LOT Lwal'e Uesldigll nNoLves SLorage lNahnagement

SECTION 9

Storage Management

?.1 INTRODUCTION

This section discusses Explorer storage management in Areas and
Regions. Garbage Collection (GC) and its special spaces are
covered in the section on Barbage Collection.

Storage allocation for Lisp objects is implemented on top of a
large wuniform address space provided by the Virtual Memory
System. The collection of all Lisp objects is known as the Lisp
Object Space. Storage Allocation and Garbage Collection manage
the mapping of Lisp Object Space to the virtual address space.
Both storage allocation and garbage collection are logically
above the virtual memory system. The virtual memory system does
not understand and therefore cannot assist in a meaningful way in
the allocation of address space to Lisp objects.

o

9.1.1 Areas and Regions.

The storage allocation system manages the address space by
breaking it down into smaller segments called regions. A Tregion
is the smallest quantum of address space managed by the address
space management system. Regions in turn belong to areas

Areas are created by explicit commands (see MAKE-AREA). Area
creation merely defines the abstract area entity. whose regions
are intended to contain objects related in some sense (such as
all local obgyects wused by a process). One initial region is
created when the area is first made.

9.1.2 Address Space Allocation and Use. Virtual address space
is allocated to regions when they are created. The allocation a
region is defined by the rtegion’s origin (starting virtual
address) and its length. Actual opccupation (use) of virtual
address space by objects takes place in regions as storage
requests are made by the various storage allocation primitives.
The general term consing is used to refer to any such allocation
of storage, whether to actual cons cells or to other objects.

otorage Management wUdT bWail' € Jeadygll IVVYEa

Storage is assigned to objects in a linear fashion starting at
the origin address of a region. The subset of region locations
occupied by objects is defined by the region’s free pointer,
which is the next offset at which an object can be given storage.
All locations before this pointer have been used.

2.2 AREAS

The logical address space is divided into areas. An area defines
a set of attributes on the virtual address space that it
contains. While an area doesn’t really have any virtual address
space assigned directly to it, it does contain one or more
regions which do. An area is identified by its area number, an
integer between O and 255. The area number is used as an index
into the various area descriptor tables described in Table 9-1 to
obtain the appropriate characteristic of the area.

Table 9-1 Area Attributes

AREA—-NAME A symbol representing the name of
, the area.

AREA-REGION-LIST The region number of the first region
in this area.

AREA-REGION-BITS A template for the REGION-BITS word

. for a region allocated in this area.

AREA-REGION-SIZE The default size of this area’s
oldest regions.

AREA-MAXIMUM-SIZE The maximum size this area is allowed
to occupy or #MOST-POSITIVE-FIXNUM:¢
if unlimited.

A further series of attributes are defined by the AREA-REGION-
BITS word. When a new Ttegion is created it inherits the
attributes of the area to which it belongs by using the AREA-
REGION-BITS word as a template. These attributes will be
described in detail in the paragraph on regions.

Logically, the area descriptor table is a table of S5-word entries
as shown above. In reality, the table exists as five separate
tables inuexed by the area number, each table corresponding to
one of the five words. This makes it easy for the microcode to
index into the table and makes the code fairly insensitive to
changes in the entry size.

Areas can be cfeated by user commands. The area in which general

consing occurs can also be controlled from Lisp (see the Storage
Management chapter of the Explorer Lisp Reference manual). A

9-2

Y

ey ¢ VW " MdMauawe'"" T7TF TS e

program may use this feature to allocate related items in a
contiguous portion of the virtual address space. This has the
effect of increasing "locality of reference” on these data items,
which can improve virtual memory paging performance.

2.3 REGIONS

A region is a block of contiguous virtual address space which is
some multiple of the Address Space Quantum Size of 32 pages.
When all the address space assigned to a region has been used by
objects, new regions are automatically created as they arve
needed. The amount of address space allocated to an area’s
regions is generally unlimited, unless a particular area maximum
size quantity was specified when the area was created.

Each region is identified by a number from O to 2047. Like an
area number, this number is used as an index into any of the

region descriptor tables in order to look up information about
the region. The region characteristics found in these tables are
summarized in Table 9-2.

Table 9-2 Region Characteristics

REGION-ORIGIN Starting virtual address of
the region.
REGION-LENGTH The total amount of virtual

address space assigned to this
Tegion in words.
REGION-FREE-POINTER Offset into this region of the

next free word that can be

allocated.

REGION-GC—-POINTER Offset into this region of the
next object which needs to be
scavenged.

REGION-BITS Defines various attributes of

this region.
REGION-LIST-THREAD Region number of the next region
in this area’s list of regions.

The address space allocated to this region are defined by 1its
origin and its length characteristics. A region’s allocation is
only available for use by objects specifically created in this
region’s area; that is the address space cannot be used by just
any storage request in general. The portion of a region’s
allocation actually wused by objects occurs before the free
pointer; the virtual address of the next free can be calculated
by adding the region free pointer to the origin address.

W ' NS TN T T .

All the regions in an area are linked together in a list. The
list is anchored in the AREA-REGION-LIST entry for the ares
number. The next region in the list is found in the REGIDN-LIST-
THREAD entry indexed by the first region; the third region is in
the REGION-LIST-THREAD of the second entry; and so forth until a
region number which is a negative number is encountered.

The #free regions are also linked into a list. This is needed
since when the garbage collector "flips"” it frees a set of
regions. Storage allocation needs to be able to find a free
region easily.

2.3.1 Region Bits.
The REGION-BITS word defines a number of important attributes of

the region. The fields within the region bits word are shown in
Figure 9-1 and are discussed here.

31 29 25 24 20 1B 16 14 i2 987 5432 0
+—— + + s +—+ D s S 2 +
ICC!DTP-FIX! Status IRepi0! GEN U} Type ISIVIVOICIR! Swap |
CcC: CDR Code
Res: Reserved, unused
Status: Access and status bits to be used in the
hardware virtual memory map
Rep: Representation type
0 = list
1 = structure
2,3 unused
0: Oldspace meta bit.
0O = old space or free
1 = new space, static space or fixed
GEN: Region generation
U: Region usage (for future expansion)
Type: Space type (see space type code table)
S: Scavenger Enable. Value: 1 = Scavenger can touch
this area.
V: Region zero volatility lock
Vo: Region volatility
C: Cache Inhibit (Explorer II only)
R: Reserved, unused
Swap: Number of pag:s the Virtual Memory System should

try to swap at a time {(Explorer II only)

Figure 9-1 Region Bits Area Entry Description

——

wW T VWEI & e 24yil INWEWE S Wt W™ "W miTiw LW

A regions can store one of two types of data: list objects or
structure objects. A structure object is any object other than a
list. This is termed a region’s representation tuype

The Oldspace meta bit is a bit that is set to zero in the first-
level hardware maps for this region when the region is flipped to
Oldspace. The map bit can then be used to efficiently implement
the Garbage Collector’s Oldspace Read Barrier.

A region’s generation, volatility, and zero volatility lock
properties are temporal attributes used to support the Temporal
Garbage Collection algorithm. These are described in the section
on Garbage Collection.

The scavenge enable bit is set when this region is part of the
Scavenge Space defined by the garbage collector for a collection.

The cache—-inhibit bit and the swapin quantum field are wused in
the Explorer II only. The cache-inhibit means that the virtual
memoTry cache should be disabled for all pages in this region.
The swapin quantum is the log (base 2) of the number of pages to
try to swap in simultaneously on virtual memory reads in this
region. A value of 3, for example, means try to swap in up to 8
(2%##3) pages.

The space type attribute defines the storage allocation scheme
that is used. The encoding of this field is shown in Table 9-3.

Table 9-3 Space Type Codes

Code Region Type
0 Free
1 Oldspace
2 Newspace
3-8 Unused
9 Static
10 Fixed (static, not
growable, no consing)
i1 Extra PDL
12 Copyspace
i3 Reserved for future use
14-15 Unused

9.4 STANDARD AREAS

When a machine comes up after a cold boot there are 25 FIXED
areas reserved for use by the system itself. The first 11 areas
are permanently wired down (not allowed to be swapped out by the
virtual memory system) because they are either referenced heavily
by the microcode or are referenced at or below the level of the
virtual memory system. The system parameters file (LROY-QCOM)
specifies these areas and their sizes. As described above, an
area is indentified by a unique area number. The assignment of
these area numbers for the standard areas is made by the LROY-
QCOM file.

The fixed areas each contain a single region. They are special
areas in that their regions may be smaller than the minimum
region quantum size of 32 pages. This requires that they be
specially handled by the storage allocation mapping system (see
the discussion of the Address Space Map Area below).

The standard areas are as follows:

Resident Symbol Area (wired) -~ Contains T and NIL
symbols. This area’s single region currently always
starts at virtual address 0.

OSystem Communication Area (wired) - This area contains
various values wused by I/0 routines and systems
utilities. See discussion of SCA below.

Scratch Pad 1Init Area (wired, tead only) — Micro code
variables are loaded into this area at startup.

Micro Code Link Area (wired, read only) — Contains the
microcode entry points for the miscellaneous operations.

Region Origin Area (wired) - Contains the starting
address for each region, indexed by region number.

Region Length Area (wired) - Contains the length of each
region, indexed by region number.

Region Bits Area (wired) - Contains the region bits
information for each region, indexed by region number.

Region Free Pointer Area (wired) - Contains the region
free pointer for each region, indexed by Tegion number.

Device Descriptor Area (wired) - Contains device
descriptors for the 1/0 system.

ey § Wihww ' =

Disk Page Map Area (wired) - Contains the Disk Page Map
Table for the Virtual Memory System

Address Space Map Area (wired) — Contains the Address
Space Map. The Address Space Map is a table indexed by
the virtual address quantum and indicates the region
number of the virtual address. If the region number in
the address space map is zero, then either the virtual
address has not been allocated to a region or the
virtuval address belongs to a fixed area. When a zero is
found in the Address Space Map the +fixed areas are
searched to determine which area contains the virtual
address. The region number is then determined from the
area number, since for fixed areas the region number and
area number are the same.

Region GC Pointer Area (fixed) - Contains the GC pointer
information for each region, indexed by region number.

Region List Thread Area (fixed) - Contains the list
thread for each region. indexed by region number.

Area Name Area (fixed) — Contains the name of each area.
indexed by area number.

Area Region List Area (fixed) - Contains the first
region number in each area. indexed by area number.

Area Region Bits Area (fixed) - Contains the Region Bits
word for each area: indexed by area number.

Area Region Size Area (fixed) - Contains the default
region size for each area, indexed by area number.

Area Maximum Size (fixed) - Contains the maximum size
for each area, indexed by area number.

Support Entry Vector (fixed, read only) - Contains Lisp
functions which are callable by microcode.

Extra PDL Area (fixed) — The Extra PDL Area, or number
consing area, is wused to reduce the garbage generated
when evaluating arithmetic expressions. All bignums and
floating point numbers are first consed in the Extra PDL
Area. Pointers into the Extra PDL Area are only allowed
"in the machine” (see the chapter on garbage <collection
for a description of the parts of the processor that are
"in the machine®). Before a pointer is written into
main memory., a check is made to see if the pointer
points into +the Extra PDL Area. If# the pointer being
written points into the Extra PDL Area, then the object
is copied out of the Extra PDL Area into the default
consing area and the pointer is modified to reflect the

9-7

- w2 TTWEW - b - Bt - i

Wl GYS 1IQITWyWINRITV Bt —

number ‘s new address.

When the Extra PDL Area is full, all of the pointers in the
machine are checked to see if they point into the Extra PDL
Area. If a pointer into the Extra PDL Area is found, then
the object is copied out of the Extra PDL Area into the
default consing area and the pointer is replaced by a
pointer to the copy. When there are no more pointers in the
machine that point into the Extra PDL Area, then the Extra
PDL Area contains only garbage. The address space is then
reclaimed by setting the free pointer for each region in the
Extra PDL Area to zero (currently there is exactly one
region in the Extra PDL Area).

Microcode Entry Area (fixed) — Contains indices into the
Microcode Link Area for each microcoded function (see
discussion of DTP-U~-ENTRY in chapter on data types).

Microcode Entry Debug Info Area (fixed) - Micro entry
address or locative indirect micro-code-symbol-area.

Scavenger State Area (fixed) - This single region area
contains the stack used by garbage collection depth-
first scavenging.

Linear PDL Area (fixed) — The Linear PDL Area contains
the Linear PDL (Push Down List, or stack) for the
initial process. The Linear PDL (usually just called
PDL) is the rtuntime stack for the process. The
currently executing process will have the top part of
its PDL cached in the processor’s PDL Buffer.

Any memory reference to this area results in a page fault so
that the virtual memory system can check if the target of
the memory reference is really in the PDL Buffer.

Linear Bind PDL Area (fixed) - contains the Special PDL
for the initial process.

Working Storage Area - The default cons area; most
objects created by users are created in this area.

Permanent OStorage Area — Permanent data structures are
placed here.

_Property List Area — Contains the property lists for
symbols.

Print Name String Area - Contains the print names for
symbols.

Control Tables Area

9-8

.

’

et

=Wl WGl © WE24ylil INYVVES wbUiayge lHaliagemienti

Non—-Resident Symbol Area — Contains most of the symbols
in the kernel.

Macro Compiled Program Area (read only) - Contains all
compiled functions.

In addition, any constant objects, such as lists, are also
loaded into this area. This causes naive users to get
mysterious error messages about trying to write in a read-
only area when they try to do destructive operations (such
as RPLACA) on constant objects in compiled functions.

PDL Area - contains the linear PDL. except for the one
used by the initial process which is in wired memory.

8SC And Bind PDL Area — The SG and Bind PDL Area contains
the stack groups and the Special, or Binding., PDL for
each process. The Special PDL contains the variable
binding information for a process.

Indirection Cell Area — This area is always pointed to
by DTP-GC-YOUNG-POINTER’s. It is used to keep track of
pointers from older to younger generations.

FASL Table Area - The FASL Table is placed here at load
time.

FASL Temp Area - Temporary structures created by the
Loader are placed here.

Debug Info Area - Contains debug info structures and
fields.

9.5 GSYSTEM COMMUNICATION AREA

The Systems Communication Area contains miscellaneous words that
are needed for basic operation and do not rely on the rest of the
machine operating. This information is shared by the microcode
and Lisp. The file SYS:UCODE; LROY-QCOM contains the definitions
of items in this area. The Systems Communication Area is wired
and at the fixed address of 1000 (octal).

A map of systems communications areas is shown in Figure 9-2.

wlLiraye lNaliagsilisityv Wl VWEI & VB Rsnit IRWVYR =

Octal
Addresses
1000-10446 : Miscellaneous words
1047-15%77 : Not used
1600~ : swap—in-rqb-origin

Figure 9-2 Map of Systems Communications Area

The miscellaneous words (1000 - 104646) are:

1. Area Origin Pointer - Virtual address of the Area
Drigin Area, which lists the starting virtual address
of all fixed areas.

2. Valid Size - Number of words used in a saved band.

3. Object Array Pointer - Unused Unused

4. Ether Free List — Ethernet interrupt-handler variable.

5. Ether Transmit List - Ethernet interrupt-handler
variable.

6. Ether Receive List - Ethernet interrupt-handler
variable.

7. Band Format - Encodes format number in a saved band:
2000 -2 new compressed format, otherwise old expanded
format.

8. GC Generation Number - Reserved for value of YGC-
GENERATION-NUMBER

?. Device Interrupt Table - Points to the Device Interrupt
Table.

10. Temporary — Microcode bashes this at extra-pdl-purge.

11. Free Area Number List - Threaded through area-region-
list, end=0.

12. Free Region Number List - Threaded through region-list-
thread, end=0.

13. Memory Size — Number of words of main memory.

14. Wired Size - Words of low memory wired down; not all of
these words are wired. this 1is really the virtual

9-10

20rtware esign NOLeS

15.
16.

17.

29.
30.
31.

32.

33.

address of the start of normal pageable memory.
Chaos Free List — Chaosnet interrupt—-handler variable.

Chaos Transmit List - Chaosnet interrupt-handler
variable.

Chaos Receive List - Chaosnet interrupt-handler
variable.

Debugger Requests

Debugger Keep Alive

Debugger Data 1

Debugger Data 2

Ma jor Version - Major version number of SYSTEM.

Desired Microcode Version - Microcode version this
world expects. Note: this word may be stored with its
data type field starting at bit 24 even though pointer

fields are now 25 bits.

Highest Virtual Address — (Note: Should have this much
room in the paging partition)

Pointer Width - 25

Descriptor Space Free Pointer - Current allocation
pointer in the Device-Descriptor-Area.

Page Device Table - Unused

System Nupi Descriptor - Pointer to descriptor for
system nupi

Processor Slot - Ucode stores A-SLOT-IM-IN here.
Overtemp Event — SIB will post overtemp events here.

Fiber Optic Warning Event - Microcode posts fiber optic
warning event her.

Nupi Overtemp Event - NUPI Special event: microcode
will post overheat special event here with formatter
number embedded in bits <3:5> and non-zero value in
bits <2:0>.

Physical Memory Map - Pointer to a memory table of
memoTy board addresses in A-Memory.

9-11

LQLtoTrage Nalilagementy

34.

35.

36.

37.

38.

39.

Keybd Error Event - MKeybd error condition; log of
possible flaky keyboards.

Disk Retry Event - Disk retry condition; log of
successful retries after disk errors.

Unused SIB Event — Place this address in all the unused
SIB event locations)

Parity Error Event - NuBus parity error: high 8 bits
(0-7) with bit 8 on.

Parity Error Event 2 — NuBus parity error; part 2 - low
24 bits.

Syslog Wrap Event - System log wrap around event.

9-12

