SECTION 10

Garbage Collection

10. 1 INTRODUCTION

This section describes Garbage Collection (GC), the process by
which storage no longer in use can be reclaimed. The discussion
starts out at an abstract 1level, covering the general &C
algorithm, then discussing the notion of Temporal Garbage
Collection (TGC). We then delve further into the specifics of
the microcode and virtual machine implementation that support GC
and TGC. The last part of the section documents some low-level
6C functions and variables.

10.2 BASICS

Most modern symbolic computing systems implement some form of
auvtomatic memory management. This involves allocating memory for
objects from available free memory as they are requested, and
returning their storage to the pool of available memory when the
objects are no longer in wuse. Automatic memory management
removes the burden of explicitly managing storage from the
programmer. New objects are easily manufactured and returned on
demand. Later, these objects can be reclaimed by the garbage
collector when it can be determined the they are no longer being
used by any program.

Here 1is an extremely simple example of how storage is allocated
and then later becomes garbage.

STATEMENT 1. (SETQ my—array (MAKE-ARRAY 100.))
code using MY—-ARRAY ...

STATEMENT 2: (SETQ@ my—array nil)

Statement 1 creates an array object which the programmer holds in
the variable MY-ARRAY. Then at the end of the program the
variable is set to NIL. At this point, as long as the array has
not been stored somewhere else, it becomes garbage and can be
reclaimed.

Garbage Collection Software Design Notes

There are several common garbage collection algorithms., among
them Reference Counting, Mark and Sweep, and Copuying. A good
introduction to garbage <collection in general can be found in
T.J. McEntee’s, "Overview of Garbage Collection in Symbolic
Computing” Texas Instruments Engineering Journal Vel 3, No 1
(January— February) pp. 130-139. The Explorer garbage collector
is an incremental copying collector based on the Baker algorithm
[H. G. Baker, "List Processing in Real Time on a Serial
Computer, " Communications of the ACM Vol 21, No 4 (April 1978)
pp. 280-294. 1.

10.2.1 Garbage Collection Spaces.

Garbage Collection bases its actions on the various space tuype

properties of. the address space. A summary of GC space type
terminology is given in Table 10-1. Before garbage collection

begins, the address space consists of Newspace (allocated virtual
memory holding objects) and Free Space (address space not yet
allocated). The size of Newspace gradually increases as programs
request new objects, and garbage accumulates when the programs
relinquish pointers to these objects.

In the simplest kind of copying garbage <collector, garbage
collection begins at some point by converting some subset of
Newspace into Oldspace. The portion so converted (which may be
all of Newspace) is termed the Collection Space, and the process
of converting it to Oldspace is called f£lipping or starting a
collection. Oldspace then becomes the domain in which garbage
collection takes place; that is, the garbage collector copies all
live objects <(objects determined to be still in use) out of
Dldspace to into a Copyspace. Once this is done, any objects
left in Oldspace are garbage, so all of the address space in

Oldspace can be reclaimed (made back into Free Space). This
three-~part f£lip, collect, reclaim process is termed a collection
cycle.

10-2

=

Software Design Notes . Garbage Collection

Table 10-1 Space Type Terminology

ADDRESS SPACE All of the system’s addressable memory.
FREE SPACE Unused address space (not yet allocated).
ALLOCATED SPACE Used address space (allocated).

NEWSPACE The portion of Allocated Space which can

be garbage collected (excludes Static
Space). Obgjects in Newspace may be
moved by GC. Also space where new
ob jects are created.

STATIC SPACE The portion of Allocated Space which is
NEVER sub ject to garbage collection.
Static Space objects will not be moved
(collected) by GC, but may be
Scavenged during collection cycle.

COLLECTION SPACE A subset of Newspace which is flipped to
Oldspace and collected during a G6C
cycle. This can be all of Newspace or
Just one generation of it

OLDSPACE ~ The space from which 6C is evacuating

‘ live objects. An invisible space.

COPYSPACE The space to which GC is copying live
objects. Alsoc part of Scavenge Space.

SCAVENGE SPACE All the spaces that must be examined by

the scavenger in order to find all
pointers to live objects. These are all
the spaces which might contain
references to Oldspace.

DYNAMIC SPACE All visible spaces containing dynamic,
movable objects (Newspace + Copyspace).

Since the goal of a garbage <collection <cycle 1is to copy
everything useful out of Oldspace and then reclaim the storage:, a
copying collector does not really do garbage collection at all,
but actually live data collection. The net savings gained by
garbage collection 1is then the difference between the original
Oldspace size and the size of the Copyspace where only the in-use
Dldspace objects have been collected. In the worst case, when
all of O0Oldspace contains still-used objects, the size of the
Copyspace will be the same as the original Oldspace.

Because Copyspace consumes portions of the Free Space in
existence at the time of the Newspace—-to-Oldspace flip, this
worst—case assumption means that available Free Space must be at
least the size of Newspace Collection Space in order to guarantee
that the <collection cycle can finish. If there is a lot of
garbage in the Collection Space, then Copyspace will require much
less free memory than the Collection Space Size. However: to be
safe, all the GC space requirement computations make the worst-

10-3

Garbage Collectign Software Design Notes

case assumption.

There are some long—term system data structures that are always
in wuse and would never be made into garbage. Since such objects
would simply be copied and re-copied by the garbage collector.
they are isolated in a space called Static Space. Static Space
is set aside to hold objects intended to be permanent and is
never considered for Collection Space. Its object will not be
collected, although it must still be purged of any Oldspace
references; as with Copyspace, such references must be replace by
references to the object’s new 1location in Copyspace. The
benefit of Static Space 1is that G6C will not expend effort
repeatedly copying its live objects. However this also means
that Static Space objects which do happen to become garbage
cannot be collected <(or at least not until action is taken to
convert Static Space to collectable Newspace).

10. 2.2 Scavenging.

The process of identifying all 1live objects 1in Oldspace and
assuring that they are transported to Copyspace is knouwun as
Scavenging. The Scavenger begins with a set of well-defined
objects which form the “root" of the tree of all live Lisp
objects. This root is copied to Copyspace by the flip process
itself. From the root the scavenger can traces through the tree,
examining every object for Uldspace references. As more Oldspace
objects are found, they are copied to Copyspace and references to
them are replaced with the new Copyspace location. A marker is
left behind in Oldspace to indicate that this object has been
traced - and to redirect other references. Any future references
to the same Oldspace object found will detect the "already-
traced” marker. hence avoiding cycles in the tree. Since the
work of copying the object has already been done, all that 1is
required 1is to update the reference with the redirection to
Copyspace. The object evacuated to Copyspace may now itself
contain more Oldspace references, so it too must be scavenged

Scavenging will continue until the tree has been traced entirely:
that is, until all Copyspace objects have been examined and any
Oldspace references in them eliminated.

10.2.3 Incremental Collection.

The type of collection described so far assumes that the entire
collection takes place in one stop and collect; that is, no new
objects are created while the collection is in progress. While
such an assumption greatly simplifies the internals of the
garbage collector, it is less than useful since collections on a
large virtual address of, say, 50 MB can take an hour or more.
The actual Explorer garbage collector is an incremental
collector. Using such a collector, the «collection process can
occur while other programs are running on the machine. The

10-4

Doftware Design NotTes warbage Collection

incremental collection proceeds gradually, without 1long delays
between operations noticed by running programs.

An incremental collector is more difficult to implement because
care must be taken to ensure that there 1is no unwanted
interaction between the garbage collector and the other programs
running on the system. called mutators, that are creating new
objects and altering old ones while the garbage collector is
active. This is accomplished by enforcing a set of barrier rules
which define where new objects are created, where Oldspace
references c¢an occur and what happens when a mutator makes a
reference to an object in Oldspace. These rules are outlined
below.

i. All new objects created after a £flip occur in Newspace.

2. Oldspace rteferences may only occur in Dldspace itself
and in the as—yet unscavenged portion of Copyspace.

3. No Newspace—-to-Oldspace references are allowed,
although there may be Newspace—to-Copyspace references.

For simplicity’s sake, these barriers are implemented by a
procedure called the Read Barrier; so called because it dictates
an action to be performed whenever an object is read from virtual
memoTy. The Read Barrier states that no Oldspace references may
be seen by a mutator. Any such reference will be trapped. the
object will be copied out +to Copyspace if necessary, and the
reference actually provided to the mutator will be the object in
Copyspace. Since any reference the mutator has is guaranteed not
to be to Oldspace, any new objects created after the flip cannot
have Oldspace objects stored into them. Therefore, Newspace
allocated after a collection cycle begins does not need to be
scavenged.

In such a scheme the mutator ends up doing some of the work of
the scavenger; that is, the copying of an object may take place
because of a mutator’s dynamic reference to it rather than
because of the scavenger’s tracing of the static tree. For the
scavenger, this just means that the first reference it sees to
that object will find it already copied; saving it some work.
But we will see in later discussion that there are important
differences 1in the order that objects are copied by the two
mechanisms, and that the differences can have a significant
impact on system performance.

It turns out to be convenient to tie the rate of incremental
garbage collection to the rate at which new storage 1is being
requested. Thus, a certain amount of collection work
(scavenging) is done for each new storage word allocated. Thus
the rate of garbage collecting is proportional to the rate of
consing in the system. Appropriately. this gives the consing
primitives semantics both of allocating storage and working to

10-5

reclaim it.

An account is kept of how much work the scavenger needs to do.
This balance is increased when new objects are created, and
decreases as the scavenger does its job. Any work accomplished
due to dynamic referencing of objects acts is also applied to as
a credit against the scavenger’s work allotment.

10. 2.4 Generational Garbage Collection.

The amount of work done in a collection cycle is proportional to
the size of the Collection Space and, even more strongly,
proportional to the amount of live data in the Collection Space.
In light of this fact a scheme which concentrates GC efforts on
emall, well-defined Collection Spaces which are the most likely
to contain garbage can greatly increase the efficiency of garbage
collection and reduce the 8C overhead imposed on the mutators.

A Qenerational Garbage Collector defines the Collection Space on
the basis of the observation that a high proportion of newly
created objects become garbage quickly. while older objects tend
to have a much smaller proportion of garbage. This observation
can be explained simply by realizing that memory representing
such things as compiled system routines, editors, and window
managers, rarely become garbage. while dynamic data structures of
the currently operating program tend often to be used briefly
then discarded.

The generational collector partitions the address space into a
number of generations, ranging from very young to very old, each
of which is small when compared to the entire virtual memory
space. New objects are created in the youngest generations,
which is where the generational collector concentrates the
majority of its efforts and where the payback in garbage
collected per unit of work done is likely to be the highest. As
objects survive these <collections, they may be promoted into
higher and higher generations where collections need be less
frequent since the concentration of garbage is lower. Finally.
in the oldest generations there is almost no garbage at all; they
are populated by long-lived objects which have proven their worth
by surviving several collections.

10.2.5 Scavenge Space.

It is important to guarantee that there is no wuseful object
remaining in 0Oldspace when it 1is reclaimed. This Tequires a
proper definition of Scavenge Space, the spaces which must be
sub jected to scavenging in order to find all references to live
Oldspace objects. In other words, when a collection begins. it
must have the proper Toot set for reaching all live data in the
Collection Space.

10-6

The definition of a proper, minimal Scavenge Space is the key to
efficient generational <collection. It would not be worthwhile
simply to isolate memory with a high concentration of garbage if
it were still necessary to trace the entire tree of live Lisp
objects in order to collect that space. Some mechanism must be
defined for remembering and isolating references only to the live
young objects. Then, Just these smaller live—object subtrees
need to be traced.

This task is simplified by the observation that there are three
sorts of references in a Collection Space made up of one
generation:

1. Reference among objects in the collected generation.

2. References from objects in a younger generation to the
generation being collected.

3. References from objects in an older generation to the
generation being collected.

Consider each type of reference. Note that the first set of
intra—-generational references are guaranteed to be taken care of
by the normal scavenging mechanism as long as all references into
the generation are traced. As for the second set, it is possible
with little expense to scavenging all younger generations in
order to find these young-to-old references. There are two
Treasons for this. First, since most collections are of the
youngest generations there will usvally only be a small number of
generations younger than the one being collected (possibly even

none). Secondly, the size of these younger generations is kept
small by collecting them frequently and promoting survivors to
higher generations. The hard part, then, is the third set of

old-to-young references because they are so sparsely scattered
populated over the largest amount of space.

To keep track of these references it is convenient to implement a
Write Barrier which tests all objects written to memory. If the
barrier detects that a younger object is being stored into an
older one, a trap is taken and the reference is recorded in a
generational reference list. When this generation is later
collected, its Scavenge Space consists of this reference list
plus all younger generations plus the Copyspace created during
the collection.

10. 3 EXPLORER TGC IMPLEMENTATION

The discussion so far has provided an outline and motivation for
the type of garbage collection algorithm in the Explorer system,

10-7

Garbage Collection LOrlware uvUesigit Nwowved

but has glossed over all the nitty gritty implementation details.
As anyone versed in the art of garbage collection implementation
can attest, such an explanation seems so simple and elegant on
paper that one wonders if it is an accurate way to portray the
incredibly intricate code which actually embodies it. The rest
of this section attempts to address these low-level details.

10.3.1 Generations.

The Explorer garbage collection implementation new with Release 3
is termed Temporal Garbage Collection (TGC). It is an extension
of the incremental Release 2 garbage collection algorithm which
is very low-cost because of its concentration on memory in the
lower generations. There are six "logical” generations listed in
Table 10-2. In contrast, the Release 2 garbage collector only
defined the equivalent of the Generation 3 and and Static
Generation 3 levels (plus the super—temporary Extra-PDL number
consing generation, described later).

Table 10-2 TGC Generations

YOUNGEST

Extra-PDL
Generation O
Generation 1
Generation 2
Generation 3

Static Generation 3

OLDEST

10. 3.2 Areas and Regions.

All the space-type properties for Explorer virtual memory are
defined on a per-region basis. Regions, which are a basic
storage management unit, are described along with their
attributes in the section on Storage Management. Every object is
in some region that is part of an area. Each region has a space
type property (NEW, OLD, COPY, STATIC. FIXED. EXTRA-PDL) which
roughly corresponds with the abstract garbage collection spaces
described above. FIXED space 1is like STATIC space for most
garbage collection purposes, and the EXTRA-PDL type exists simply
to flag the super—temporary number consing generation.

10.3.2.1 Volatility.

10-8

Each region also has two temporal attributes: a Generation and a
Volatility. The Generation indicates the age of the objects in
the region, with O being the youngest and 3 the oldest.
Volatility specifies the kinds of references allowed by objects
in this region: more specifically, it is the age of the youngest
generation an object in this region can point to directly
(references younger that +this will be stored indirectly). A
summary of the different volatility level meanings 1is given in
Table 10-3. Normal Newspace regions are always created with
volatility equal to generation. This means they can contain
references to other objects in their own generation and to any
clder generation.

Table 10-3 Volatility Level Meanings

Volatility 3 Can point to oldest objects only.

Volatility 2 Can point to generation 2 or 3 objects.

Volatility 1 Can point to generation 1, 2 or 3 objects.

Volatility O Can point to object in any generation
(excluding Extra-PDL).

Object Creation on the Explorer takes place on a per—area basis
Object creation in an area will cause a young Newspace region to
be created (usually generation 0). When generation O is flipped.
these regions become Oldspace. When an object is copied out of
Oldspace to Copyspace, it will always be to a Copyspace region in
the same area. Garbage collection does not change the area in
which an object resides.

10.3. 2.2 Default Cons Generation.

Each area has a default cons generation attribute which specifies
the generation in which objects in this area will first be
created. As they survive <collections they may be promoted to
higher generations (but always in the same area). Nearly every
non—-FIXED area in the shipped configuration has a default cons
generation of 0. Extensive testing has shown that this 1is the
best policy from a performance standpoint. An area’‘s default can
be modified with the “SET-AREA-DEFAULT-CONS-GENERATION primitive,
but this is not recommended.

Because we attempt to keep the size of generation 0 small enough
that collection of it can take place entirely in main memory,

there 1is an additional policy that objects above a certain size

threshold (the value stored in the JYMAX-GENERATION-0-OBJECT-SIZE
counter) will be not be created in generation O. Instead, they
will be consed in the generation specified by MIN(1,default-cons-
generation).

10-9

wal' vay® wUWadT LW valild Aediand .

i0. 3.3 Automatic Collection Mode.

Automatic collection means that a special 6C process will monitor
generation sizes and cause collection cycles to occur
automatically, when certain threshold sizes are reached,
invisibly to the user. The system is shipped with automatic 6C
on (started up by the GC-ON function). The following policies

are followed by the automatic collector.

The generation O flip threshold is computed as a fraction of
installed physical memory in an attempt to limit the size of
generation O to an amount that minimizes the number of pages
needing to be swapped in or out during the collection. The
controlling variable is GC-FRACTION-OF-RAM-FOR-GENERATION-O.

The highest generation that will be collected automatically is
limited to 2 (a value of #GC-MAX-INCREMENTAL-GENERATION# higher
that this will be normalize to 2). This 1is because an
incremental collection of generation 3 would greatly interfere
with interactive response.

The automatic collector will always promote survivors of
generation O into generation 1, and survivors of generation 1
into generation 2 in an attempt to keep the size of the two
youngest generations manageable. Generation 2 survivors,
however, will not be promoted by the automatic collector.

Flip thresholds for generations 1 and 2 are computed using worst-
case 100% survival assumptions and the maximum virtual memory
size of the current configuration (which is roughly the smaller
of 128 MB and the amount of swap space available). Because
generation 2 survivors are not promoted. generation 2 can "fill
up" such that a collection of it cannot be guaranteed to complete

under the worst—case assumptions. In this case, generation 2
will be "shut down" (no longer collected) and the user will be
notified.

A collection of an older generation will not start (even if the
flip threshold is exceeded), unless the last collection was of a
younger generation. This is intended to maximize the free space
available for the older generation <collection and avoid
thrashing.

10.3.4 Batch Collections.

The FULL-GC and GC-IMMEDIATELY functions still exist to perform
batch collections. When invoked, they will turn automatic GC off
(after completing any pending generational collection), then
collect each generation up to a user—specified maximum with the
option to promote or not. While both can be used to perform any
combination of max—gen/promote collection. they are meant to have
different semantics.

10-10

s

Wl VW= - &M wePit T Ve o« wval bays wuvidolL Lion

GC-IMMMEDIATELY by default does not promote and collects
generations O, 1, and 2. 8ince these generations will usually
contain most of the objects created since the system was booted,
this is meant to be roughly "batch collect my working set™.

FULL-GC by default promotes and collects all generations
including 3. It assumes you intend to DISK-SAVE afterwards so it
also cleans out some big data structures in order to try to
reduce band size. It is also meant to be used after doing MAKE-
SYSTEMS in order to clean up the garbage in the environment, and
promote all the (sure-to-be-long-lived) code just loaded into
generation 3 where it won’t be subject to automatic collections.

10. 3.5 Scavenging for TGC.

The scavenger starts out at the beginning of a Copyspace region
or other region in the Scavenge Space and proceeds forward in a
basically linear fashion. Every boxed word of Copyspace
containing a pointer type must be checked for reference to
Oldspace. When such a reference is found, the object is copied
out (if not already done) and words of data type DTP-GC-FORWARD
are left behind in every slot of the structure copied (even
unboxed ones). The pointer field of the GC-FORWARD points to the
corresponding cell in the Copyspace representation. The GC-
FORWARD serves to indirect further references to the new location
in Copyspace: ensuring that after garbage collection, the copied
object will still be shared in the same way the original object
in Oldspace was shared. Finally, the original Oldspace reference
is replaced with the a reference to the new object in Copyspace.

As scavenging progresses in the region, it wupdates a scavenge
pointer (the REGION-GC-POINTER) which delimits the portion of the
space that has been scavenged so far. The storage before the
scavenge pointer cannot refer to Oldspace since it has already
been scavenged. Storage beyond the scavenge pointer has not been
scanned, so may still contain pointers to Oldspace. When the
scavenge pointer catches up with the allocation pointer (the
REGION-FREE-POINTER) in all scavengable regions of all areas.
scavenging is completed. This marks the end of the collection
cycle and Oldspace can be reclaimed.

As has been noted in the GC literature, the scavenger in a normal
copying collector works breadth—first, which 1is the least
desirable from an object placement point of view. In breadth-
first tracing. sibling nodes in a tree are made ad jacent in
Copyspace. But such objects are not very likely to be near to
one another ("related"”) in a dynamic reference chain. A depth-
first or “approximately" depth—-first algorithm 1is preferable
because it tends to copy objects closer to their offspring in the
tree, and this is more likely to indicate that ad jacent objects
are part a dynamic reference sequence. This is important since
object compaction in a virtual memory system can have a

10-11

Garbage Collection Software Design Notes

significant impact on paging performance.

The TGC scavenger is object—oriented <("approximately” depth-
first). Scavenging starts at the beginning of copy space and
scans each word. If a word refers to an object in old space, it
is copied to the end of Copyspace and pushed on an object stack
in the SCAVENGER-STATE area., along with a count of the number of
boxed Qs in the object needing to be scavenged. The pushed
object is now scavenged, which might again cause a copy operation
and other object stack push. This recursive scavenging continues
until either the depth of the stack is reached or an object is
completely scavenged. In the latter case the object is popped
from the stack and scavenging of its predecessor continues. I¢
the stack becomes empty, the scavenge pointer (the REGION-GC-
POINTER) beyond the end of the first object pushed. and the next
linear word of Copyspace 1is scavenged. The object-oriented
scavenging process means that some words after the scavenge
pointer may already have been scavenged, but we will scavenge
them again. There is no extra work done the second time, of
course, ogutside of the memory reference.

While we have found that this algorithm is better than the
undirected breadth—first scavenger, it still leaves a lot to be
desired. This may be because the object tree is so bushy, and
good heuristics for deciding which offspring is most important to
make adjacent are difficult. However, we have found that the
order in which objects are dynamically referenced does tend to
provide a good heuristic for objects placement. In other words,
the mutator tends to be much better at causing objects to be
copied than is even the best scavenger.

As a consequence., whenever a flip takes place instead of starting
up the scavenger right away, we arrange to delay for a time in
order to allow the mutator to move (maybe the most frequently
referenced) objects according to usage pattern. The amount of
the delay 1is expressed 1in terms of a scavenger work bias. In
other words, we give the scavenger a work "credit,” and it will
not actually kick in until enough consing has been done to cancel
this credit. (The two internal counters for cons work and
scavenger work are %ZCOUNT-CONS-WORK and %“COUNT-SCAVENGER-WORK).
The amount of credit is the same for all generations, and is
equal to the worst—-case assumption amount of consing that would
have to be done to drive the entire generation O collection.
Note that because of the very high concentration of garbage in
generation O, the actual amount of consing required to drive the
collection is really quite small, so that if consing were allowed
to drive scavenging the <collection would complete practically
right away.

10. 3.6 Indirection Cells

10-12

—

Software Design Notes Garbage Collection

TGC wuses an indirect reference in the form of a special "super-
invisible"” forwarding pointer in order to implement its
generational reference list for old-to-young references.
Detecting such references is done as part of a Write Barrier.
Every object written to virtual memory is subjected to this Write
Barrier. If an attempt is made to store an object younger than a
region’s volatility, into an object in a region, the Write
Barrier action will be to store the young object in an
Indirection Cell instead. A forwarding marker is then placed in
the location where the object store was intended. This marker is
a word of type DTP-GC-YOUNG-POINTER whose pointer field points to
the indirection cell actually containing the object. Any dynamic
reference to this cell will be avtomatically forwarded to the
indirection «cell, and the object there will be referenced
instead.

Indirection cells are kept in a special INDIRECTION—-CELL-AREA
which contains them and nothing else. Regions in this area have
a special interpretation for their generation and volatility
properties; these attributes are wused to classify the old-to-
young references of the cells in the regions.

For example, consider Figure 10-1. An attempt to store a newly-
created 1list into the value cell of a symbol in generation 3 has
cavsed a GCYP to be stored in the value cell instead. The GCYP
points to an indirection cell which now actually contains the
generation O list object. The indirection cell is created in an
INDIRECTION—-CELL-AREA region with a generation of 3 (the
generation of the older structure containing the GCYP) and with
volatility of O (the generation of the young object).

Gen 3 NEW INDIRECTION-
CELL-AREA
o —————— + Gen 3 Vol O Gen O NEW
15YM | ! -
1GCYP! = >iLIST! SINXTIFIX ¢+ 1
f————————— + + + + +
! ! tFIX ! INILIFIX ¢+ 2 |

Figure 10-1 Indirection Cell Forwarding

Now when generation O is next collected all regions with
volatility O will be part of the Scavenge Space because it is
this in set of spaces where generation O references are confined.
When the indirection cell is scavenged the list storage will be
copied to Copyspace and the list pointer will be updated with the
object‘s new location.

10-13

Garbage Collection Software Design Notes

I# the mutator sets the symbol to a new value before scavenging
reaches the indirection <cell, the new value will overwrite the
indirection cell, not the value cell, even if the new value is a
type which does not point to storage, say a FIXNUM. The symbol
value cell will still point to the indirection cell which will
then contain the FIXNUM. Now when scavenging occurs, no action
is taken on this indirection cell since it contains an immediate
object. This may indicate that the list previously pointed to is
now garbage, if there are no other references to it.

I+ the mutator stores a new list, say one in generation 2, into
the symbol, this same indirection cell may be reused. This 1is
because volatility O means "can point to any object in generation
O or higher"; in other words "can point to anything".

On the other hand, let’s imagine the indirection cell is
volatility 1. This can occur if a large object which has been
created in generation 1 was originally stored in the symbol. If
at this point a new generation O object 1is stored into the
symbol, then a new indirection cell will need to be made because
a volatility 1 location is not allowed +to point to a younger
generation 1 object. Now in order to satisfy the object
indirection rules, a GCYP will be placed in the o0ld volatility 1
indirection cell. This GCYP will forward references to the new
volatility O indirection cell. :

The GCYP in the symbol value <cell will remain there until a
collection of generation 3 takes place in which the object
pointed to by the symbol is no longer in a younger generation
(that 1is, is 1itself now in generation 3 or is an immediate
value).

Currently there is a back pointer stored with every indirection

cell object. making each cell two words long. The back pointer
is simply a FIXNUM containing the address of the GCYP which
created this cell in its pointer field. This back pointer exists

for debugging reasons only and has no other use in the TGC
internals.

10.3.7 Following GCYP Forwarding.

The GCYP is like a single-cell forwarding pointer such as DTP-
ONE-Q-FODRWARD in that it indirects only a single location. It is
followed on both reads and write;. On writes it must be followed
so that the 1location overwritten is the indirection cell.
Without this preread, any storage pointed to by the indirection
cell would be "anchored" by the pointer and could not be garbage
collected.

An indirection «cell <contains all significant fields of the
displaced obgject, even the cdr code. This means that the GCYP-
forwarding even in cases where just the cdr code is being looking

10-14

N

20rtware UesSign NOves wardage wvolleoirion

cdr code.

NOTE

The presence of GCYPs in memory has
significant consequences on the class of
pointer—-manipulating subprimitives that can
be wused to modify fields of arbitrary memory
words (generally the ones beginning with %P-
). TGC has changed the semantics of these
subprimitives. Consult the section on
storage subprimitives for more details.

10.3.8 Promotion.

When young objects are promoted into higher generations after
surviving a collection they may now be in the same generation as
the objects which point to them. If this is the case, when this
generation is collected any GCYPs pointing to them may be snapped

out. The scavenging sequence here is: read the GCYP word;
follow it to the actual object. I# that object points to
Oldspace copy it out to Copyspace. Now attempt to store the
Copyspace reference into the word where the original GCYP was
read from and invoke the Write Barrier. If a wvolatility

violation still exists, the object will be stored in an
appropriate indirection cell and the GCYP’s pointer field will
point to it. I# there is no longer a volatility violation, then
the object can be stored safely into the location. In this case
the indirection cell was in Oldspace and will be reclaimed when
the collection is finished.

In all but @ few specially marked regions. promotion changes both
the generation and the wvolatility of objects. Generation O
volatility O regions are made generation 1 volatility i, and so
forth. Volatility must track generation so that objects can
continue to point freely +to other obgyjects in their ouwn
generation. The exceptions to +this rule are the locked-
volatility regions described later.

Whether a collection will promote or not is dictated by a flag to
the microcode flipper process. When promotion occurs: say in a
generation O collection, all generation 0 Newspace 1is actually
made into generation 1 Oldspace whereas a non-promoting flip
would leave it generation 0. When copyspace is created for this
area it too will be marked as generation 1. Then the process of
reclaiming oldspace simply converts Copyspace generation 1 to
Newspace generation 1 and we’re done.

10-15"

WSl WIS WWae e VWA WIS Wl VSIS MuQaeygll INVVE 2

One problem that can arise 1is fragmentation of generation |
Newspace due to repeated promoting generation O collections.
Even 1if only a few words survive into Copyspace: an entire 16-
page region must be allocated to hold these few words. This
fragmentation is avoided by converting existing, partially—-filled
generation 1 Newspace into Copyspace before the collection. The
scavenge pointer of such a region is initialized to the region’s
free—pointer rather than to 0O so as to avoid unnecessary
scavenging of Newspace.

10.3.9 Locked Volatility O Areas.

There are certain data structures that are so rapidly changing
and are so likely +to «contain younger rteferences that it is
impractical to allow them to contain GCYPs. Runtime stacks
represented by Regular PDL arrays are an example of such a
structure. The overhead of managing GCYP references, especially
in 1light of the special virtual memory reference that is done in
the top, cached portion of PDLs, would be great. Similar
arguments can be made for the stack group structures themselves
and for Special PDL arrays. In order to prevent GCYPs from ever
being created in these structures they are isolated in a few
areas (the PDL-AREA for Regular PDLs and the SG-AND-BIND-PDL-AREA
for stack groups and Special PDLs) and these areas are made
volatility O (can point to anything) and have a special
Volatility Locked attribute which specifies that +the volatility
will never change {(they will always be allowed to point to
anything). The special FIXED system areas in low memory are also
locked volatility O so that GCYPs can never be stored there.
This avoids the overhead of looking for GCYPs when accessing the
frequently—used system structures stored there. Moreover, since

these regions contain system structures which can never become .

garbage, they are generation 3 and are treated as Static Space.
The <cost paid for these locked volatility O regions is that they
must be scavenged for every flip (because by definition they may
contain references to any generation 0O). Since the amount of
virtual memory in these regions generally remains small, this is
an acceptable cost to pay for the processing simplicity it buys.

10.4 GC SUBPRIMITIVES AND VARIABLES

This subsection documents a number of internal garbage collection
primitives and variables. Since they are part of the low-level
GC implementation they are subject to change without notice. All
are in the SYSTEM package.

1i0.4.1 Flipping, Scavenging and Reclaiming Oldspace.

10-16

;\'

ootftware Design Noves warbage Collection

“gc—flip-ready Variable
Set to T by the microcode when all of Oldspace has been
scavenged and can be reclaimed. Set to NIL at flip time
when scavenging is started.

gc-oldspace—exists Variable
T if there is any Oldspace anywhere meaning there is a
collection in progress. Set to NIL when there 1is no
Dldspace.

gc-maybe-set—-flip-ready
Scans all regions looking for Oldspace and sets the wvalues
of %#GC~-FLIP-READY and GC-OLDSPACE-EXISTS appropriately.
Called after warm—boot and by anyone before attempting a
flip.

inhibit-scavenging—-flag Variable
If NIL, the scavenger is enabled and will be invoked after
every consing operation. Set by GC-ON and reset by the
microcode when scavenging is done.

inhibit-idle—-scavenging—f1lag Variable
I# NIL, the scavenger may be called from the scheduler if
the machine is idle. When T, idle scavenging is prohibited.

“scavenger—ws—enable Variable
When a generation collection begins scavenging is
temporarily disabled to allow the mutator to move objects
dynamically. When this variable is true the scavenger is on

held. When NIL, scavenging can occur (when INHIBIT-
SCAVENGING FLAG is also NIL).

gc-flip-now (gc~—type %optional (scav-work—-bias 0))
The Lisp function that initiates a collection cycle. Does
some housekeeping to prepare Copyspace then calls the
microcode flip routine UGC-FLIP-NOW. The generation flipped
is specified by FLIP-TYPE (2 bits generation, low bit
promote).

Call this to flip a generation but leave the scavenger of#f.
See its use in START-TRAINING-SESSION.

%gc—flip (flip-type—fields)
Microcode function that flips Newspace to Oldspace according
to FLIP-TYPE-FIELDS. Bit O of FLIP-TYPE-FIELDS 1is the
promote bit (1 = promote). Next two bits are the generation
to £1lip. Next 21 bits are the scavenger bias amount in
words.

This function is also responsible for setting the scavenge-

enable flag in any regions that will be part of the
collections &Scavenge Space:. and for flushing the subjecting

10-17

Garbage Collection Software Design Notes

the contents of all registers in the machine state to the
Read Barrier in order to get Copyspace bootstrapped. It is
called from GC-FLIP-NOW.

%gc-scavenge (work-units)
Scavenge for WORK-UNITS worth of work. This is called by
the batch collection routines with an arg of a a few
thousand--big enough so that scavenging will complete as
quickly as possible but will come up for air occasionally in
case the user wants to try and do some work while it is
going on.

When automatic GC is on scavenging occurs as a side—effect
of consing.

gc-reclaim—oldspace

Lisp function that reclaims the address space of any
existing Oldspace. Does nothing if there is no Oldspace.
Otherwise batch scavenges wuntil %GC-FLIP-READY is true
(meaning scavenging done and OK to reclaim the Oldspace).
Then for all Oldspace regions of all areas, deallocates any
swap space associated with the address space. unlinks the
Oldspace regions from their area region lists, and returns
them to the free region pool by calling microcoded ZGC-FREE-
REGION.

%gc—free-region (region)
Microcoded function that returns REGION to the free region
pool and flushes any hardware maps still set up by its
virtual pages. Used by GC-RECLAIM-OLDSPACE on 0Oldspace
regions after scavenging is complete.

10.4.2 GC Predicates.

gc—in-progress—p
True if we’re in the middle of a collection (Oldspace exists

and can’t yet be reclaimed).

gc—active-p’
True if the automatic flipper process is active; else NIL.

‘current-collection-type
Returns generation and promote flag for current collection
if avtomatic GC is active; else NIL.

10.4.3 Starting and Stopping Automatic GC.

arrest—-gc reason

unarrest—-gc reason

10-18

W VWS T WE =24yt TR S et W T ease=msTmamtr

Arrest (or unarrest) the 6G6C +flipper process for Teasons
REASON.

gc-off—-temporarily

gc—off-temporarily—back-on
Use to turn automatic GC off temporarily then back on as.,
for example, might be required during a patch.

10.4.4 TGC Control.

Yset—area—defauvlt-cons—generation area generation

Primitive for changing the default generation in which new
objects will be created in this area.

disable-tgc
Disables TGC by setting the default cons generation of all
areas to 3 so there is no more young consing. Then does a

full promoting <collection to get rid of any indirection
cells. Not recommended. Can be undone by ENABLE-TGC.

10. 4.5 Number Consing.

number-cons—area Variable
The area number of the area where BIGNUMS, ratios, full-size
floats and complex numbers are are consed. Normally this
variable contains the area number of the EXTRA-PDL-AREA.
This enables number consing. the low—-overhead garbage
collection of extended numbers. To disable number consing.
set this variable to the number of another area.

number—gc—-on (%optional on—-p t)
Used to turn number consing on or oféf. Actually sets the
variable NUMBER-CONS—-AREA to the EXTRA-PDL area for true ON-
P, and to the BACKGROUND-CONS—AREA for ON-P of NIL.

10.4. 6 Miscellaneous.

“gc—generation—-number Variable

A FIXNUM which is incremented whenever the garbage collector
flips, converting one or more regions from Newspace to
Oldspace. If this number has changed, the address of an
object may have changed. Comparing this number with a hash
table’s internal GC generation number is used to cause EQ
hash tables to rtehash after a GC. The value cell is
actually forwarded to a slot in the System Communication
Area so that the changes to its value can live across a
DISK-SAVE.

10-19

Garbage Collection Software Design Notes

Zregion—-cons—alarm Variable
Counter incremented whenever a new region is allocated.

“page-cons—alarm Variable
Counter incremented whenever a fresh page is allocated.

%gc-cons—work (ngqs)
Informs the GC microcode that nqs Gs have been allocated.

There is no need to do this if storage is allocated via the
normal microcoded consing routines.

Zgc-scav-reset (region)
Tells the scavenger to forget any work done so far in REGION
and remove REGION for the cons cache. Returns T if the
scavenger was actually looking at region; otherwise NIL.

10-20

