Software Design Notes internal otorage rormats

SECTION 7

Internal Storage Formats

7.1 INTRODUCTION

This section details ¢the Explorer virtual machine internal
storage formats. Symbolic byte specifiers and constants for most
of the #formats described can be found in the system parameters
file SYS: UCODE; LROY-QCOM. The convention is that byte specifiers
begin with a double percent (%4) while symbolic constants
representing offsets or other numeric constants begin with a
single percent (%Z). All such symbols are in the SYSTEM package,
as are the majority of functions described here.

7.2 THE TAGGED ARCHITECTURE
Lisp follows a "single sized data" convention, which states:
Any object can be represented in a fixed size storage cell.

On the Explorer, the size of this fixed-size cell is one memory
word (32 bits), also called a @ for quantum. A Q@ is divided into
three fields: a 25-bit pointer field, a 5-bit data tuype field,
and a 2-bit cdr code field. The format of a Q@ is shown in Figure
7-1.

31 30 29 25 24
.
it CC I DTP | POINTER
o

+--+0

POINTER <0:24> = Pointer field. Contains immediate
data or pointer to actual storage.
Data Type field.
Cdr Code field.

DTP <25: 29>
cC <30: 31>

Figure 7-1 Q Format

Lisp can adhere to the single size data convention because some
Lisp data items are not objects themselves but rather gbject
references, which can be thought of as pointers to the actual

7-1




Internal Storage roTmats LUTLwal € UJUreasdygll NuwivESs

storage used by the object. The kind of object reference being
made can always be determined by the data type field of the Q.
If it is an Immediate Type. such as a small integer. the actual
data will be stored in the pointer field. No further reference
need be made in this case. If the object is a Pointer Type
requiring extended storage, such as an array or a list, the
object’s pointer field contains the first address of the extended
storage.

There is an obvious analogy between object references and
indirect addressing on conventional machines. However, rather
than fully partitioning memory into different spaces uwhere the
different types of data objects are stored. the Explorer system
uses the taggqed data method of object representation. The way an
object is manipulated is always dictated by the its data type
tag. In turn the interpretation and use of the object’s pointer
field depends on the data type. There is considerable hardware-
level support for this architecture in the Explorer processors
themselves, allowing for extremely flexible data structuring
combined with efficient access.

7.3 BOXED VERSUS UNBOXED MEMORY

Boxed or Tuped cells are memory words whose data-type fields are
valid; that is. they are meant to be interpreted as data types
rather than as random bit patterns. Only if the data type field
is valid may the pointer field and cdr code field be interpreted
as pointers and cdr codes. Words whose contents are all data are
termed Unboxed or Untuped. A segment of memory where all cells
are boxed would be called fully boxed whereas a segment where
some words are boxed and others are not is called partially
boxed.

In the Explorer virtual machine, not all memory is fully boxed.,
although some well-defined segments are. Usually, determining if
a given word is boxed or unboxed requires examining the word’s
context.

The first context item to consider is storage type. All virtual
memory segments have a storage representation type of List or
Structure. List space holds only CONS cells and cdr—coded lists.,
and is fully boxed. The start and end of list segments 1is
determined by the cdr coding of the words. Structure space holds
all other extended storage data structures and is not fully
boxed. In structure space. the start of an object is marked by a
structure header. Obgjects that are implemented as structures

with headers are: symbols, instances, arrays, compiled functions
(FEFs), and extended numbers. Of these, only symbols and
instances are fully boxed. The others contain some boxed words

and some unboxed words.




S0rTtware besign iNOves dnternal otvorage rormats

If a word is in structure space and if it is in a structure that
is only partially boxed, further information must be sought ¢to
determine exactly which words are boxed. It is not even the case
that a given structure type is always partially boxed or always
fully boxed. For example, some arrays are completely typed while
octhers have typed cells only up to the start aof their actual data
elements. Some extended numbers are made up of other extended
numbers; hence are fully typed. Others contain bit-encodings
following their headers.

The one unbreakable rule about partially boxed structures is that
all boxed words must come before any unboxed storage.

For code that needs to know details about the size, boxed size.,
and unboxed size of data objects there are a number of functions
that may be used. %“STRUCTURE-TOTAL-SIZE, given a pointer to any
boxed word in a structure, will return the total number of words
of storage the structure wuses. ZSTRUCTURE-BOXED-SIZE will
likewise return the number of boxed words. The number of unboxed
words in the structure can then be computed.

The largest drawback to these primitives is that they cannot be
used on any arbitrary address. They will cause a crash if given
an invalid address; they will be unpredictable (crash, trap) if
given the address of an unboxed data word. For efficiency, they
assume they have a good. boxed word to start with and go from
there. Code that needs to find the (always boxed) start of ¢the
structure containing a given address should either begin parsing
memory at the memory segment (region) beginning. or use a ‘'"safe"
primitive such as Z%ZFIND-STRUCTURE-HEADER-SAFE (FSH-SAFE for
short). This latter can be slow, since it parses memory in the
forward direction, but makes every attempt to be safe. It will
return NIL, for example, if given an invalid address.

7.4 DATA TYPE SUMMARY

The 5-bit data type field supports 32 data types. Some of these
represent actual Lisp objects; that is, they can be passed as
arguments to functions, returned as values, and have standard
operations defined on them. These Lisp object data types
comprise the primitive, architectural support out of which all
more complex types are built.

The Lisp object types and some selected attributes are listed in
Table 7-1.




Internal Storage Formats ' Software Design Notes

Table 7-1 Lisp Object Data Type Attributes

Type Pointer Field Generic
Code Data Type Name Contents Type
S DTP-Fix Immediate data Number
) DTP-Character " Character
8 DTP-8Short-Float " "Number
i DTP~-List Address : List
2 DTP-Stack-List " List
13 DTP-Closure " Function
14 DTP-Lexical-Closure " Function
3 DTP-Symbol " Symbol
9 DTP-Instance " Instance
4 DTP-Array " ATTay
16 DTP-Stack-Group " Stack Group
12 DTP~Function " Function
7 DTP-Single-Float " Number
10 DTP-Extended—-Number " Number
11 DTP-Locative " Pointer
15 DTP-U-Entry Index Function

The remaining data types are termed housekeeping types because
they are wused in the virtual machine implementation rather than
to represent computational objects. Examples of housekeeping
uses include marking the start of extended structure storage or
acting as invisible forwarding pointers.

The pointer field of a housekeeping type may contain an address
or an index as with Lisp object types. If it is not an address
it is usually divided up into various flag fields that describe
the storage structure it is used in.

The housekeeping data types and some selected attributes are
listed in Table 7-2.

~



Table 7-2 Housekeeping Data Types

Type Pointer Field Special
Code Data Type Name Contents Use

22 DTP-Symbol-Header Address Structure hdr
25 DTP-Instance—-Header " "

24 DTP-Array-Header Flags "

26 DTP-Fef-Header Flags "

19 DTP-One-Q@-Forward Address Forwarding

18 DTP-External-Value~-

Cell-Pointer " "

17 DTP-GC-Forward " "
28 DTP-GC-Young—-Pointer " "
21 DTP-Body—-Forward " "
20 DTP-Header—-Forward " Forwarding.

: Structure hdr
27 DTP-Sel f-Ref-Pointer Index., Flags "

30 DTP-Null Address Unbound mark
0 DTP-Trap Unused Trap

31 DTP-Ones-Trap Unused Trap

29 DTP~Free Unused Illegal

The paragraphs below cover all the data types. First the Lisp
object types are covered, divided into the immediate types and
the pointer types. The pointer types are subdivided into List,
Structure, and Miscellaneous types. The housekeeping data types
used as structure headers are covered in the discussion of the
extended storage object they implement. Finally, the remainder
of the housekeeping types (the forwarding and miscellaneocus
housekeeping types) are detailed.

7.5 IMMEDIATE DATA TYPES

Some Lisp objyects can be represented completely in one storage
cell. These are called Immediate Types or INUM types. since the
pointer +field of such a cell is an actual value rather than a
pointer to the actual valwvue. INUM types are typically
implemented for efficiency reasons. Each INUM type is discussed
in the following paragraphs.




7.5.1 DTP-Fix.

This is a small integer, usually called a EIXNUM for fixed point
number. The pointer +field contains the actual value of the
number in twos complement notation. Unlike extended numbers,
FIXNUMs with the same value will always be EG.

Integers in the range [~ 2%#24 . . 2¥%24 - 11 will be
represented as FIXNUMs. Outside of this rtange an integer
extended number (BIGNUM) will be created.

7.5.2 DTP-Character.

This is a Common Lisp character object. For Zetalisp
compatability it can be used in arithmetic like a FIXNUM. Its

format is shown in Figure 7-2. The byte descriptors can be found

in Q-FIELDS.

31 29 25 24 23 22 21 20 19 15 87 0
o e e S T TS TS + + +
iICCY DTP | KiIMO! HI 8! M! C! ! FONT ! CHAR !
—— - +

CHAR <0:7> = C(Character code or mouse click code

FONT <8:15> = Font bits

C <19> = Control Bit

M <20> = Meta Bit

S <21> = GSuper Bit

H {22 = Hyper Bit

MO <23 = Mouse Bit

KP 1247 = HKeypad Bit

Figure 7-2 Character Format

7.5.3 DTP-Short-Float.

A short precision floating point number. The pointer field
contains a 25-bit floating point number, subdivided into a 1-bit
sign field, an 8-bit exponent "ield, and a 1&6-bit fraction field.
The exponent field contains the excess 127 exponent, which gives
a tange of 10##-38 to 10##+38 approximately. The fraction field
contains a 16-bit fraction, excluding the hidden bit (which is
only used if the exponent field contains a non-zero value). The
fraction can contain approximately 5 decimal digits. The format
used is equivalent to the IEEE Std 754-1985 single precision
format, with the exception that the #fraction field has been

7-6




<SOeTllWwai'e ve>igil wouves ifiternal oltorTage rormacts

reduced from 23 bits to 16 bits.

The format of a short float word is shown later along with the
other numeric formats.

7.6 POINTER OBJECT TYPES

The pointer type objects have an address {(or an index) in their
pointer field; the address generally points to the first word of
the object’s actual extended storage. Each pointer object points
to a certain kind of storage. For structure-type pointers, the
storage is always delineated by a structure header. For list-
type pointers, the storage is a CONS or a list whaose extent is
defined by the local cdr coding. The pointer object types and
what they point to are listed by category in Table 7-3 and are
discussed individually below.

Table 7-3 Pointer Types

Structure Pointer 0Obgject: Points to:
DTP~-Symbol DTP-Symbol-Header
DTP-Instance DTP-Instance-Header
DTP-Array DTP-Array—~Header or
DTP-Header-Forward
DTP~-Stack-Group DTP-Array—-Header
DTP-Function DTP-Fef~Header
DTP-Extended—-Number DTP—-Header
DTP-Single—-Float DTP-Header
List Pointer DbJect: Points to:
DTP-List CONS cell, Cdr-Coded list,
or DTP-Header~Forward
DTP-Closure Cdr—Coded list
DTP-Lexical-Closure CONS cell
DTP-Stack—-List Cdr—Coded list
on a regular PDL
Other Pointer Object: Points to:
DTP-Locative Any boxed word
DTP-Self-Ref-Pointer Indexes an instance cell




dnternals otLlaye roirdiatLvs wWl vWET! & Wheaig!t ITVWERR S

7.7 LIST POINTER OBJECTS

7.7.1 DTP-List.

The pointer field points to a CONS or a cdr-coded 1list segment.
Whether the storage is a CONS or a list segment, and if a list
segment how long a segment all depends on the cdr code field.
The encoding of the 2-bit cdr code field is shown in Table 7-4.

Table 7-4 CDR Codes

O - CDR NORMAL
1 - CDR ERROR
2 - CDR NIL

3 - CDR NEXT

7.7.2 CONS Cells.

A CONS is a 2-word structure whose first word is the CAR and
second word is the CDR. This is the two-pointer form of CONS
used in most versions of Lisp. The CAR cell always has a cdr
code of CDR-NORMAL, and the CDR cell is marked by CDR-ERROR. The
CDR-NORMAL means that the Q following this one contains the CDR.
CDR ERROR means that it is an error to take the CDR of this
location, since this is the second half of a full (CDR-NORMAL)
node.

7.7.3 Cdr-Coded Lists.

A scheme called Cdr—Coding allows a special, high—density storage
scheme for Tregular lists. In such a storage scheme a list of N
elements can be stored in N consecutive words using a series of
CDR-NEXTs followed by a final CDR-NORMAL (if this list continues
on with one or more CONS cells) or a CDR-NIL (if this is the end
of the list). CDR-NIL means simply thet the CDR of this node is
the symbol NIL. In contrast, a list of N elements constructed
from normal CONS cells requires 2N words of storage

CDR-NEXT designates a 1list element (a CAR). It indicates that
the CDR of this CAR is a (not physically present) pointer to the
next word. When the CDR of a normal list is requested, a copy of
the contents of the CDR cell is returned; when a CDR of a cdr-
coded list is requested, a pointer to the location one word past
the CAR is constructed and returned.

TN



oo TR e e e a2 TTW WS - VeI liagls JLVUTage rOTlla >

The functions APPEND, LIST, and COPY-LIST always form these
compact cdr—coded lists while CONS and related operations always
create full nodes (CDR-NORMAL, CDR-ERROR).

7.7.4 Destructive Operations: RPLACA, RPLACD.

RPLACA and RPLACD are easily defined on CONS cells. RRLACA
overwrites the first cell of the CONS and RPLACD overwrites the

second. Since all CARs in a cdr-coded list have cells allocated
to them, to RPLACA an element of a CDR-NEXT 1list, you simply
overwrite the specified CAR. But since the CDR node is not

actually present, but rather is implied by the cdr-coding,
RPLACDing is more difficult.

RPLACD first finds the CAR whose not-yet-existent cdr needs to be
written. It then allocates a completely new CONS node (CDR-
NORMAL, CDR-ERROR) and copies the CAR to the first word. It then
writes the new CDR in the second word. Finally, the original CAR
with the CDR-NEXT field is overwritten with a word with data type
DTP~HEADER-FORWARD and cdr code CDR-ERROR, which points to the
newly allocated CONS node. This process is called RPLACD

forwarding.

7.7.5 DTP-Stack-List.

This is a cdr-coded list which has been created on a runtime
stack (regular PDL), wusvally as a function’s REST arg. The
pointer field must always point to the portion of the stack that
is active (i.e., before the top-of-stack pointer). Since runtime
stacks are represented by special PDL arrays, a DTP-STACK-LIST
paradoxically always points to structure space.

The elements of the STACK-LIST are always cdr-coded except that
it may end with either a CDR-NIL or a CDR-NORMAL which points to
a CONS in List space. RPLACA works normally on a STACK-LIST. It
is an error to RPLACD one.

If an attempt is made to store a STACK-LIST into memory not in
the active portion of the PDL, the list elements will be copied
out to regular List space. All STACK-LIST pointers will then be
replaced with normal LIST pointers, and the old elements on the
stack will be replaced with words with data type DTP-EXTERNAL-
VALUE-CELL~-POINTER and pointer fields which address the
corresponding element in the copied-out list.

7.7.6 Closures.
A dynamic closure is a word of type DTP-CLOSURE which points to a

block of cdr—coded storage in list space. This block is 2#N+1
words long, where N is the number of cells closed over.

7-9




A lexical «closure 1is a word of type DTP-LEXICAL-CLOSURE which
points to a CONS cell. The CAR of the CONS 1is the closure’s
function, and the CDR is the a word of type DTP-LOCATIVE pointing
to the closure’s lexical environment.

The type DTP-LEXICAL-CLOSURE is only created by compiled code.
The interpreter implements lexical closures as a DTP-CLOSURE over
the special variables that hold the interpreter’s environment.

Both these closure types are described in detail in a later
section on Closures.

7.8 STRUCTURE POINTER OBJECTS

The are only a handful of actual structure types. These are:
symbols, instances, arrays (including stack groups), functions,
and extended numbers. Each of these is discussed here.

7.8.1 Symbols.

A symbgl 1is represented by a Q of datatype DTP-SYMBOL whose
pointer points to a five-word symbol block. The five words are

listed in Table 7-5.

Table 7-5 Qs of Symbol

Offset Cell Name
0 Print Name cell
1 Value Cell
2 Function Cell
3 Property Cell
4 Package Cell

The Print Name Cell holds a word of DTP-SYMBOL-HEADER pointing to
a OSTRING array which 1is the print name for the symbol. The
SYMBOL-HEADER acts just like an array pointer in many contexts.

The Value Cell holds the value of the symbol, and so can be of

almost any data type. If the value has not been initialized, a
symbol’s value cell may be empty or unbound. I# so. the cell

contains a DTP-NULL whose pointer field points back at the symbol
header.

The Function Cell holds the functional property of the symbol.

If the symbol is called as a function, the contents of this cell
will be analyzed to determine what function to perform. A

7-10




Jou———

el VWIS dVMuwapgil I VRE = LTI HEL Wi ay®s T UIIa LD

symbol’s function cell may alsoc be wunbound, in which case it
contains a DTP-NULL which points back at the symbol header. -

The Property Cell contains the property 1list. The wuse of
properties is not required by the basic system at all, so this
might be NIL. On the other hand, many subsystems and features
make heavy use of the property list, so it is likely to contain
something. .

The Package Cell 1is wused to point to the package to which the
symbol belongs for interned symbols; for uninterned symbols, the
package cell contains NIL. The only architectural support for
packages is the package cell of symbols.

When a symbol is initially created. the value and function cells
contain DTP-NULL. The property cell initially contains NIL;
however, the loader and other parts of the system that create
symbols may place properties on them.

The function VALUE-CELL-LOCATION can be used to obtain a DTP-
LOCATIVE pointer to this location and the contents can be

obtained by (CAR <loc>) or more generally (CONTENTS <loc>) on the

locative so generated.

7.8.2 Instances.

A flavor instance instance is a word of DTP-INSTANCE which points
to a DTP-INSTANCE-HEADER. Instances are variable length, but all
their elements (which are instance variable slots) are boxed.
The INSTANCE-HEADER pointer field points to this instance’s
parent flavor. The flavor data structure is implemented as an
array (so that the INSTANCE-HEADER acts as an array pointer in
most contexts) and is described in greater detail in the section
on Flavor Internals.

7.8.3 Arrays.

An array object is a word of DTP-ARRAY which points to a DTP-
ARRAY—-HEADER. The ARRAY-HEADER may optionally be preceded by a
number of boxed leader words topped by a DTP-HEADER of header
type ARRAY-LEADER. The ARRAY-HEADER may be followed by by some
housekeeping words (if it is a long, multidimensional, displaced.
or physical array) and then generally by the actual array data
storage words. The ARRAY-HEADER pointer field does not contain
an address, but rather several fields of data describing the
array. The section on Arrays discusses array formats in greater
detail. Below we briefly introduce some special arrays: Stack
Groups, Regular PDL Arrays, and Binding PDL Arrays.

7.8.3.1 8Stack Groups.

7-11




@ItV He i TTWe wWwWyywWwiWa™ ' W7 T8 Ws e RS s R Tttt YW YR

The state of a computation on the Explorer is maintained in a
data structure called a Stack Group when the computation 1is not
active. A stack group is represented by a word of DTP-STACK-
GROUP pointing to an ARRAY-HEADER. The stack group array is a @
array of array type ART-5TACK-GROUP-HEAD. It has no data
elements; all the computation state is stored in array leader
words. The stack group data structure itself is described fully
in a later section.

In addition to saved register values and other state information.
there are two arrays associated with each stack group: the
Regular PDL and the Special PDL (SPDL). These are also described
more fully in the sections on function calling and stack groups,
but are introduced here to touch upon their particular storage
management conventions.

7.8.3.2 Regular PDL Arrays.

A computation’s run—time stack is kept in the stack group’s
Regular PDL array. A Regular PDL array has array type ART-REG-
PDL. It is a Q array in that its valid elements can contain any
Lisp object:; but not all its elements are valid. Those which are
not valid are considered as unboxed memory. A Regular PDL array
always has a leader with one leader element. The leader element
(element O) contains the stack group which owns this PDL.

The top of the currently—active stack group’s runtime stack is
kept in the PDL Buffer of the processor. The hardware PDL Buffer
acts as a cache of up to 1024 words which greatly speeds up
almost all references to the stack. The PDL Buffer cache 1is
maintained by microcode 1invisibly +to macrocode and all higher
levels.

The Regular PDL is not allowed to contain most housekeeping
types. In addition, it always contains valid boxed Qs up to the
current top-of-stack pointer. However, Regular PDL array
elements beyond the current top-of-stack pointer are not
guaranteed to be valid Lisp objects so must not be accessed by
any Lisp code or be scavenged by the garbage collector. They are
considered as unboxed elements in the array.

The top—-of-stack pointer for a Regular PDL is computed in one of
two ways. If the Regular PDL does not belong to the current
computation (i.e., 1is not the Regular PDL of %CURRENT-STACK-
GROUP), the valid portion of the PDL array is described by the
saved regular PDL pointer of its Stack Group (SG-REGULAR-PDL-
POINTER <sg>). Array elements numbering up to this value may be
freely accessed. If, however, this is the current stack—-group’s
Regular PDL, the highest valid element number must be computed
using the hardware PDL-BUFFER-POINTER register.

In either case, the “STRUCTURE-BOXED-SIZE primitive will always

return the correct number of valid, boxed words when given a

7-12




Dortware vesign iNoves AitbEINIGd KVWIiays T YiiNa vo

Regular PDL array. This number is the top—of-stack element index
plus 2 since it counts the PDL array header word and the array
long length word as valid, boxed words.

If a Regular PDL needs more elements than its initial allocation
size the microcode traps out to the Error Handler. The Error
Handler will allocate a larger array and structure-forward the
old PDL to the new one.

7.8.3.3 GSpecial PDL Arrays.

A computation’s dynamic (special variable) binding stack is
represented using a Special PDL array (SPDL) which has array type
ART-SPECIAL-PDL. Like the Regular PDL array. the SPDL is a @
array in that its valid elements can contain any Lisp object; but
not all its elements are valid. Those which are not valid are
considered as unboxed memory. The SPDL also has one leader
element which contains the stack group owning this SPDL.

The wvalid top—of-stack for the binding stack is stored in the
stack group (SG-SPECIAL-PDL-POINTER <sg>) if this is not the
current stack group’s SPDL. Otherwise, as with Regular PDLs, the
valid portion can only be computed using “ZSTRUCTURE-BOXED-SIZE.

I+ a SPDL needs more elements than its initial allocation size
the microcode traps out to the Error Handler which will allocate
a larger array and structure—forward the old SPDL to the new one.

7.8.4 Compiled Functions (FEFs).

When a function is macro-compiled: the macrocompiler produces a
compiled code object called a Function Entry Frame (FEF). This
is represented by a word of DTP-FUNCTION pointing to storage
starting with a word of type DTP-FEF-HEADER. The storage
occupied by the FEF can be divided into two parts. The first
part, which is at least eight words long, is called the overhead
section and consists only of boxed words. This section contains
encoded information about the function and pointers to variables
and other functions called by the function. The second section
is completely unboxed and contains the function’s macrocode
instructions packed two to a 32-bit memory word.

See the section on Function Calling for more details on FEFs.

7.8.5 DTP-Header.

This word is the beginning of a block of storage which is either
an array leader, a single float, or and extended number. The
pointer field does not contain an address; instead it has a
HEADER-TYPE field which explains what purpose the header 1is
serving. The HEADER-TYPEs are summarized in Table 7-46. Array

7-13




ail v i IlWa wWeWiwg™- | WIINWN VS ww i VW " MR eSS’ TNWw Ve =2

leaders are discussed in the Arrays section. The remaining
extended number structures are described below.

Table 7-6 Header Types

Code Header Type Name Pointed To By
0 “HEADER-TYPE-ERROR Unused
1 %ZHEADER-TYPE-UNUSED-1 Unused
2 ZHEADER-TYPE-ARRAY-LEADER DTP-LOCATIVE
3 %“HEADER-TYPE-UNUSED-3 Unused
4 %HEADER-TYPE-SINGLE-FLOAT DTP-SINGLE-FLOAT
5 LHEADER-TYPE-COMPLEX DTP-EXTENDED-NUMBER
-} YHEADER-TYPE-BIGNUM DTP-EXTENDED-NUMBER
7 YHEADER~-TYPE-RATIONAL DTP-EXTENDED-NUMBER
8 %HEADER-TYPE-DOUBLE-FLOAT DTP-EXTENDED-NUMBER

7.8.6 DTP-Extended-Number.

An word of type DTP-EXTENDED-NUMBER pointing to a DTP-HEADER word
signifies one of the following, depending on the HEADER-TYPE of
the HEADER word: an extended integer (BIGNUM); a ratio between
two integers (RATIONAL); a double—-precision floating point number
{DOUBLE-FLDAT); or a complex number (COMPLEX). All except
DOUBLE-FLOAT are described here. The floating point formats are
detailed in the next subsection.

7.8.6.1 BIGNUM.

A DBIGNUM 1is an extended precision integer represented by an
object of type DTP-EXTENDED-NUMBER pointing to a DTP-HEADER. The
storage length of a BIGNUM is determined by the size of the
integer it Trepresents. It is composed by a HEADER word and a
number of unboxed data words as shown in Figure 7-3. After the
BIGNUM header, the integer is stored in successive words with the
least significant word first.

The format of the BIGNUM header is shown in Figure 7-4. The
LENGTH field gives the length of the BIGNUM in words; this is the
length of the BIGNUM structure minus one. Each of the BIGNUM
data words has the format shown in Figure 7-5. The high order
bit is always O. The remaining bits are a section of the bits of
the positive integer that is represented

7-14

PN

RPN



wi) PWEI & M Taglil ITW VR - iV T e WYNT Va2 §§ iAW VS

! Bignum Header !
H Least Significant Word H
: Most Significant Word H
Figure 7-3 BIGNUM Structure
31 29 25 22 19 18 17 0
? ! ' : N :
+ +
: H ! ! i :
CDR Code ! H : ' H
: H ! H !
DTP-Header~- ! ' ' !
[] 13 1 1
Spare Bits —-————- : : H
] ] ]
Header—Type-BIGNUM —-—=- H !
1 ]
Sign Bit !
i
Length
Figure 7-4 BIGNUM Header Format
31 30 0
T ;
- -‘.';l ] *
B~ : |
T ° ;
iff Section of integer——-—-
N Figure 7-5 BIGNUM Data Format
Femt

7-15




7.8.6.2 RATIONAL.

A RATIONAL number 1is an object of type DTP-EXTENDED number
pointing to a 3-word fully boxed structure. The first word is of
type DTP-HEADER and the next two words are the numerator and the
denominator, respectively, of the ratio. Each of these may
either be a FIXNUM or a BIGNUM.

7.8.6.3 COMPLEX.

A COMPLEX number is an object of type DTP-EXTENDED number
pointing to a 3-word fully boxed structure. The first word is of
type DTP-HEADER and the next two words are the real part and the
imaginary part: respectively. of the COMPLEX number. Each of
these may be any numeric type.

7.8.7 Floating Point Numbers.

There are several floating point formats supported on the
Explorer. Short precision floating point numbers are an INUM
type; that is, the pointer field of the Q contains the value of
the object rather than a pointer to it value. Single precision
and double precision floating point numbers are represented as a
pointer pointing to a DTP-HEADER with header type YHEADER-TYPE-
SINGLE-FLOAT and “ZHEADER-TYPE-DOUBLE-FLOAT respectively. Single
precision floating point numbers have a pointer type DTP-SINGLE-
FLOAT; double precision floating point numbers have a pointer
type DTP-EXTENDED-NUMBER.

7-16




e

w0rTluwarte vesign NOLes internal otorage rormats

7.8.7.1 Short Float.

The format of a short precision floating point number is shown in
Figure 7-6. This format is equivalent to the single precision
floating point format, with the #fraction field reduced to 16&
bits.

31 29 25 24 23 16 15 0

+ -+
+ -+

CDR Code

DTP-Short-Float

- -- oo oo e

—— ee o cw ce o e

Exponent

Fraction

Figure 7-6 Short Float Format

7-17




it VWi iIfTsd WVWNIT o™ 7 7 s e P RS W AR Eee"T TV Ve

7.8.7.2 Single Float.

A single precision floating point number is represented as an
object of DTP-SINGLE-FLOAT, pointing to a two-word structure as
shown in Figure 7-7. The second word is unboxed.

Unused
Header—-Type-Single—-Float-
Spare Bits —-—————-

DTP-Header -

- e W ww me - we
e ww wmwm wem W W W we -

- e e wem wne

CDR Code H
1 1]
31 29 25 22 19 18 0
Word 1 !} ! ! : ! !
Word 2 isi e H L b
31 30 23 22 0
s = sign bit
e = exponent field
¢ = fraction field

Figure 7-7 Single Precision Float Structure Format

The format wused is the IEEE Std 754-1985 single format. The 8-
bit exponent field uses an excess—-127 (decimal) format. The
single precision +floating point format uses a 23-bit fraction
field. The rTange for single precision floating point numbers is
approximately 10##-38 to 10##+38, with a8 precision of
approximately 7 decimal digits.

7-18




Software Design Notes Internal Storage Formats _

7.8.7.3 Double Float.

A double precision floating point number is represented as an
object of DTP-EXTENDED-NUMBER, pointing to a three-word structure
as shown in Figure 7-8. The two words following the HEADER are
unboxed. : .

Unused
Header—-Type-Double-Float -
Spare Bits —-—————

DTP—-Header -

- ww e wm w- w- we
e mwm ww W e wm w- —— -

'
CDR Co?e E
31 ' 29 ' 25 22 19 18 0
Word 1 ? : ! : : T
Word 2 ? f-low ?
Word 3 ?s% e : f—-high ?
;1 30 20 19 OT
s = sign bit

= exponent field
= fraction field

- N

Figure 7-8 Double Precision Float Structure Format

The format used is the IEEE Std 754-1985 double format. The 1i-
bit exponent field uses an excess—1023 (decimal) format. The
double precision floating point format uses a 52-bit fraction
field, with the 20 most significant bits concatenated with the
sign and exponent fields. The range for double precision
floating point numbers is approximately 10#%#-308 to 10##+308,
with @ precision of approximately 16 decimal digits.

7.8.8 The Cdr Code Field in Structures.

The cdr code field not usually significant in structure space.
There are, however some exceptions. The cdr code field is used
to denote actual cdr coding in structures that are treated as
lists (a STACK-LIST or ART-G-LIST array). In addition, the cdr
code has a specialized meaning relating to binding blocks inside

7-19




of a Special (Binding) PDL array (see the section on Stack Groups
for more details). Finally, hash table entries are cdr coded so
the key and value(s) may easily be returned as a list.

7.9 OTHER POINTER OBJECTS

Two miscellaneocus pointer objects are implemented with the data
types DTP-LOCATIVE and DTP-U-Entry. The LOCATIVE is generally
used to point to a single cell. A U-ENTRY is a functional object
with an index in its pointer field.

7.9.1 DTP-Locative.

A locative is a general-purpose pointer to a single boxed cell of
memory. It is not an invisible pointer type. It can be used for
many things. For example, it is often used to point to an array
leader’s header word, or to point to bound cells on the binding
PDL. Both CAR and CDR of a locative return the same thing,
namely the contents of the cell pointed at.

7.92.2 DTP-U-Entry.

This data type represents a microcoded function that takes a
variable number of arguments or has a REST arg. It is a
legitimate functional object which can be funcalled, passed as an
argument, and so forth. AREF and LIST are examples of U-ENTRYs.

The term U-ENTRY 1is short for Ucode, or microcode, entry. The
pointer field is actually an index into the MICRO-CODE-ENTRY-
AREA; this contains either a FIXNUM or a function. If it is a
FIXNUM, that number is an index into the MICRO-CODE-LINK-AREA.
The FIXNUM then found in the MICRO-CODE-LINK—-AREA consists of the
i6~-bit control store address of the microcode to run for this
function; & bits describing the required arguments pattern; and
one bit indicating a REST arg or not.

If the entry in the MICRO-CODE-ENTRY-AREA is not a FIXNUM. then
the current definition of this function is not microcoded and the
symbol names the function to run

The DEBUG-INFO structure for a U-ENTRY function can be found by
using the pointer field as an index into the MICRO-CODE-ENTRY-
DEBUG-INFO-AREA.




S0riware vesign NoLveE>S <HLEINIGL JIUWIAQy®s §TWiIa Vo

7.10 HOUSEKEEPING TYPES

The discussion of housekeeping types in the following paragraphs
begins with the forwarding pointer types. Then the remainder of
the data types are described: the DTP-SELF-REF-POINTER type; the
Trap Types DTP-NULL, DTP-TRAP; and the type DTP-FREE.

7.10.1 Forwarding Pointer Types.

Forwarding pointer types are "invisible" data types which provide
data indirection. They are termed invisible because their
presence is completely transparent to most Lisp code. Whenever a
forwarding pointer is read, the read is indirected along the
invisible pointer. This is sometimes called the INVIZ process,
or Just INVZ INVZ is similar to indirect addressing in other
computers, except that instead of being specified by the reading
instruction, the indirection is specified by the data read. For
example, if you ask for the symbol value of a symbol with a DTP-
ONE-G-FORWARD @ in its wvalue cell, what you will actually get
back is the contents of the word at the address specified in the
pointer field of the DTP-ONE-Q-FORWARD word.

There are six forwarding data types. DTP-ONE-Q-FORWARD and DTP-
EXTERNAL-VALUE-CELL-POINTER are one-word forwards used for
various housekeeping functions. DTP-GC-FORWARD and DTP-GC-YOUNG-
POINTER are wused for garbage collection support. DTP-HEADER-
FORWARD and DTP-BODY-FORWARD are used to forward a whole
structure that has grown or been moved. All are discussed below.

7.10.1.1 DTP-One-Q-Forward.

This is a simple kind of invisible pointer used to hide a single
cell of memory. It forwards only the word that it is in, not the
whole containing structure. Its most common use is to alias a
symbol’‘’s value to that of another symbol (see DEFF and FORWARD-
VALUE—-CELL).

7.10. 1.2 DTP-External-Value-Cell-Pointer.

This is @ kind of one-word forwarding invisible pointer used for
several different purposes. They are most commonly found in the
overhead words of compiled functions (FEFs). There they are used
to point to value cells of symbols referenced by the code and to
function cells of other functions called.

EVCPs are also placed in symbol value <cells by the dynamic
closure mechanism (see the section on Closures). and are used to
replace STACK-LIST elements on the PDL after the list is copied
out to normal memory (see the paragraph on Stack Lists). The

7-21




Internal Storage Formats Software Design Notes

Lisp interpreter also uses EVCPs to implement dynamic binding.
7.10.1.3 6C Forwarding Pointers.

Data type DTP-GC-Forward is the forwarding pointer left behind by
the garbage collector in Oldspace; in fact, it is illegal
anywhere else but Oldspace. The pointer field of a DTP-GC-
FORWARD must point to Copyspace, and contains the address where
this cell is forwarded. In this sense the GC-FORWARD is a one-
word forward.

Normally, whenever a pointer—type Q@ is read from memory a check
is done to see if the address in the pointer field falls in

Oldspace. I# so, the object pointed to is copied to Copyspace
and the object’s old location is filled <completely with G&C-
FORWARDS. This is called fransporting. Furthermore, the
original memory location read is updated so that it now has the
Copyspace address. When other referenced Qs are found to point
to this GC-FORWARD they are also updated in memory to have the
forwarded, Copyspace address. This process is called snapping

out, and preserves the identity of objects copied by the garbage
collector.

The type DTP-GC-Young-Pointer (GCYP) is a single-cell forwarding
pointer which is wused in implementing the Temporal Garbage
Collection (T6C) algorithm. It acts as a special marker
indicating that the object it replaces 1is younger than its
containing structure.

The GCYP pointer field always addresses an indirection cell in
the special INDIRECTION-CELL-AREA. The indirection cell contains
the actual object the GCYP replaces, including the «cdr code
field.

7.10.2 Structure Forwarding.

When an array needs to grow beyond its original allocation due to
VECTOR-PUSH-EXTEND or ADJUST—-ARRAY-SIZE operations, a process
known as structure forwarding takes place. This is done by the
STRUCTURE-FORWARD function. New, larger contiguous storage is
allocated, all the array’s leader and data element words are
copied into the new storage. and the old structure is filled with
forwarding markers. '

The old array header word is replaced by a word of type DTP-
HEADER-FORWARD whose pointer field has the address of the new
array header word. All other words in the old strurture, both
leader words and data element words: are replaced with Q@s
containing data type DTP-BODY-FORWARD and pointing to the HEADER-

7-22




P

Software Design Notes Internal Storage Formats

FORWARD word. The body forwards are needed to forward array
elements that have pointers to them <(created, for example, by
LOCF), but are used even in unboxed arrays.

To follow a BODY-FORWARD, the pointer field is used to find the
HEADER-FORWARD word. The offset (either positive or negative)
from the HEADER-FORWARD word is calculated. That offset is then
applied to the address of the real header, found after following
all intermediate HEADER-FORWARDs have been followed.

It is possible for symbols to be structure forwarded also, but
this is no longer done by any system code. No other structures
in structure space can be structure forwarded. DTP-HEADER~-
FORWARD does have a further, different use in List space to
support the RPLACD operation. This is described above in the
paragraphs on Destructive List Operations.

7.10.3 DTP-Self-Ref-Pointer.

A SELF-REF-POINTER (SRP) is used for mapped and unmapped instance
variable references and may be vused to implement monitor
variables in the future. The pointer field of an SRP contains
flag bits and an index field. The format of a DTP-SELF-REF-
POINTER (SRP) is shown in Table 7-7. SRPs are created and
manipulated within the code for flavors, mostly in the mapping-
table sections. They are currently found only in the typed
overhead words of FEFs.

Table 7-7 SELF-REF-POINTER Format

Bit 19: SELF-REF-RELOCATE-FLAG
Bit 18: SELF-REF-MAP-LEADER~-FLAG
Bit 17: SELF-REF-MONITOR-FLAG
Bits 12-0: SELF-REF-INDEX

Bits 12-1: SELF-REF-WORD-INDEX

If RELOCATE-FLAG is <clear, an SRP is an unmapped instance
variable reference. The instance variable address is derived by
indexing SELF-REF-INDEX words into the instance data structure
currently associated with SELF. Unmapped instance variables are
created by the :ORDERED-INSTANCE-VARIABLES option to DEFFLAVOR,
and when a flavor is a base flavor with no mixins, Tequired
flavors, and so forth.

I+ RELOCATE-FLAG is set, the SRP is a mapped instance variable
reference and a SELF-MAPPING-TABLE array must be used. This is
the most common case (about 75% of SRPs). When the MAP-LEADER-

"FLAG is clear, the INDEX field is used as an element index into

the current SELF-MAPPING-TABLE array (an ART-16b array). That

7-23




Anveriial oatlvulirage ruirliacvo KQUTrlLWare wedblign NOves

location should contain a number which is the real index into
SELF of the mapped instance variable.

The MAP-LEADER-FLAG, when set. means to read the contents of a
slot in the array leader of the SELF-MAPPING-TABLE. This flag is
used only when fetching another mapping table during the
execution of a :COMBINED method built on composed flavors (about
5% of SRPs). The SELF-MAPPING-TABLE is obtained from Local Slot
1 on the stack. The INDEX field is then an index into the
mapping table array leader, which should then contain a locative
to a cell containing the instance variable value.

The MONITOR-FLAG bit is intended for use in implementing "monitor
variables" which cause a trap when written into; however monitor
variables are not currently supported hence the Monitor-Flag bit
should always be a 0 in an SRP. I# <the MONITOR-FLAGC bit were
set, the SRP would be a reference to the next memory location on
read and would cause a trap on write. The MAP-LEADER-FLAG would
be ignored. No monitor pointers could appear within methods.

7.10.4 Trap Types.

Reading a word with a trap data type will normally cause the
error handler to be invoked (via the trans trap mechanism
described in the section on Error Handling).

7.10.4.1 DTP-Null.

This datatype is used for various things to mean "nothing. " 1Its
most common use is to act as an unbound cell marker. For
example, an unbound symbol has DTP-NULL in its value cell. The
pointer field points back at the symbol header so that the error
handler can describe the symbol that is unbound. DTP-NULL can
also act as an wunbound marker in other structures; but the
pointer field must always point to some structure’s header in
order support the error handler.

DTP-NULL is also used in hash tables to mark wunused entries.
Here, in a special case of the pointer field restriction, the
pointer field contains O, which is the address of NIL’s header.

7.10.4.2 DTP-Trap and DTP-Ones—Trap.

These data types are present mainly for error checking. A newly
created virtual page is filled with words of type DTP-TRAP and
pointer fields of O by the page—fault microcode {in fact, all 232
bits are O). The DTP-ONES-TRAP data type is used as a means of
easily detecting sign extension during arithmetic operations.

7.10.4.3 Unused Type DTP-Free.

7-24




Software Design Notes

Some virtual memory that
(GENASYS) but is not yet
FREE. It is illegal in
to occur). It should be

Internal Storage Formats

is allocated by the system build program
occupied by objects has data type DTP-
any context (will cause crash processing
considered reserved for future use.

7-25




