Wil ViRl - da wegtt TN Ve o Rfrays

SECTION 8

Arrays

8.1 ARRAYS

An array consists of a group of elements, each of which contains
a data item. The individual elements are selected by numerical
subscripts. The rank of an array is the number of subscripts
used to refer to the elements of the array. The rank may be any
integer from zero to seven, inclusive.

The lowest value for any subscript is zero; the highest value is
a property of the array. Each dimension has a size, which is the
lowest number which is too great to be used as. a subscript. For
example, for a one-dimensional array of five elements, the size
of the one and only dimension is five. and the acceptable values
of the subscript are the integers zero through four.

Any array may have an array leader. An array leader is like a
one—dimensional ART-Q array which is prepended to the main array.
Hence an array which has a leader acts like two arrays joined
together except that the indexing scheme is different for array
leaders. The array leader words can be stored into and examined
by special accessors, different from those used for the main
array. The leader is always fully boxed; leader words can always
hold any kind of Lisp object, regardless of the type or rank of
the main part of the array.

Many high-level Explorer data types are implemented using arrays.
These include hash tables, flavor data structures, and other
structures created by DEFSTRUCT.

An array object is represented as a word of DTP-ARRAY. The
pointer field point to an array header word of data type DTP-
ARRAY-HEADER. The array may also indirectly point to its ARRAY-
HEADER through an intermediate forwarding structure. An array
object pointing to a a DTP-HEADER-FORWARD indicates that the
array has been structure-forwarded. The HEADER-FORWARD pointer
field will then point to an ARRAY-HEADER or to another HEADER-
FORWARD. The structure forwarding process, which occurs when an
array needs to be grown larger than its original size, is
described in the Internal Storage Formats section.

The format of an ARRAY-HEADER is shown in Figure 8-1. These
fields are discussed in subsequent subsections.

Fmrays Wl § VWSS & e as'? TTW VR

31 29 25 23 19 18 17 16 15 14 12 11 10 9 0

ol o - - b e L = .
1
1

iCCIARY-HDR! %A@Y-TYP% P! LI Di Si DIMS ILLINS INDEX

T } 1 1

INDEX <0: 9> Index length (if less than 1024)

1
'
e
+

NS <10> = Named Structure Flag
LL <1t = Long Length Flag
DIMS <12:14> = Number of Dimensions
S <15> = GSimple Bit

D <16 = Displaced Bit

L <17> = Has Leader Bit

P <18> = Physical Bit

ARY-TYP <£19: 23> Artay Type

Figure B-1 Array Header Word

8.1.1 Array Type.

The array type field indicates the type of the array. The array
type determines the type of data that may be stored in the array
and how this how this data is accessed.

There are many types of arrays. Some types of arrays can hold
Lisp objects. These are called Q@ arrays. In a Q Array each
memory word contains a Lisp object; hence all memory words in a @
array are boxed. Most of the Q@ arrays allow their cells to hold
arbitrary Lisp objects, although some numeric arrays limit
element contents to various numeric types.

Other types of arrays can only contain integers stored as raw bit
patterns and often packed several to a 32-bit memory word. These
are the bit arrays, whose data portions are unboxed. Some
numeric arrays are also unboxed. Bit array elements (those which
are smaller than 32 bits) are stored right-to-left within each
word; the first element of an ART—-4B ARRAY., for example, would be
stored right—justified, beginning at bit O of the 32-bit word.

The array types are known by a set of symbols whose names begin
with “"ART-" (for ARray Type). They are summarized in Table 8-1
and are also discussed in the Explorver Lisp Reference manual.
The symbol ARRAY-TYPES contains a list of all array types.

Table 8-1 Array Types

Code Type Boxed? Bits/Element

0 ART-ERROR N/A N/A

i ART-1B No ' 1

2 ART-2B ' No 2

3 ART-4B No 4

4 ART-8B No 8

S5 ART—-146B No 16

6 ART-32B Yes 32

7 ART-Q Yes 32

8 ART-Q-LIST Yes 32

9 ART-STRING No 8
10 ART-STACK-GROUP-HEAD Yes 32
11 ART-SPECIAL-PDL Yes 32
12 ART-HALF-FIX No 16
13 ART-REG-PDL Yes 32
14 ART-DOUBLE-FLOAT No 64 %
15 ART-SINGLE-FLOAT No 3=
16 ART-FAT-STRING No 16
17 ART-COMPLEX-DOUBLE~-FLOAT No 128 #
18 ART-COMPLEX No 64 =
19 ART-COMPLEX-SINGLE~FLOAT No &4 *
20 ART-FIX Yes 32

These types require 2 or 4 words per element.

8.1.2 Array Leaders.

The array may optionally have an array leader which consists of a
number of words BEFORE the array header. I# the Has Leader Bit
is set in the array header word, there is a leader present.

I# there 1is a leader then the word immediately before the array
header is a FIXNUM holding the number of array leader elements.
Before that are the array leader elements, which may have any
data type since any object can be stored in them. Finally,
preceding the leader elements is a word of data type DTP-HEADER
and header type ZHEADER-TYPE-ARRAY-LEADER. The rtest of the
leader header word contains the +total number of words in the
leader (including the leader header and number—of-leader—elements
words). The presence of the leader header 1is necessary for
routines such as the garbage collecter which scan through memory
in the forward direction. Note that leader elements are indexed
backwards from the array header. The storage layout of an array
with leader is shown in Figure 8-2.

DTP Hdr Type Hdr Rest

+— + + +
! HDR iAry Leader! Nbr Leader Qs | leader header
—— + +
: : i leader—-n
—— + +
+—- + -+
! 3 ! leader-1
——— + +
! i { leader-0
+- + +
i FIX 3 n ! leader-length
+- + +
{ARY-HDR | } array header
—— + +
array option word(s)
F—— +
H i first data word
e +

rest of array data
words

Figure 8-2 Array with Leader

8.1.3 Simple Bit.

The Simple Bit indicates that this is a simple array which can be
accessed more efficiently. Simple arrays are one dimensional
arrays which may or may not have leaders. They cannot be
displaced, physical or long length.

Note that here the term simple is used only to distinguish a type
of access that may be done by the virtual machine. It does not
have same meaning as the Common Lisp data type SIMPLE-ARRAY.

8.1.4 Named Structure Flag.

The Named Structure FLAG is 1 to indicate that this array is an
instance of a Named-Structure (probably defined with DEFSTRUCT
with the :NAMED-STRUCTURE option). The structure name is found
in array leader element 1 if the Has Leader Bit is set; otherwise
it is in array element O.

Q0ritware vesign NOLTeS Arrays

Named structures may be viewed as implementing & sort of wuser
defined data typing facility. Certain system primitives, if
handed a named structure, will obtain the name and obtain #from
that a function to apply., to perform the primitive.

8.1.5 Index Length Field.

The index length of an array is its number of data elements minus
one. In a one dimensional array, it is the maximum value the
index may take. In a multidimensional array., it is the product
of the sizes of each of the dimensions.

If the index 1length of an array is larger than will fit in the
index length field in the header., the Long Length Flag is set and
the index length is stored in the next memory word.

8.1.6 Number of Dimensions Field.

The number of dimensions {(rank) of the array is stored in the
Number of Dimensions field. This can be a value from O to 7
inclusive. Zero-dimension arrays are defined to have exactly one
element. Therefore, all 2ero dimension arrays will have a zero,
but will have one element.

Elements are stored in multidimensional arrays in row-major
order. An array cannot change its number of dimensions when it
is grown. Each dimension after one will cause a dimension index
word to be allocated.

8.1.7 Displaced Bit.

A displaced array is an array that has all its data elements in a
separate, non—-contiguous area of memory. A displaced array may
be displaced to another array or to an arbitrary address
(specified a LOCATIVE or a FIXNUM). Thus, a displaced array can
he used to point at the beginning of a REGION. This is done, for
example by the #’REGION-BITS array and others like it which
Tepresent the special areas/regions in low virtual memory. They
are ART-Q-LIST arrays displaced to the address which is the
origin of the region they represent.

Arrays displaced to a virtual or physical address are called
displaced—-to—address arrays. In contrast, if the array is
displaced to another array, it is known as an indirect array, and
the array it is displaced-to is called the indirected—to array or
Just an indirected array. The indirected-to array has an index
length of its own. Then the index length of the indirect array
appears to be MIN(x,y) where x is the index 1length of the
indirected—-to array and y is the total number of elements in the
indirect array. Computing MIN prevents referencing beyond the

8-5

Ll R D £ W W R MR Ee2"" TTW ¥W™e

actual end of the indirected-to array.

A displaced index offset is used as to skip over a number of data

slots in the indirected—to array or in the displaced—to—-address
area before element access begins. This is only tricky with an

indirect array displaced to an indirected-to array. In this
case, whenever the indirected-to array is referenced, it is as if
that array were being referenced with an index N higher. And

this index offset N 1is expressed in terms of the element size
specified in the indirect array (not in elements of the
indirected-to array). In other words, the storage of the
indirected-to array is treated as if it had the same element size
as the indirect array; even if the two element sizes are in fact
different. Proper data alignment becomes an important
consideration when using displaced index offsets.

The displaced index offset is always considered to be one
dimensional; it 1is added after all the dimensions have been
multiplied out. The resulting index 1is checked against the
computed index length of the indirected-to array, if present.

The Displaced Bit is set in all displaced arrays. Such an array
will always allocate one array option word to describe the
storage displaced to, and may also allocate a displaced index
offset word.

8.1.8 Physical Bit.

If this is a physical array, then both the Physical Bit and the
Displaced Bit are set. Physical arrays are displaced arrays
which are displaced to a NuBus physical address. Physical arrays
may only be made from the bit-array types.

A physical array will always allocate one array option word to
describe the physical address displaced to and may also allocate
a displaced index offset word.

8.1.9 Option Words.

Between the ARRAY-HEADER word and the start of the array data
elements there may be a number of array option words. If present
they will occur in the following order. Each option word is
discussed separately.

Y

20rTware vesign NOLeS Arrays

Non-Displaced Arrays:
o Long Length word
o Dimension word(s)

Displaced Arrays:
o Dimension word(s)
o Displaced-To word
o Index length word
o Displaced Index Offset word

8.1.9.1 Long Length Word.

I# the total number of array elements is too big for the header
index field (1024 elements or larger) the index length is stored
in a long length word as a FIXNUM (limiting the maximum array
size 2##24 - 1 elements). In non-displaced arrays, the long
length word always follows immediately after the header word and
before any dimension words.

8.1.9.2 Dimension Words.

I+ the array has more than one dimension, then there is a block
of <number of dims minus one> words immediately after any long
length word. Each dimension word holds the size of one
dimension. The first dimension word contains the size of the
most rapidly varying subscript (that of the last dimension in the
dimension 1list); the second dimension word contains the size of
the second most rapidly wvarying subscript {that of the
penultimate dimension in the dimension list); and so forth until
n-1 dimension words. The size of the 1last dimension can be
computed ¢rom the N—1 dimension sizes along with the total index
length in the index length field or the long length word.

B.1.9.3 Displaced Array Option Words.

In a multidimensional displaced array, the N-1 dimension words
always come first, immediately after the array header. What
follows is another group of 2 or 3 option words consisting of a

displaced—to word, an index length word, and possibly a
displaced—index—offset word. The displaced-to word is an array,

locative or integer for regular displaced arrays. It and any
further option words following it are considered boxed. On
physical arrays, however, the displaced-to word 1is a 32-bit
address; hence it and any words following it must be considered
unboxed.

Displaced arrays must keep track of two different array sizes:
their own (for computing how much actual storage this displaced
array "stub" takes); and the number of elements in the displaced-
to storage area. To accomodate the latter, an index length word
is allocated after the displaced—to word.

8-7

nrrays ST Wail’ @ Uesdgil NOLeS

The index field in the ARRAY-HEADER of the displaced array itsel#f
is used to contain the number of option words, not counting the
dimension words, that this displaced array has. Thus it will
always be either a FIXNUM 2 or 3.

If# there is a displaced index offset, its FIXNUM word will be
placed last.

