols; rather than a pointer to the symbol,
the function will contain an invisible pointer (DTP-EXTERNAL~-
VALUE-CELL~POINTER) to the symbol‘s function cell. It is this
indirection mechanism that allows the developer to recompile a
function without having to recompile its callers.

11.2.3.2 Closures.

Closures are also quite simple: a closure is a pair, one part of
which is a functional object to be called. The other part of the
pair is a list of pointers to value cells and values to bind them
to. if the closure 1is a dynamic closure (DTP-CLOSURE). or an
environment structure, if the closure is a lexical closure (DTP-
LEXICAL-CLOSURE). When a dynamic closure is called, the
microcode performs all the special-bindings. then <calls the
closure’s functional object. When a lexical closure is called.
the microcode calls the closure’s functional object and places

11-2

] WS - e - &2 TTW EwR T T T T -

the environment structure in a special local variable in the
call-frame. (See the section on Closures for more detail). In
both cases: a previous environment is restored for the function
to execute within, though the type of the environment 1is quite
different.

11.2.3.3 Instances, Named-Structures, and Funcallable Hash-
Arrays.

Instances, named-structures, and funcallable hash—-arrays are
closely related. A named-structure is an array (DTP-ARRAY) with
its named-structure—flag (see the sub—-section on Arrays) turned
on. A funcallable hash—array is a named-structure with its
funcall-as~hash—array flag turned on. An instance (DTP-INSTANCE)
contains a pointer to its flavor’s method table which 1is a
funcallable hash-array. {(See the sub-section on Calling an
Instance).

A call to a simple named-structure 1is turned into a call to
SYS5: NAMED-STRUCTURE-INVOKE found through the support vector, (See
the sub—section on Support Vector), with the structure as the
first argument and all the other arguments following. 5YS5:NAMED-
STRUCTURE-INVOKE 1looks for the SYS:NAMED-STRUCTURE-INVOKE or
: NAMED-STRUCTURE-INVOKE property on the type—-symbol of the
structure, and if found calls it with the arguments and (if the
named—-structure—~invoke property is a closure) the structure
itself.

Calling a funcallable hash—array causes a hash-table 1lookup of
the first argument in the specified hash-array. I# a functional
obyject is found, it 1is <called, otherwise S8YS: INSTANCE-HASH-
FAILURE (another function found through the support vector) is
called. Calling an instance binds SELF, then binds any special
instance variables, then picks up the funcallable hash-array that
is its flavor’s method table and calls it as described above.
(More detail on the structure of flavors and the <calling of
instances may be found in the sub-section on Calling an
Instance).

11.2. 4 Non-Functions.

There are three kinds of non—functions that <can be called as
functional objects: arrays, stack—groups, and microcode—entry
functions.

11.2. 4.1 Arrays.

Calling an array (DTP-ARRAY), if that array 1is not a named-
structure, is equivalent to doing AREF with the array as the
first argument and the other arguments as the indices. In fact,
that is how it is implemented. Calling a named-structure is
described in the section on Indirect Functions.

11-3

11.2.4.2 Stack-Groups.

Calling a stack—group (DTP-STACK-GROUP) wuses the function
SYS: CALL-STACK-GROUP from the support vector to resume that
stack—group. (See the sub-section on Support Vector.)

NOTE

Stack-groups are described from the wuser’s
point of view in the Explorer Lisp Reference
manual and internally in the section on Stack
Groups.

Multiple arguments and values are not yet supported, but all the
hooks are in place. Currently, SYS:CALL-STACK-GROUP is passed
all the arguments and the stack-group itself, with the stack-
group last, and returns one rTesult.

11.2.4.3 Microcode—-Entry Functions.

A microcode—entry function (DTP-U-ENTRY) is exactly what its name
states, a function that is a direct entry into the microcode,

which is interpreted by the hardware. There are very few
microcode—entry functions (about ten); most of the time, entry to
the microcode is accomplished by macroinstructions. (See the
section on Macroinstructions). However., the standard

macroinstruction mechanisms do not allow for operations that
accept an indefinite number of arguments (a %REST arg).
Microcode—entry functions overcome this limitation by using the
standard function-calling mechanism to determine the number of
arguments and acting accordingly; microcode-entry calling will be
discussed in more detail in the section on U-Entries.

NOTE

Interpreted versions of misc—-ops and aux—-ops
(See the sub-section on misc—-ops) are

generated at build time. They are simply
compiled functions that invoke the
appropriate instruction. This is a

difference from VML, in which all interpreted
versions of misc—-ops were microcode—entry
functions.

11-4

11.2.5 O0Obsolete Functional Objects.

There are several functional-object data—types in VM1 that have
been dropped in VM2:

DTP-STACK-CLOSURE has been replaced by DTP-LEXICAL-
CLOSURE. Both implement 1lexical closures (Section on
Lexical-Closure), but the newer implementation is a
complete redesign that corrects many flaws and offers
some new features and improved performance.

DTP-ENTITY and DTP-SELECT-METHOD have been eliminated.
Entities were a variant of dynamic closures that bound
SELF as well as their own bindings. Select-methods were
essentially @ list of operations and functions. When
called, the first argument was taken as the operation to
look up the function. An entity with a select—method as
its functional part was the forerunner of the instance
in the class system that predated the #flavor system.
The only holdover in VM2 is the Lisp macro DEFSELECT,
which will now expand into a different structure with
the same functionality.

11.3 HISTORY AND MOTIVATIONS

VM2 function—-calling differs considerably from its VM1
predecessor. VMl function-calling wused what we have aluways
called an ‘"upside—down” stack layout: a call-block would be
"opened" by pushing some state words and the function, then the
arguments would be pushed; the last argument would "activate” the
call-block, actually starting the function call. Multiple-value
calls and other special calls would push additional information
words ("ADI" words) before opening the call-block. VM2 function-

calling, in contrast, wuses a "right-side—-up" stack layout.
pushing all arguments before doing any sort of call. There is no
such thing as an open call-block. Also. there are no ADI words;

all information supplied at call time is kept in one word, and
other information is kept in a fixed number of registers.

The compiled—function object (called a FEF for historical
reasons) is changed as well. The VM1 FEF carried a list, the
argument—descriptor 1list (ADL), that described the type.,
position, and initialization of every argument and local. Later
work added the "fast—-arg—-option” word, a condensed form of the
ADL for simpler cases. Release 1 of the Explorer system modified
the header word of the FEF +to contain even more condensed
information for even simpler cases. The VM1 FEF also contained
information about any special arguments, which would be bound by
the function-calling microcode. In VM2, the ADL and special-
binding information have been eliminated. The microcode
initializes all locals and optional arguments to NIL, and the

11-5

compiler generates code for non-NIL initializations and for
special-bindings. All information about the number of arguments
and locals is present either in the header word or, if there are
too many arguments or locals for the counts to fit there, in an
optional word called the long-args word. Unlike VM1, the long-
args word is not always present. Also, the name of the function,
which in VMl was kept in the FEF itself, has been moved to the
FEF’s debugging-info (see the section on FEF LAYOUT).

The guiding principles of VM2 function-calling have been
simplicity and speed. VM1 function-calling is horrendously
complex because it developed #from a design intended +to be
perfectly general, but which had all sorts of speed hacks added

on later. All this complexity makes it extremely slow in the
slow cases and not very fast in the fast cases. The open/active
call-block idea has also lost its appeal: most of the current

function’s state is kept on the stack where it requires an extra
cycle to access, probably for historical debugging reasons, and
the necessity of checking for open call-blocks adds overhead to
most stack operations. Our guidelines in designing VM2 function-
calling were:

HKeep all the state of the current running function in
registers.

Invert the stack: replace the open—call-block/active-
call-block distinction with the simpler scheme of
pushing all the arguments first, then doing the call.

Do not copy the arguments (this guideline had an
important influence on the timing of operations in the
microcode).

Let the compiler do all the hard work: non—-NIL
initializations of optional variables, special-bindings.

Simplify the FEF: for the common cases, keep the
information needed by the microcode in the header word;
for the less—common cases, use one other word.

Simplify the state: most of +the important call and
return state is kept in one word.

The remaining sections will describe VM2 +function—-calling in
detail.

11. 4 STACK LAYOUT

A snapshot of the PDL is shown in Figure 11-1. There are several
call-frames shown. € 1is the current running function and its
frame is shown in most detail. C was <called by B, which was

11-6

Wl WSS WE R4yt NV D ruUlicvionTwvaliling

itself called by A. Note how the state for B is between C'’s
arguments and locals. C‘s state is not shown, because it 1is in
the five registers M-CALL-INFO, M-ARGUMENT-POINTER. .M-LOCAL-
POINTER, M-FEF, and LOCATION-COUNTER. The values of M-ARGUMENT-
POINTER and M-LOCAL-POINTER are indicated in Figure 11-1 by the
two arrows marked "argument—-pointer" and "local—-pointer. "
LOCATION-COUNTER is described in the section on
Macroinstructions; note that when the registers are pushed on the
stack, its offset from the beginning of the function is saved
instead,

A function 1is «called by pushing its arguments and executing a
CALL instruction. The CALL instruction pushes NILs for any
unsupplied optional arguments, pushes the state of the calling
function, pushes NILs for any locals of the called function, sets
up the state registers, then causes macroinstruction execution to
continue at the first instruction of the new function.

There are a few areas of added complexity:

If there are any optional arguments, the CALL
instruction leaves the count of the supplied optionals
on top of the stack when it finishes. The intent 1is

that the function’s first macroinstruction will use this
count to initialize the wunsupplied optionals (this
macroinstruction is frequently a DISPATCH instruction).
The function is free to ignore this count, since it will
not interfere with anything; it is likely to be ignored
if all optional arguments default to NIL.)

If the function is lexpr—funcalled (applied, in Common
Lisp terms), the last argument is a list that is spread
into its individual elements at call time. In VM1, the
list was spread unconditionally by a (MISC) %SPREAD D-
LAST, which spread the list and activated the call-block
at the same time. In VM2, we try to be more efficient
by spreading the list during the CALL instruction: 1I¢
the function has a %REST argument and enough arguments
are supplied that part or all of the lexpr-list would be
collected in that &REST argument. we do not spread that
part of the list, storing it directly into the &REST
argument instead.

*# If the object being called is a lexical closure, the
closure’s environment object is temporarily pushed on
the stack between the time the closure is taken apart
and the time the environment is stored into its reserved
local (see the section on Closures).

If the object is being called with a self-mapping-table
(see the section on Instance-Calling) supplied. the
self-mapping—table is supplied on the stack above the
arguments and is picked up before any optional-argument

11-7

processing.

If the object is being called with a macroinstruction
call-destination of D-TAIL-REC, it means that this call
is destructively tail-recursive.

NOTE

Non~destructive tail recursion uses the
destination D—-RETURN, which has little
special effect at call time. though much at
return time.

In destructive tail-recursion, the callee’s arguments are copied
down over the arguments of the caller., obliterating the caller’s
frame, and the callee’s state 1is modified so that it returns
directly to its caller’s caller. This kind of tail recursion is
known <colloquially as "frame—eating” tail recursion, and is
enabled by setting compiler optimization levels to emphasize size
and speed and deemphasize safety.

NOTE

In contrast. VMi destructive tail-recursion
was decided at runtime, controlled by a user-—
settable variable and some instructions that.
allowed or prohibited tail-recursion when it
might not otherwise appear possible. It did
not work very well, and added the overhead of
checking to every return.

11-8

Doftware Design Notes Function—-Calling

args for B

state for A

locals for B

i
1]

1

i

'

]
|zzssSsmss=s=smsmems
1

i

1

]

- o S v e -

working space
for B

s

arg 0 for C {-- argument-pointer

arg N %or C

call-info for B

11
1
¥
t
1
¥
i
’
i
t
i
1]
o c——— H
!
]
1
}
'
i
'
i
1
1
t
1
1
i
1

arg-ptr for B

local-ptr for B

- m was e e e e e e

LC—offset for B

local O for C <{-- local-pointer

—— o o - -

local N for C

1]

working space !
for C ;
i<-~- PDL-buffer—pointer

- e e mem . e

Figure 11-1 Call-Frame Layout

11.5 THE CALL-INFO WORD

Following the design guidelines shown in the section on
motivations: most of the call and return information is supplied
and kept in one word., the call-info word, a fixnum whose pointer
field is 1laid out as pictured in Figure 11-2. In the generic
CALL, the call-info word 1is pushed on the stack after the
arguments, though there are several short-form call instructions
that use a call-info word derived from the instruction. There

11-9

FUNCLioNn~wvaldiding Wt §| W & Wb way'' TTW VRS &

are three types of fields in the call-info word: call fields,
return fields, and state fields.

2222221 1111
54321089 4 321 98765 0
B s st 2t + + +—t—t—t +
10 O'E'ITIMIB! # valuesirt idest ICIMILI # args i
B s s 2t + + +—t—t—+ +
Env-ptr- L U Number—of-arguments
points~here | | ! | Lexpr—funcall
] ¥

'

H

Trap—-on—exit | | Self-mapping—-table-provided
Microstack—pushed |
d

Binding-block—-pushe

| !

! !

! !

} ! Lexical-closure call

! Saved—-destination

! (from macroinstruction)

R

only one result needed

multiple-value return

multiple-value—list return

return all values with
count on stack

Figure 11-2 Call-Info Word Layout

11.5.1 Call Fields.

Call fields are those containing information about the kind of
call. These are wusually supplied by the compiler when it
generates a call-info word, or by the short—form call
instructions in their constant call-info words. Call fields are
all in the low nine bits of the call-info word, so most «call
variations can use a call-info word generated by a PUSH-NUMBER
instruction, as long as multiple values are not needed. The call
fields are:

The number—of—-arguments field, %ZZ%call-info-number-of-
arguments, which allows for up to &3 arguments (though
more actual arguments can be supplied wusing lexpr-—
funcall).

The lexpr—funcall flag, %icall-info-lexpr-funcall-flag,
set when doing a LEXPR-FUNCALL or APPLY.

The self-mapping-table-provided flag, “%call-info-self-
map—-table—-provided, set when supplying the self-mapping-
table on the stack.

The lexical-closure—-call flag, “%call-info-lexical-

closure~call, which, strictly speaking, is noet a call
field, because it is set by the microcode at call time.

1i-10

This flag indicates that a lexical closure 1is being
called and that its environment object is on the stack.

11.5.2 Return Fields.

Return fields contain information about the kind of return that
the caller expects from the call. These fields are supplied at
call time, but are copied from the caller’s call-info word if the
macroinstruction destination is D-RETURN or D-TAIL-REC. There
are two fields:

The number—of-results field, “%call-info-number—of-
results, which allows for up to &3 values.

*# The return-type field, “Zcall-info-return—type, which
indicates the form of returned values:

- Jonly-one-result-needed (0): the caller only
wants one result. This 1is special-cased for
speed.

= %normal-return (1): O to 63 values, as a block.
When the function returns, there will be this many
values left on the stack for the caller (or
ultimate caller). Excess returned values will be
trimmed and missing values will be filled in with
NILs.

-~ %multiple-value-list-return (2): all the returned
values will be collected into a list, which will
be returned as a single valve.

- YZreturn—all-values~with-count—on-stack (3)} the
number—of-results field will be ignored and all
values will be returned. The number of values

will be left on the stack. This form of return is
needed for situations involving indefinite numbers
of values, wusuvally associated with throws and
unwind-protects: where, due to tail-recursion, it
is not possible to determine how many values to
return at call time. Calls with this return—-type
are often followed by RETURN-N instructions.

11.5.3 State Fields.

Btate fields are fields used by the microcode to keep track of
the state of the frame, usually to preserve information from the
call or from the execution of the function until return time,

when it will be needed. The state fields are:

The saved destination, “Z%call-info-saved—-destination:

11-11

i1. 6

The compiled—function object.

Every

from the macroinstruction is

is in the same position as it is
sa it can be copied in one
selective—deposit. The field is
of two because the microcode
Tecognizes a fifth destination not available from
macrocode: D-MICRO. This destination is wused when
"calling out"” from microcode to macrocode (See the
section on Calling "Out™).

the destination field
copied here; the field
in the macroinstruction
microinstruction with

three bits wide instead

The "marked—-frame" flags, including:

%7call-info—-env—-
lexical—-closure

- Environment—pointer-points—here,
ptr—points—here: set when a
object 1is created that wuses this frame in its
environment (See the section on Closures);
indicates that this frame must be "unshared.”

- Trap-on—exit., %%call-info-trap—-on-exit:
manipulated by the debugger commands C-X, M-X and
C-M-X and the function breakon; causes an exit-
trap when returning from this frame.

- Microstack—-pushed, “Z%call-info-microstack-pushed:
set when the microstack is saved on the special
PDL; usually set by calling out to macrocode, so
that returning from the macrocode function will
restore the microcode’s state.

- Binding-block-pushed, Z%Z¥call-info-binding-block-
pushed: set when a special-binding 1is done;
indicates that there is a block of bindings to be
undone when returning.

FEF LAYOQUT

the FEF, is
FEF contains both boxed and unboxed

shown in Figure

words.

11-3.
The boxed words

are collectively called the "FEF header”
about the function and any constants that
words contain the macroinstructions.

The words in the FEF header are:

1. Word O has type DTP-FEF-HEADER

following fields:

a. Special form flag
bit)
or FUNCTIONAL arguments.

11-12

and contain information
it needs. The wunboxed

and contains the

(44ZFEF-HEADER-Special-Form, 1
indicates whether there are any "E

Software Design Notes

n

b. SUBST flag (ZALFEF-HEADER-Subst, 1 bit) --— set if
the function was defined by DEFSUBST.

c. Self-mapping table required (LAFEF-HEADER-Sel#-
Mapping-Table, 1 bit) =--— when set: a self-
mapping-table must either be provided or fetched
during the call.

d. Call type (LAFEF-HEADER-Call-Type. 3 bits):

.%fef-call-simple (0) = simple <call (no
optionals or locals) '
.%“fef-call-optionals (1) = optional

arguments

. %fef-call-lo als (2)

local variables

. %fef—-call-rest (3)
without other locals)

%REST arg (with or
. %“fef-call-optionals—and—-locals (4) =
optional args and local variables

. %fef-call-optionals—and-rest (5) = optional
and &REST args

. %fef-call-unused (&) Lunusedl

. %“fef-call-long (7)
word.

use the longs—args

e. Number of gptional arguments (LAFEF-HEADER~-
Number—-Optional—-Args, 3 bits).

f. Number of required arguments (Z4FEF-HEADER-
Number—Args, 4 bits).

g. Number of 1local variable slots (4AFEF-HEADER-
Number-Locals, 4 bits).

h. Offset of the word containing the first
instruction (ZAFEF-HEADER-Location—-Counter-
Offset, 10 bits).

Word 1 is a fixnum specifying the length of the FEF in
words (used by the storage management code, see the
section on Storage Management).

Word 2 points to the debugging info, which 1is a
structure of type SYS: DEBUG-INFO-STRUCT. This
structure has five slots: the name of the function,
its true arglist, its interpreted definition if there

11-13

Function-Calling

Function-Calling Software Design Notes

is

one (often useful for functions which are declared

INLINE), its 1local-map (which describes the layout of
the local variables in the frame), and a plist which
contains other fields, such as :MACROS-EXPANDED,
: DOCUMENTATION, and :VALUES.

4. The long-args word is optional. It is needed when the
counts will not #fit in word O, and its presence is
indicated by the Call Type (%UFEF-CALL-LONG). 1t
contains:

a. Optional arguments flag (%%fef-long—args-—

optionals, 1 bit) ——— set if there are optionals.

Local variables flag (ZZFeF-long—args—locals» 1
bit) ——— set if there any locals.

%REST arg flag (%ifef-long-args-rest—-arg. 1 bit)
——— get if there is a %REST argument.

Minimum number of arguments (%Zfef-long—args—-min-
args, 6 bits) =—-— +the number of required
arguments.

Maximum number of arguments (Z%fef-long—args—-max-
args, & bits) —-——— the sum of the number of
required arguments and the number of optional
arguments. The %REST argument. if present, 1is
not counted here.

Number of local variable slots (%Zfef-long—args—
number—of-locals, 7 bits).

The maximum/minimum representation of the
arguments (instead of the optional/required form
in word O) 1is a historical holdover, as is the
seven—bit locals field (only & bits worth are
accessible, but the old stack—closure code used
to allocate some of its storage wusing this
field).

5. The flavor name is also optional, and is present when

the

self-mapping table bit is set in word 0. If the

flavor-name word is present, but the long-args word is
not, the flavor-name word will be word 3; when both are
present, it will be word 4.

The remaining header words are constants used in the function.

indicated
from the

in disassembled code by FEFin, where n 1is the offset
beginning of the FEF. Many of these constants will be

external-value-cell pointers to value—-cells and function-cells of

symbols.

11-14

Software Design Notes v Function—-Calling

3
1

=t

0!Q!SIDTP-FEF-HIM! CT #opt | #req #loc PC word offset

+ -+

+ -+
4 -~ 4

=t
1icc IDTP-FIX

i

e
-r
]
!
e
- v
e

length of function

g

2icc {DTP-LIST pointer to debugging info

e

R ek T T T e X

+ - e + +
lcc IDTP-FIX I0ILIRImin # args imax # args | # locals
lec IDTP-SYMBO pointer to name of flavor for a method
e e
ice | first constant
+ -

o

H last constant

+ -+

——

second instruction first instruction

"’

third instruction

t

fourth instruction

+ -t --+-+

4 -4 -+

+ -t -t -+

- Special Form Flag

- SUBST Flag

- Self Mapping Table Required
Call Type

- Optional Arguments Flag

- Local Variables Flag

- YREST Arg Flag

DrooXIne
]
|

Figure 11-3 The Layout of a FEF

11.7 CALLING A FEF

11.7.1 The Instructions.

There are several kinds of CALL macroinstructions, depending on
the grouping chosen. They may be divided into mainops and auxops
(see the section on Macroinstructions) or general and special-
case, and there are shadings in each division. The instructions

11-15

runction—Lailing KLUTLWalT' € UESLGHD NNOLWeS

are:

CALL-0 through CALL-6:
These seven instructions all call a function with the number
of arguments specified in the instruction, to return one
result: nothing fancy. They all take the standard

"register" and offset for the function, but are coded to
favor FEF-relative arguments that are external-value-cell
pointers.

CALL-N:

Similar to CALL-0 and friends, but takes the number of
arguments from the top of the stack.

(AUX) COMPLEX-CALL:
The most general of the «call instructions, COMPLEX-CALL
takes both the function and a call-info word on the stack.
This instruction actually exists in four forms to express
the four call destinations: COMPLEX-CALL-TO-INDS. COMPLEX-
CALL-TO-PUSH,. COMPLEX-CALL-TO-RETURN, and COMPLEX-CALL-TO-
TAIL-REC.

(AUX) APPLY: S
This special—-case instruction takes the function from the
stack and lexpr—funcalls it with one argument. to return one
result. It exists in four forms Jjust like COMPLEX-CALL.

{AUX) LEXPR~-FUNCALL-WITH-MAPPING-TABLE:
This special-case instruction takes the function and a self-

mapping—-table from the stack, and lexpr—funcalls . the
function with one argument and self-mapping—table provided,
to return one rTesult. It exists in four forms Just like

COMPLEX-CALL.

Other instructions may be added later.

i1.7.2 The Actions.

The pattern of actions taken by the various call instructions
resembles a tree: there are several beginnings, all of which
merge at various points into a single main path, which itself
branches out into several subroutines. All the auxop calls
follow the same path after five or six microinstructions to pick
up the function and figure out the call-info word. The mainop
calls have the FEF-relative path broken out separately, but merge
quickly. They do not handle the complex situations that the
auxop calls do. The auxop calls merge with the mainop calls
before dealing with the arguments and locals. With all that
merging and separating in mind, here is the generalized sequence
of operations of the call macroinstruction:

1. Find the function, the new argument—-pointer, the new

i1-16

Software Design Notes Function—-Calling

call-info word, and the number of supplied arguments;
all must be set up before dispatching on the data-type
of the function. I# the self-mapping—table-provided
bit is set in the call-info word, pick up the new self-
mapping-table.

2. Dispatch on the data-type of the function to the
appropriate handler. At this point, the function is
guaranteed to be in MD, the new argument—pointer in M-
G, the new call-info word in M-F. and the number of
supplied arguments in M-H. Most functional objects
will eventually return here, having led to a compiled-
function (DTP-FUNCTION) obgject; this dispatch pushes
its own address, and falls through on DTP-FUNCTIONSs.
The other routines that extract functions from objects
must not disturb most registers.

3. Calculate the location—counter offset from the previous
function. Since the location—-counter always points at
the next instruction, this offset will be wused to
continue the previous function when this one returns.
Read the header word of the FEF. Check for PDL-buffer

overflow. Check for lexical-closure calls, if the bit
ig set in the call-info word, pick up the environment
. object from the stack and save it for later. If

metering is turned on, record this function entry.

- Check for lexpr—funcalls, and spread the last argument
if necessary; if part of the lexpr—-list matches up with
a %REST argument in the function, do not spread it only
to collect it again, but make the 1list the &REST
argument directly. If the trap-on-calls bit is set,
trap now. note If the call-type of the function 1is
%FEF-CALL-LONG, we do not try this nicety, because
determining the existence of a %REST argument requires
another memory reference that is not convenient at this
point.

4. Handle the call-destination: If the call-destination
is D-INDS (D-IGNORE) or D-PDL (D-STACK)., do nothing.

I¢# the call-destination is D-RETURN, copy the return
fields (see the section on Return—-Fields) from the
previous function’s call-info word. I# the call-
destination is D-TAIL-REC (D-REALLY-TAIL-RECURSIVE),
copy the return fields like D-RETURN, <copy the call-
destination and all the state from the previous
function, and copy the arguments down over the previous
function’s frame, so that a return from this function

e will return to the previous function’s caller instead
of the previous function itself. Note that the call-
destination is a two-bit field that is in two different
places in the instruction, one for the mainops and one

11-17

Function-Calling Software Design Notes

for the auxops.

5. Take care of the arguments, checking for too few or too
many: pushing NILs for any unsupplied optional
arguments, and setting up the stack-list for any &REST
argument (all arguments are pushed with cdr-code CDR-
NEXT, so &REST~argument handling also must change the
last one to CDR-NIL (see the section on Cdr-Codes)).

6. Advance the instruction stream. Call and return
instructions do not use the mechanisms of the main
macroinstruction loop, but instead include those

mechanisms in the code, so that the next step can be
hidden under the memory reference here. Note that only
page—faults and interrupts may be checked for here, not
sequence—breaks, because of the incomplete state of the
call frame.

7. Push the five state words of the previous function.
The old argument-pointer, local-pointer, and location-
counter offset are all pushed as fixnums; the previous
function and its call-info word are pushed as is,
except that the call-info word is pushed with cdr-code
CDR-ERROR to make call-frame tracing easier.

8. Take care of the locals, which involves pushing NILs
for them, storing any lexical-closure environment
object into its reserved local. placing any &REST
argument in local O, setting up the new local-pointer,
and leaving the number of supplied optionals,
calculated in step argument—-handling. atop the stack.
If there are non-NIL defaults, the first instruction of
the function will probably be a dispatch—type
instruction that will use that number to decide which
optionals to initialize.

@. Pick up the first macroinstruction word and decode it,
starting execution of this function.

11.8 CALLING ANYTHING ELSE

11.8.1 Calling the Interpreter.

Whenever a CALL instruction encounters a list, stack-list, or
locative, it treats it as an interpreted function. The microcode
builds a faked call-frame for the list-call, then collects a list
of all the arguments and passes the function 1list and the
argument 1list as the two arguments to the function SYS: APPLY-

i1-18

Software Design Notes Function-Calling

LAMBDA, which it +finds through the support vector (see the

section on Support-Vector). It calls SYS: APPLY-LAMBDA with a
destination of D-RETURN, so the result of the call will also be
the result of the list—-call. The only unusual details involve

the possible need to diddle the cdr—codes of the arguments on the
stack to make a stack-list of the arguments.

i1.8.2 Calling an Instance.

An instance (DTP-INSTANCE) is a pointer to a word whose data type
is DTP-INSTANCE-HEADER. The instance itself 1is the words
following the header, while the header word points to the
instance descriptor. All instances of the same flavor have
headers pointing to the same instance descriptor, which contains
the information common to all those instances.

Calling an instance #first binds the variable SELF to the
transported instance then 1looks in the instance descriptor for
any other special-bindings to do, then 1looks in the instance
descriptor for the method’s function. 1If the function is not an
array, it simply calls it (in case of a non-hash—-table
implementation).

NOTE

We may eventually make SELF and SYS: SELF-
MAPPING-TABLE into lexical variables.

If it is an array, it is treated as a hash—array, and the first
argument is the key. The modulus of the hash—array must be a
power of two for the simple hashing algorithm used, which simply
looks at the low bits of the symbol that is the key. Each entry
has three words: key, locative to function, and mapping—table.
If the key does not match, the microcode looks at the next entry,
etc, until it either +finds a match or an entry whose key is
unbound (DTP-NULL) (this is different from the wusual hashing
algorithm). When it +finds a match, it binds SYS: SELF-MAPPING-
TABLE if the mapping—table slot is non-NIL, +then dispatches on
the data type of the new function.

I+ no matching entry is found, or if the key or the hash-array
turns out to be gc-forwarded, the microcode <calls out to
SYS: INSTANCE-HASH-FAILURE, which will rehash the hash—array if
necessary, or signal an error if the key 1is truly not in the
table.

11.8.3 Calling a Microcode—-Entry Function.

11-19

Function-Calling Software Design Notes

The pointer field of a DTP-U-ENTRY function is an index into the
MICRO-CODE-ENTRY-AREA, a table of microcode entries. Entries in
the table are either fixnums, indicating true microcode entries;
NIL, indicating invalid entries; or other objects, which are the
definitions for microcode entries that are not presently
microcoded. The fixnums that indicate true microcode entries are
themselves indices into +the MICRO-CODE-LINK-AREA, a table of
information about the microcode routine indicated by the
microcode entry. The MICRO-CODE-LINK-AREA 1is built by the
microassembler and lives in the microcode band.

The microcode builds a faked call-frame on the stack, then checks
the arguments using two fields in the link-area data:

The YYmicrocode-—entry—-args field indicates how many
required arguments the microcode entry takes. This
field 1is exactly equivalent to the number-of-requireds
fields in the FEF header and long—args word.

The %Y%microcode—entry-rest bit is 1 if the microcode-

entry function takes a simulated %rest argument. If so,
any number of arguments may be supplied; if not, the
maximum number Tof arguments is the number in

J/Zmicrocode—entry—args.

One complication arises from the fact that microcode-entry
functions are under no compulsion to obey the normal conventions
for dealing with arguments. In particular, they are likely to
pop the arguments off the stack during their actions. To cope
with this behavior while preserving a call-frame in case of
error. the arguments are copied to the top of the stack before
calling the microcode Toutine.

The +final step in calling @ microcode—entry function is to jump
to the beginning of the microcode routine. The starting address
is in the “%microcode—entry—index field in the link-area data.
Before the Jjump itsel#, the microcode sets up return addresses so
that the end of the microcode routine causes a function return.
At the moment. microcode—entry functions may only return one
valve (while some miscops do return multiple values, they are not
microcode—entry functions).

11.8.4 Calling "Out".

“"Calling out" is the term used for any function call that is
originated from the microcode. The microcode calls "out" from
the microcode level to the macroinstruction level, hence the
name. The main difference between calling out and normal calling
is that since calling out is done from microcode, the microcode
state must be preserved. The most important part of the
microcode is the micro-pc return stack (microstack or UPCS., for
short), which is saved as a block on the special PDL during the

11-20

Software Design Notes Function-Calling

call. The %%call-info-microstack—pushed bit in the call-info
word is used to keep track of which calls saved the microstack.

The call destination D-MICRO exists for the use of calling out.
Calls with this destination do not read a macroinstruction when
they return; they simply do a microcode return to the routine
that <called out, and continue executing microinstructions. When
the microcode routine finishes, only then is the next
macroinstruction fetched and executed. This destination makes it
possible for the microcode to call out to Lisp, receive results,
and continue, possibly indefinitely. Calling out can also wuse
the other call destinations, though D-RETURN is the most common.

The most common reason to call out is that the calculation is too
complicated to do in microcode; for example, arithmetic on
rational and complex numbers is handled by the two functions
5YS: NUMER IC-ONE-ARGUMENT and SYS: NUMERIC-TWO-ARGUMENTS. which the
arithmetic microcode calls out ta. Another example is EQUAL and
EQUALP, which are recursive in microcode. Since the microstack
is only &4 words, there is a real danger of overflowing it when
comparing deep structures. EQUAL and EQUALP solve this problem
by calling out to themselves, thus saving the old microstack and
obtaining more room to work. The function-calling microcode also
occasionally calls out. When calling an interpreted function, it
ctalls out to SYS: APPLY-LAMBDA.

There are other ways that the microcode uses calling out. The -

most unusual is that at boot time, the initial function is called
out to by the boot microcode. This way, there is always a valid
frame at the bottom of the initial stack—group‘’s stack, and if
this function is returned from (though unlikely, it can be forced
from the debugger), the microcode will loop back and call it
again. It is thus also unnecessary to make a special check for
the bottom of the stack when returning.

11.8.5 The Support Vector.

Calling out is inextricably linked with the support vector. The
support vector is an area of memory known by the microcode that
contains some symbols needed by the microcode. Table 1i1-1 lists
the contents of the support vector. Many of these symbols are
functions that are called out to.

8YS: NAMED-STRUCTURE-INVOKE is used as described in the section on
Array-Call when calling a named-structure as a function.
85YS: APPLY~-LAMBDA is used when calling interpreted functions (see
the section on Interpreted Functions). SYS: EXPT-HARD,
SYS: NUMER IC-ONE-ARGUMENT., S5YS: NUMERIC-TWO-ARGUMENTS, SYS: LDB~-
HARD, and SYS:DPB-HARD are used for the difficult cases of some
arithmetic functions and for byte fields +too 1large for the
microcode LDB and DPB. EQUAL, EQUALF, and EQUALP-ARRAY are used
when the microcode recursion becomes too deep, as described in

Function—-Calling Software Design Notes

the section on Equal-Call—-0ut. 8YS:DEFSTRUCT-DESCRIPTION is used
when doing TYPEP of named-structures; it is the property of the
named-structure—-symbol that contains all the internal information
about the structure. §5YS5: INSTANCE-HASH-FAILURE is the function
that calling an instance will call out to if the key is not found
or if the hash—-table needs rehashing (see +the section on
Instance—~Calling). PRINT. #PACKAGE#, and the unbound marker are
currently unused.

SYS: INSTANCE-INVOKE-VECTOR is an array of keyword symbols that
represent messages to send to an instance when +trying to do
several of the basic Lisp operations to that instance. For
example, trying to take the CAR of an instance will cause the
:CAR message to be sent to that instance. The contents of the
instance—invoke vector are :GET, :GETL, :GET-LOCATION-OR-NIL,
:CAR, :CDR, :8ET-CAR, and :SET-CDR. While :GET and its cousins
are relatively useful in that they make GET a more generic
function, the others seem to be remnants of an attempt to do
everything using message—passing. since almost no flavor accepts
the messages.

Table 11-1 Contents of the Support Vector

Index Function
0 PRINT
i SYS: NAMED-STRUCTURE-INVOKE
2 SYS: DEFSTRUCT-DESCRIPTION
3 SYS: APPLY-LAMBDA
4 EQUAL
5 #PACKAGE *
b6 SYS: EXPT-HARD
7 SYS: NUMER IC-ONE~ARGUMENT
8 SYS: NUMERIC-TWO-ARGUMENTS
Q unbound marker
10 SYS: INSTANCE-HASH-FAILURE
11 SYS: INSTANCE-INVOKE-VECTOR
12 EQUALP
13 EQUALP-ARRAY
14 SYS: LDB-HARD
15 SYS: DPB-HARD

11-22

Software Design Notes Function-Calling

11.9 RETURNING

11.9.1 Basics.

Returning 1is governed by the return instruction itself, and by
three fields in the call-info word,

Number—of-results field
Return—-type field
Saved-destination field

The return instruction indicates how many values are being
returned, the number-of-results field indicates how many are
wanted, the return—type field indicates how the values are to be
returned, and the saved-destination field indicates where the
values are to be returned. The return—type field and the saved-
destination field are adjacent in the <call-info word so the
return microcode can dispatch on the combination of the two and
decide quickly what is to be done. There are five call
destinations, four of them accessible from compiled code. D-PDL
is the "normal" destination; the results of the call will be left
on the stack, first one farthest from the top. D-INDS (called D-
IGNORE in VM1) means that no values are to be received; the
function was either called for effect or Just to set the
"indicators." The first value is placed in the "indicators" (the
register M-T), and a succeeding conditional branch can look at
that value in deciding whether or not to branch.

NOTE

In VM1, multiple-value <calls allocated a
block on the PDL to receive the values and
arranged that this block would be on top of
the stack after the return. In VM2, there is
no reserved block; the values are simply
copied over the frame of the function that is
returning.

D-RETURN and D-TAIL-REC are the two forms of tail-recursion. D-
RETURN is non—-destructive tail-recursion; it behaves exactly like
a D-PDL call until return time. The return microcode will scan
back through the stack until it finds a D-INDS or D-PDL frame,
and return directly to that frame, through all intervening D-

11-23

runcLvion=Lvailiing o20rtware bDesign Notes

RETURN frames. D-TAIL-REC is destructive (colloquially, "frame-
eating”) tail-recursion: at call time, it assumes the state of
the caller’s caller and copies the arguments over the caller’s
frame, thus obliterating it. It actually splices out intervening
D-TAIL-REC frames at call time, so that at return time it does
not have to do the scanning that D-RETURN returns do. This
offers substantial space savings and some time savings, at the
expense of making the code difficult to debug. The compiler will
use D-TAIL-REC instead of D-RETURN when it is safe to do so and
the compiler optimizations are set such that speed and space are
emphasized and safety is deemphasized. Both D-RETURN and D-TAIL-
REC calls copy the return fields <(see the section on Return-
Fields) from the current call-info word into the new call-info
word at call time, D-TAIL-REC because that is part of assuming
its caller’s caller’s state, D-RETURN because it is handy to have
that information available before it starts scanning.

The fifth call destination is D-MICRO, used when the microcode
calls out to Lisp (see the section Calling-Out). It acts exactly
like D-PDL, except that where returns involving the other four
destinations Testore state and continue at the next
macroinstruction, a D-MICRO return will restore state and
continue at the next microinstruction.

There are two basic return instructions, known in the microcode
as RETURN-1 and RETURN. RETURN-1 is special-case code for
handling single-value returns, because they are by far the most
common, while RETURN handles the multiple-value cases. All the
return macroinstructions (which will be discussed later) are
built on these tuwo. The return—types are described in the
section on Return-Fields, but they can be grouped into pairs as
far as returning 1is concerned. Only-one-result-needed and
multiple-value-list situations are similar in that only one value
has to be handled, while normal-return and return-all-values
situvations may require the movement of several values. As a
result, RETURN-1 will end up handling returns of the first pair,
even though from the actual macroinstruction it may not appear
50.

Adding to the <complexity of returning is the necessity of
cleaning up after the function. This breaks up into two parts,
cleaning up after the frame and making sure the values are safe

to return. Cleaning up after the frame means looking at the
marked-frame flags (see the section on State-Fields) and acting
accordingly. If the environment-pointer—points—here flag is se:,

some lexical closure has included part of this frame in its
environment, and the values must be copied out of the stack
before the frame can be removed. The binding-block-pushed flag
indicates that this frame has a matching frame on the special PDL

whose bindings must be restored. The trap-on-exit flag is a
debugging aid that allows the user to examine the frame being
exited and the values being returned. The microstack-pushed flag

indicates that a block on the special PDL contains some saved

11-24

Software Design Notes Function-Calling

microstack words that must be restored.

To make sure the values are safe to return, we pass them through
the "return barrier." This barrier makes sure that stack-lists
are copied out to the heap and that lexical closures do what they
have to do, which involves setting the environment-pointer-
points—here flag in appropriate frames and copying cut the values
from this #frame that are needed in the closure’s environment
object. Returning passes every value through the return barrier
for every frame returned from.

11.9.2 Details.

Returning a single value is fairly straightforward. RETURN-1
dispatches on the combination of the return—type and the saved
call-destination, picking up the top of the stack into M-T along

the way (every rTeturn sets the indicators). It then passes the
value through the return barrier and checks the marked-frame
flags, and restores the state of the preceding frame. Next, it

advances the instruction stream to pick up the macroinstruction
at which it will continue (see the step on instruction-stream in
the Call-Action section), and during the memory reference checks
for PDL-buffer overflow. Finally. it picks up the
macroinstruction and macro-decodes it while pushing the returned
value on the stack.

The destination and return—type differences are small:
D-INDS returns do not push the result.

Multiple-value-list returns make a list of the result or
results first, then treat the list as a single value.

D-RETURN returns continue the steps above for successive
frames until one of them has a call-destination of D-
INDS or D-PDL.

D-MICRO returns back up the location—counter and re-
advance the instruction stream to restore the contents
of the macroinstruction buffer to what it was at the
time of the call-out., but do not macro—decode it

If the return—-type was normal-return, NILs are pushed if
necessary to match the number of results wanted.

1# the return—type was return-all-values-with-count, a 1
is pushed above the single valvue.

Multiple—value returns are slightly more complex. All the simple
cases that happen to be single-value returns, such as multiple-
value—-list or only—one-result-needed situations, use the single-

4 value code described above. The harder cases have to handle

11-25

Function—-Calling Software Design Notes

passing more than one value through the return barrier, trimming
excess values if more are being returned than are wanted, and
pushing the count if the return—-type is return—all-with—-count.
The hardest case is D-RETURN, because the obvious is not the most
efficient. Multiple-value D-RETURN returns leave the values
right where they are until the ultimate frame is found, then copy
them all at once. They also do the trimming of values early and
the augmentation with NILs late, because that minimizes the
number of values that have to be passed through the return
barrier and copied. Otherwise, the algorithm is the same as the
single-value return.

There are a lot of return macroinstructions:

RETURN is a mainop that returns one value and taking it
from any mainop source.

The auxops RETURN-O through RETURN-63 return the
indicated number of values, taking them from the top of
the stack, first value deepest.

¥ The auxop RETURN-N is like RETURN-O, etc, but it takes
the number of values from the top of the stack before
taking the values from there.

The auxop RETURN-LIST takes a list of values and returns
them as if they were individual values. It could be
emulated by spreading the list, pushing the length of
the list, and using RETURN-N, but ‘it tries to be smart
about multiple—value-list returns and excess values.

The auxops RETURN-T and RETURN-NIL return T and NIL.
respectively. We seem to do that a 1lot, so they are
special-cased.

The auxop RETURN-PRED returns T if the indicators are
non-NIL, else it returns NIL. The auxop RETURN-NOT-INDS
is the opposite, returning T if the indicators are NIL
and T otherwise.

11. 10 CATCH AND THROW

Catches and throws are among the most radically redesigned parts
of VM2, relative to VMI. In VM1, catches were open call-blocks
for the function #CATCH, with special ADI to record the restart-
PC and other things, whose first argument was the catch tag.
Throws would scan the list of all open call-blocks to find the

open catches. Multiple-value throws would essentially do a
multiple-value return on all but the first value, then do a
single-value throw with it. In VM2, things are different.

Catch-blocks are entirely divorced from call frames. Throws scan

11-26

Software Design Notes

a list of the open catch-blocks,

Function—-Calling

and multiple-value throws are

handled cleanly. This section will describe the VM2 catch and

throw mechanisms.

11-27

Function-Calling Software Design Notes

i1. 11 CATCH

One of the design goals in VM2 catch and throw was to make
catches cheap and push the expense onto throws, figuring that
many catches are set up, but few throws are taken. Another was
to clearly delimit the scope of each catch (in VM1, catches are
frequently closed by popping the open call-block off the stack.,
Just like discarding any other data). These goals 1led to the
following rules:

1. All catches are opened with the auxop ZOPEN-CATCH or a
variant.

3]

All catches are closed with the auxop %ZCLOSE-CATCH. It
may not be assumed that returning from a function will
close any open catches remaining within its frame, for
example. The only implicit closing of a catch is when
it is thrown through on the way to another catch.

3. Unwind-protects are exactly 1like any other catch,
except that (a) they are closed with the auxop %CLOSE-
CATCH-UNWIND-PROTECT. and (b) the restart-PC of normal
catches points at the matching %CLOSE-CATCH, while the
restart-PC of an unwind-protect points at the first
instruction of the undo-forms.

4. The ZCLOSE-CATCH-UNWIND-PROTECT of an vunwind-protect
will detect if the catch was thrown to, and if so will
continue the throw. The throw does not retain control
throughout the throw; rtather, there are a series of
throws that add up to the complete one, each bounded by
the intervening unwind-protects.

A catch—-block contains six words:

1. Ycatch-block-catch-tag, a Lisp object that is the tag

for this catch. Tags are matched using EQ, so it is
usually a symbol, but 1is occasionally a fixnum or
stack—-list <(condition-handling frequently uses stack-
list tags).

2. %catch~block—restart—-pc, a fixnum that is the relative
PC of the instruction at which execution is to resume
if this catch is thrown to

3. %catch-block-number—of-results, which is either a

fixnum indicating the number of results that will be
accepted by this catch if thrown to, NIL meaning that
it wants all +the values with the count on top, or T

11-28

Software Design Notes Function—-Calling

meaning to collect all the thrown values into a list.
The function of this word is analogous to a combination
of the return-type and number—of-results field in the
call-info word (see the section on Return—-Fields) when
returning from a function. This field does not come
into play unless this catch is the target of a throw.

4. %Ycatch—-block—-special-pdl-level, a locative recording
the level of the special-binding PDL at the time the
catch was opened. This word is necessary to wundo any
special bindings that may have been done inside the
catch, but it is only used if the catch is throun to.

5. %catch-block—-saved—catch—pointer, a locative or NIL
that indicates the previous open catch. A special
microcode register, M-CATCH-POINTER., points to the most
recent open catch, and the catch-blocks form a singly-
linked 1list. I# there are no open catches: M-CATCH-
POINTER 1is NIL. M-CATCH-POINTER is saved 1in each
stack—group.

6. %catch-block—-tag—being—thrown, initially NIL, but
filled with the tag being thrown to when this catch is
involved in a throw. It 1is this word that enables
%CLOSE-CATCH to decide whether to continue the throw.

The first two words, the +tag and the restart—-PC, are pushed
before opening the catch. “OPEN-CATCH pushes a 1 as the number
of results and ZOPEN-CATCH-MV-LIST pushes T, but ZOPEN-CATCH-
MULTIPLE-VALUE requires that its number of results be pushed for
it. The other three words are set up by the open—catch
microcode.

ZCLOSE-CATCH is designed to be fast. It assumes that if there is
no need to continue the throw, the preceding instructions have
left the wvalues in the desired state, and it just splices the

catch block out of the stack, leaving the values on top. It also
assumes that any specials bound within the catch have been
unbound, so it does no unbinding. Its algorithm is:

First check the tag-being—-thrown word. If it is NIL, there has
been no throw. If it is non-NIL, but the catch-tag is not T,
there has been a throw, but this catch is not an unwind-protect,
so the throw does not need to be continued. In these two cases,
simply wupdate M-CATCH-POINTER and «copy everything above the
catch-block down over it, splicing it out. It is thus very fast
to open and close catches if they are not needed.

11-29

Function-Calling Software Design Notes

NOTE

NIL is therefore not allowed as a tag
argument to THROW.

If there was a throw and the catch—tag is T, then this catch is
an unwind-protect, and the throw needs to be continued. I+ the
tag-being-thrown word is T, then the throw was actually an
#UNWIND-STACK (see the section on Unwind-Stack).

NOTE

T is also not allowed as a tag argument to
THROW.

iIf the number—of-results word in the catch-block was NIL, then
the number of thrown values is atop the stack: otherwise, all
values above the catch block are taken to be thrown values. In
any case, the throw is continued by jumping into the throw code.
which is described next.

11. 12 THROW

Throwing is a two—pass process. In the #first pass, the throw
microcode searches the 1list of catch-blocks for one whose tag
matches the throw-tag. In the second pass, the throw microcode
unwinds the stack. cleaning up frames as if it were returning

through them (see the section on Returning), leaving the thrown
values above the target catch-block.

The simple description above leaves out all the complexity of the
operation. For 1instance, the first pass also looks for unwind-
protects, because although it is required that a matching catch
exist, the throw may actually be to an intervening unwind-
nrotect. Also, a catch with a tag of NIL will catch any throw
such a <catch 1is produced by the macro CATCH-ALL. CATCH-ALL
differs from UNWIND-PROTECT in that there are no undo-forms and
the throw 1is not continved. Unlike VM1, CATCH-ALL does not
receive any extra vaulues like the throw-tag; it is simply a catch
that catches everything. ‘

Another area of complexity is hardware PDL buffer cache
management. Returns via D-RETURN (see the section on Returning)
alsoc unwind one or more frames as they return through them.
Adjacent call frames are known to be relatively close together,
and D-RETURN chains are likely to be short, so is makes sense to
refill the PDL-buffer whenever needed in the course of the

11-30

Software Design Notes Function—-Calling

return. Catch-blocks, by contrast, tend to be more widely
separated, so frequent PDL-buffer refills are not usually a good
idea. The alternative is to access the PDL-buffer through the
virtual-memory interface, which is much slower but which does not
involve reading so many words. The compromise that the microcode
actually wuses 1is to work through the PDL-buffer for the frames
that are there, but to use the virtual-memory path for the deeper
frames that are not, refilling only at the end to bring the
target frame into the PDL-buffer.

A third complexity is the handling of values. Once the throw has
unwound to the target frame, it must check the catch-block for
the number of values wanted and the form they are to take. It is
at this point that missing values are augmented with NILs, excess
values are trimmed, and lists are built for the multiple-value-
list case. Values are passed through the return barrier at the
beginning of the second pass, after it is known where they are
going to be <copied to, and it 1is only done once (unlike
returning, which passes them through for each frame).

NOTE

Multiple-value returns, when the return-type
is multiple-value—-list, build the list first
and treat it as a single-value return. While
it might also be a good idea for throws, it
is not done at this time.

Just 1like returning, there are two kinds of throw instructions,
THROW, which throws a single value, and THROW-N, which throws any
number of values, taking the count from the top of the stack.
Both instructions are auxops, and the compiler generates both
from the Lisp THROW special form, choosing the appropriate one
from context. In structure they are very similar, the difference
being that THROW can pick up its single value into M-T, while
THROW-N must leave its values on the stack undisturbed while it
unwinds. THROW can therefore restore all the state of the target
frame and refill the PDL-buffer before putting its value on the
stack, while THROW-N must copy its values, possibly through the
virtual-memory path, to their destination before refilling.

11. 13 UNWIND-STACK

#UNWIND-STACK is a mating of throw and return. It exists for
stack-manipulating programs such as the debugger, and as such is
a subset of the #UNWIND-S5TACK of VMI. In VM1, #UNWIND-STACK was
the general form of THROW: THROW was #UNWIND-STACK with the
count and action arguments NIL. #*UNWIND-STACK takes four

11-31

arguments: tag, value, count, and action. The tag argument is
for partial compatibility with the VMi *UNWIND-STACK; it must be
T. The value argument is the same as the value argument to
THROW:; it may be any Lisp object. The count argument is the
number of call frames to unwind; it must be a fixnum or NIL. The
action argument is called when the unwinding is finished; it must
be a functional object or NIL. Either the count or the action
must be non-NIL; the case of both NIL was equivalent to THROW in
VM1 but is an error in VM2.

NOTE

VM2 #UNWIND-STACK behaves exactly as the VM1
version did when this argument was T; the
functionality that is not implemented in VM2
is the use of other tags.

#UNWIND-STACK will unwind the frames on the stack., doing all the
cleanup it would do if it were throwing through them. It also
cleans up after catches along the way. There are three possible
situations:

If the count is a fixnum, it is the number of frames to
unwind. I# the action is NIL, then the value will be
returned from the last frame unwound.

If the count is NIL, it indicates that all frames in the
stack should be unwound. The action must then be non-
NIL, and will be called with one argument, the value,
after all the frames have been unwound. The action 1is
not permitted to return in this situation. It is often
useful for the action to be a stack—group; the debugger
frequently uses it in this way.

If both the count and the action are non—NIL, then the
action will be called, with the value as its argument.,

after count frames have been unwound. The action may
return, and its values will be returned as if #from the
last frame unwound. This case is rarely used.

#UNWIND-STACK honors unwind—-protects like throws do. It stops at
the unwind-protect catch, leaves the value, the count, and the
action atop the stack, and writes T 1into the tag-being—thrown
word. Since T is not permitted as the tag argument to a throw
CLOSE-CATCH recognizes it as the sign of an #UNWIND-STACK that
needs to be continued, and calls ®*UNWIND-STACK. Since the tag-
being—thrown slot is the top slot of the catch-block. the four
arguments are therefore right on top of the stack.

11-32

o~

