Software Design Notes Paging and Disk Management

SECTION &

Paging and Disk Management

6.1 VIRTUAL PAGE MANAGEMENT

This section discusses techniques for dealing with the management
of virtual pages and their associated disk storage. Virtual page
management functions include the page replacement strategy.
updating swap status indications, and mapping the paging-related
secondary memory across different disk page bands, perhaps on
different physical units.

The last portion of this section describes a number of virtual
memory management primitives which can be used from Lisp.

6.2 PAGE MANAGEMENT OVERVIEW

The following is an overview of the paging and disk management
algorithms for processing a page fault.

1. Given a faulted virtual address, find the disk device
and the device block offset where the demanded page
resides.

)

Issue a disk read operation into a previously cached
memoTy page frame. I# there is no available cached
memory page frame, scan the PPD looking for a
(preferably clean) page to evict. Issue the disk read
into the page frame found.

3. While waiting for the demand page disk I/0 to complete,
find a new cached memory page frame for the next
demanded page by scanning the PPD. Choose a page for
eviction from physical memory. I# the page 1is not
dirty, the memory maps are cleared and the PHT entry
deleted. The PPD entry is coded "FFFE" indicating a
free page. ' :

4. I+ the page to be evicted is dirty then it must be
written to & swap partition. The PPD entry is coded
Disk-Write-Pending. The PHT entry and the memory maps
are cleared by the disk servicing routine later after
the disk operation has completed.

6-1

Paging and Disk Ménagement Software Design Notes

5. When swapping out a dirty page, determine if there are
contiguous dirty wvirtual memory pages that can be
swapped out at the same time to ad jacent disk
locations. If so, prepare a multi-record write request
for all such pages.

6. 1f any pages being swapped out have never been assigned
read/write page device storage, find an available page
device and assign space to the pages’ <clusters (group
of 16 contiguous virtual pages). Initiate the disk
write.

7. Create a PHT entry for the faulted page.

8. Wait for the original disk read to complete. I any
disk writes were initiated they will continue in
parallel with computation.

4.3 PAGE HASH TABLE

The Page Hash Table (PHT) contains physical memory mapping
information for every virtual page currently in physical memory.
. Page exception handling may consult the PHT in order to find
information to use in relocading the hardware maps. In addition.
the page replacement algorithm (FINDCORE) uses information stored
in the PHT. The format of a PHT entry is shown in Figure 6-1.

I+ there is a page exception and there is no entry in the Page
Hash Table then it is a page fault, and the page needs to be read
from disk. The disk address is calculated using a disk mapping
scheme described later.

Software Design Notes Paging and Disk Management

PHT Word 1
31 25 24 ' : 8765432 0
e -—+ ottt + +
: { Virtual Page Number i IBiViMiAgei!Status!
R — ——— F—t bt ———
PHT Word 2
31 . 22 21 (o}
o e - + -+
! Map Control Field | Physical Page Number !
o —— + +
WORD 1:

STATUS <0: a2z

Map status code. -
See table of status codes below.

AGE <3: 4> = Number of times page has been aged.
M <95 = Modified bit. 1 = Modified (dirty).
v b = Valid bit. 1 = PHT entry valid.
B <72 = Background Write bit
1 = Background write in progress.
VPN <?:24> = Virtual Page Number
WORD 2:

PHYS-PG <0: 21>
MAP-CONT <22:31>

Physical Page Number.
Hardware map control data.

Figure &6-1 Page Hash Table Entry Format

&.3.1 Page Replacement Process.

The page replacement strategy is used to determine which pages
should be swapped out so that a needed virtual page can use this
physical memory page frame. It is also known as FINDCORE.

Page selection is accomplished on demand when a page 1is needed
for reuse. The physical page data table is consulted starting
with the top of the Least Recently Used (LRU) list formed by the
entries in the PPD LINK FIELD of each entry. The Least Recently
Referenced page index is held in an A-Register that defines
starting entry of the 1list. The memory page indicated is the

least recently referenced page. The status of the page is
checked, and 1if it is available, it is designated for immediate
use. I# the page is not available for some rteason. the scan .

proceeds to the page indicated by the contents of the PPD Link
Field of the current entry and so forth until the oldest wusable

6-3

Paging and Disk Management : Software Design Notes

page is found.

While scanning down the list, action is taken on individual pages
as follows by consulting the page’s PHT status code as described

below. Table 6-1 provides a complete description of all PHT
status codes.

1. If page status is normal then set status to age ¢trap

and the PPD link is removed from its current position

~and added to the end of the 1list as the new Most
Recently Referenced page.

»

If page status is age trap. flushable or prepage, then
remove the page from the list and designate it as the
next page to be used for replacement. The scan stops
at the first page found that satisfies this status.

3. I# page status is anything else, or if the background
writing bit is set, continue the scan with the next
linked page leaving this page in the same place in the
list.

Software Design Notes

Paging and Disk Management

Table 6-1 Page Hash Table: Swap Status Codes

Unused:
Normal:

Flushable:

Pre-page:

Age trap
set:

Wired down:

Disk Read
Pending:

Disk Write
Pending:

0 - Unused code.
1 - An ordinary page is swapped in here.

2 - Means that there is a page here, but

it has been marked as no longer needed and
can be used to swap a new page into. This
page may first have to be written out if the
map status indicates that it has been
modified since last written (map status

code = 4)

3 - Same as Flushable, but came in via Prepage.

4 - This page was in normal status, but

is now being considered for swap-out. The
map may not be set up for this) page. If
someone references the page, the swap
status should be set back to "normal.™"

5 - The page swapping routines may not
re-use the memory occupied by this page for
some other page. This is used for the

some other page. This is used for memory
pages wired down by the SYS: WIRE-PAGE
primitive and related routines.

6 - This page is being read in from disk. The
virtual address assigned this page may not be
used and the page swapping routines may not
re—use the memory occupied by this page.

7 - This page is being written to disk in
anticipation of freeing it for re-use by the
page swapping routines. The virtual memory
can be referenced and used, but the physical
memory may not be re—-used until the disk
operation has completed.

raging andg visxk lHialiggemeit wdT bWal' e WESAyN NOLes

6.3.2 Page Table Sizes.

The size of the page hash table 1is related to the size of
physical memory. Since a hash technique is used to search the
page hash table, +two 2-word entries are usually allocated for
every physical page in the system. See Figure 6-2 for sizes of
both the PHT and the PPD for different memory sizes. The PHT and
PPD together <consume slightly less than 4% of the physical
memory.

Virtual Memory Size = 128K Words

Physical Memory Size PHT Size PPD Size
2MB (512K Words) 1024 pages 4094 words 1024 words
4MB {1M Words) 2048 pages 8192 words 2048 words

8MB (2M Words) 4096 pages 16393 words 40946 words
iOMB (2. 5SM Words) 5120 pages 20480 words- 5120 words
12MB {3M Words) 6144 pages 24576 words 6144 words
16MB (4M Words) 8192 pages 32768 words 8192 words
32MB (8M Words) 146393 pages 65536 words 16393 words
64MB (16M Words) 32768 pages 131072 words 32768 words
128MB (32M Words}) 65536 pages 131072 words 65536 words

Figure 6-2 PHT and PPD Sizes -

6. 3.3 PHT Hashing Algorithm.

When the PHT 1is searched due to a page exception. a3 hash
technique 1is used. A number of the most significant bits in the
virtual page number are used as the hash key. The hash key is
shifted 1left by one to produce a PHT—entry index into the table.
The entry’s PHT1 Virtual Page Number is then checked against the
original virtual address (if the PHT1 Valid Bit is set).

Hash «collisions are resoclved by adding a linear rehash constant
to the original hash value, and wrapping around the front of the
table if necessary. The number of bits used in the hash is
proportional to the PHT size. A physical memory size of 8MB, for
example, uses the top 13 bits of the virtua® address and has a
maximum of 8 collisions per hash value. A 32MB system uses 15
bits and has a maximum of 2 collisions per hash value. At 64MB
and larger, all 16 bits of the virtual address are used, and the
PHT is effectively just straight—indexed.

No effort is made to keep collision chain—-link information in the
PHT entries because of the high overhead this would require.

b-6

‘SoFtware Design Notes Paging and Disk Management

Instead, a simple count of the longest <collision chain
encountered so far is maintained. This count: in the A-
memory/Lisp counter SYS: ZPHT-SEARCH-DEPTH, is used and
incremented by the microcode. Each PHT hash must examine at
least SYS: %ZPHT-SEARCH-DEPTH number of entries before declaring a
hash failure. When a new virtual address is added to the hash
table: a count of valid entries skipped over is kept until a free
PHT entry is found. Then if that count is larger than the
SYS: UPHT-SEARCH-DEPTH count the latter 1is incremented. The
length of the longest collision chain seen can decrease when PHT
entries are deleted. The microcode, however, is not authorized
to decrement SYS: %PHT-SEARCH-DEPTH. Instead, a low-priority
PAGE-BACKGROUND process periodically scans the table; computes
the current longest collision chain; and updates 8Y5: ZPHT-SEARCH-
DEPTH accordingly.

Initially the Page Hash Table contains no entries and the
Physical Page Data table entries are coded FFFE (page available
for wuse). All cells in the Page Hash Table are zeroed. As each
iz allocated on demand, a PHT entry is created and entered into
the table.

6.4 DISK PAGE MAPPING SCHEME

The following describes the mechanism by which a virtual page
number is used to map to a disk address in one of the system’s
logical paging devices.

A logical paqe device in the Explorer system is a disk partition
where disk storage is assigned to a number of virtual pages. The
Lisp world LOD band is a read-only page device; that 1is, demand
pages are read from this partition but if they are later dirtied
they will be written.out to a read/write page device (a PAGE
band). New virtual pages created during program execution (when
new Lisp objects are consed) will have read/write storage
allocated to them when they are evicted from main memory.

Because of the large number of virtual pages (2%#16) it is not
practical use straight indexing (a one-to-one correspondence)
between virtual pages and swap partition addresses. Instead,
pages being swapped are be assigned the next available space in a
swap partition and a disk page map is maintained for translating
between virtual addresses and disk addresses. Each two-word
entry in this Disk Page Map Table (DPMT) contains mapping
information for a group of 146 contiguous virtual pages called a
cluster; hence the DPMT is indexed by the top 12 bits of the
virtual address, called the cluster number.

Through the DMPT, disk space 1is allocated in clusters of 32
blocks corresponding to 146 virtual memory pages (each disk block

6-7

'!&ll’ il - haadih R — A

is 1024 bytes or 256 words). The low 4 bits of the virtual page
number select the page offset in the disk cluster. The format of
a DPMT entry is shown in Figure 6-3.

Word 1
31 29 28 24 23 21 20 16 15 0

e <+

o ————t +

! §-A !Device Al S-B !Device B! Device Assignment Bitmap

e
-+

ha

+ -+

o ———— +

Word 2
31 16 15
e
! Device A Offset

———

O

Device B Dffset

+-- +

G - 4

Device Assignment

Bitmap £0: 15> = Indicates to which device (A or B)

each of the 146 pages is assigned
O = Device A (page band)
1 = Device B (load band)

Device B {16: 20> = Logical page device number
of device B

S-B <21:23> = Device B status

Device A <24:28> = Logical page device number
of device A

S-A {29:31> = Device A status

32-block offset from start
of partition

32-block offset from start
of partition

Device B Offset <0:15>

Device A Offset <1&:31>

Figure 6-3 Disk Page Mapping Table

Software Design Notes , Paging and Disk Management

#Status O: No device assigned
#8tatus 1: Read only band (load band)

#Status

R

Read/Write band (page band)

#Status 3: Read/Write band assigned, however. a
disk block has not yet been allocated

#Status 4: - 7: Unused

Figure 6-4 Device Status Codes

Each entry of the DPMT specifies two logical paging bands, Device
A and Device B. By convention Device A describes a rtead/write
device (swap band) while Device B describes a read-only device
(the load band). A page represented by this cluster will have
storage assigned on one of these two page devices; a bitmap in
the entry specifies to which device each page in the cluster is
mapped. The disk block corresponding to this virtual page on the
page band not selected by the bit map is reserved but not used.
If the entry in the bit map is switched this page would then be
assigned to this other disk block.

A table 1is kept describing all the logical paging devices known
to the virtual memory system. The Device A and Device B fields
are conceptually an index into this table. Each PAGE partition
on disk is rTepresented as a separate logical page device In this
way, there may be several paging bands on a single device or on
several devices.

The fields S—A and S-B are the device assignment status fields
for device A and device B respectively. They indicate whether
the device is actually used by any pages in the cluster and if
so, what kind of access is allowed. The values for these fields
are described in Figure 6-4

A virtual page operation would proceed as follows:
1. Using the most significant 12 bits of the virtual page

number pick up the Disk Mapping Table Entry for the
cluster.

"

Consulting the bit map decide whether this page is
assigned to device A or device B of this cluster.

6-9

Paging and Disk Management woriware wesign NOtves

3. Using the device status field decide if a valid
operation is being performed on this device. If no
valid operation can be performed, call ILLOP (crash)

When the system is first booted, the DPMT indicates that all
virtual pages reside in the read-only load band associated with

Device B. As these pages are demanded they are read into memory
from the Lisp load partition. They are not assigned swap space
unless they are subsequently modified and swapped out. This

avoids the necessity of copying the load band to the swap band
before starting up Lisp.

Virtual pages that are as yet unused at boot time (unallocated
virtval memory) are marked as unassigned in. the DPMT. UWhen a
dirtied load band page or a freshly created virtual page is
assigned swap space the logical paging device number of the swap
partition is placed in the DPMT Device A field, the device A
status is marked as read/write, and the appropriate Device A
cluster offset is placed in word two of the DPMT entry. Unless
this virtual opage is later freed by garbage collection, it will
be read from and written to this disk block from now on.

6.5 LOGICAL PAGING DEVICES

A logical paging device defines a set of contiguous blocks on a
secondary storage device. The characteristics and allocation
information for each paging device are maintained in a Logical
Page Device Information Block structure (LPDIB). The LPDIB is
described in Figure &-5.

6-10

Dortware Design Notes raging and Disk Management

W
s

8 7 0
T

Reserved (Unused) iFi Unit Number

Band Starting Disk Block Number

Band Ending Block Number + 1

Next Bitmap Address

Bitmap Address

oo o WP

Ending Bitmap Address

HE S et Sl el Bl
e Itk SR ST PR S

Word 1: Page device status information.
F <9> = Full bit
1 = all clusters allocated
T <8> = Device type
0 = read-only (load)
1 = read/uwrite (page)
Unit <0:7> = Physical unit number of device
Starting block number of the page band.

"This is an absolute block number on the device
The absolute block number of the first block
that is outside of the band.

Address of the next bitmap word that contains
an unallocated cluster.

Address of the first word of the cluster-
allocation bitmap. Each bitmap bit represents
one cluster (32 blocks) of storage.

Word é: Address of last bitmap word.

Word
Word

wo%d

o LN

Word

Figure &6-5 Logical Page Device Information Block

The LPDIBs are allocated contiguously in the SYS: DEVICE-
DESCRIPTOR-AREA beginning at the address stored in SYS: ADDRESS~
OF-PAGE-DEVICE-TABLE. Enough space is allocated for a constant
number of paging devices (the value of SYS: NUMBER-OF-PAGE-
DEVICES). During boot the microcode initializes +the LPDIB for
the:- load band. Later. during Lisp boot (in SYS:LISP~-
REINITIALIZE), SYS:CONFIGURE-PAGE-BANDS is called to find all the
Explorer PAGE bands in this configuration and allocate LPDIBs for
each of them up to the system maximum.

Disk blocks are allocated to clusters by finding a free page

cluster in the LPDIB bitmap. The bitmap has one bit for each
page cluster. A 1 indicates the «cluster is free and a O

6-11

indicates it is in use. Word 4 of the page device information
block points to the next bitmap word to check, and is incremented
as all 32 clusters indicated by that word are allocated. When it
gets to the last bitmap word, it starts again at the beginning.
If there are no clusters left, then the Full Flag is set and the
swap band is no longer checked until a cluster is returned.
Garbage collection will return clusters as the virtual memory
they represent is collected and freed for re-use.

4.6 VIRTUAL MEMORY SYSTEM SUBPRIMITIVES

The subprimitives and special variables described below affect
the paging algorithms of the virtual memory system. As with all
Explorer system subprimitives, some of these can be extremely
dangerous (cause crashes or strange behavior) if misused.

Byte specifiers and constants described can be found in
SYS: UCODE; LROY-QGCOM. The Lisp-coded functions can be found in
the MEMORY-MANAGMENT files listed below:

MEMORY-MANAGEMENT:; PAGE-DEFS
MEMORY-MANAGEMENT: PAGE
MEMORY-MANAGEMENT: PAGE-DEVICE
MEMORY-MANAGEMENT; PAGING-PROCESS
MEMORY-MANAGEMENT; PHYSICAL-MEMORY
MEMORY-MANAGEMENT: VM-BOOT

The A-Memory counters (and some A—-memory variables) used by the
virtual memory system are documented in the section entitled
Other Subprimitives, Variables. and Counters.

%“disk—switches Variable
This variable contains bits that control various disk usage
features. The byte specifiers listed below are stored in
the DISK-SWITCHES-FIELDS list.

Bit] (%#%Clean—-Page—Search—Enable). Page replacement
algorithm will scan through physical memory looking for a
clean page to flush on a FINDCORE operation. Default is on.

Bit 1 (%%Time-Page-Faults—-Enable). Enables ZTOTAL-PAGE-
FAULT-TIME in the counter block. Value of counter 1is
microsecond time spent in the page fault microcode plus disk
wait time, but excluding code that resolves page exceptions.
Default is of¢f.

Bit 2 (%%ZMulti-Page-Swapout-Enable). Enables the page

6—-12

S20rtware wesigit nNnNoveo . : TTEg4ily SGilW Weah 1THEVIESRITRITW

replacement algorithm to clean adjacent memory page images
by writing them to disk in the same disk write for a page
being flushed. Default is on. Turning it off will degrade
paging performance.

Bit 7 (%%SB-During-Disk-Wait—-Enable). Not used.

Bits <B:15> (%4YMulti-Swapout-Page-Limit). Maximum number of
pages that can be updated in a multi-swapout. Values must
be between O and 255. Default is 128.

Bits <16:23> (%%Serial-Delay-Constant). Timing constant for
microcode access to the serial chip registers. This must
NOT be less than 12, which yields a delay of at least 2. 641
microseconds on Explorer I. Don’t change this wunless you
know what you’re doing.

set—-disk—-switches

(%key clean—page-search time-page-faults multi-page—swapouts
sequence—breaks—-during-disk-wait multi-swapout-page-count-
limit serial-delay—constant) SET-DISK-SWITCHES 1is a user
interface to safely alter the dynamic paging variables using
symbolic keyword definitions to specify the fields. The
defaults for each switch are ‘"safe" values. The value
returned is the new value of ZDISK-SWITCHES.

set-swapin—-quantum—of-area (area %optional (swapin—quantum 3))
Specifies that pages of AREA (which should be an area-
number) should be swapped in in groups of 2##SWAPIN-QUANTUM
pages at a time. The defavlt 1is 3, which means that
prepaging (if active) will swap in up to 8 pages at a time.

The swapin quantum is wused only if prepaging is enabled.
Currently the Explorer II paging microcode uses the
prepaging feature, but the Explorer I paging system does
not.

set-all-swapin—-quanta (%optional (swapin—quantum 3))
Specifies the SWAPIN-QUANTUMs of all non-fixed areas at
once.

wire-page (address %optional (wire-p t))
I# WIRE-P 1is T, the page containing ADDRESS is wired down:;
that is it cannot be paged—out. If WIRE-P is NIL., the page
ceases to be wired down.

vnwire—-page (address)

{(unwire—page address) is the same as (wire—page address
nil).

6-13

ragling and VisK lHNanagemel wUT Lbwai B WUeESlgll WO Lve S

page—in-structure (object)
Makes sure that the storage that represents OBJECT 1is in
main memoTy. Any pages that have been swapped out to disk
are read in. If OBJECT is large, this is useful in order to
get all the paging required to bring OBJECT in over with at
once, rather than having it occur a bit at a time as OBJECT
is referenced.

The storage occupied by OBJUECT is defined by the YFIND-
STRUCTURE-LEADER and “ZSTRUCTURE-TOTAL-SIZE subprimitives.

page—1n—arrag (array %optional from to)
This is a version of PAGE-IN-STRUCTURE that can br1ng in a
portion of an array. FROM and TO are lists of subscripts;
if they are shorter than the dimensionality of ARRAY, the
remaining subscripts are assumed to be zero.

page—in—-pixel—array (array %optional from to)
Like PAGE-IN—~ARRAY except that the lists FROM and TO, if
present, are assumed to have their subscripts in the order
horizontal: vertical, regardless of which of those ¢two is
actually the first axis of the ARRAY.

page—in-words (address n-words)
Any pages that have been swapped out to disk in the range of
address space starting at ADDRESS and continuing for N-WORDS
are read into main memory.

page—in—-area (area-number)

page—in-region {(region-number)
All swapped—out pages of the specified region or area are
brought into main memory.

page—out—-structure (object)

page-out—array (array %optional from to)

page—out—-pixel—-array {(array %optional from to)

page—out-words {(address n—words)

page—out—area (area-number

page—out-region {(region-number)
These subprimicives exist only for compatibility with old

code which may reference them. They currently do nothing
and simply Teturn NIL.

6—-14

wUWT WAl © WeES4dyll INUVYE S Fragllly 4alld iS5k Vahiagement

Zpage—status (virtuval-address)
If the page containing virtual-address is swapped out, or if
it is part of one of the low-numbered permanently-~wired
system areas, this returns NIL. Otherwise, it returns the
entire first word of the Page Hash Table (PHT) entry for the

page.

See the section on Paging and Disk Management for the format
of a PHT entry. Byte specifiers for the PHT fields can be
found in the PAGE-HASH-TABLE~FIELDS list.

“change-page-status
(virtual—address swap-status access—status—and-meta-bits)
The Page Hash Table (PHT) entry for the page containing
VIRTUAL-ADDRESS is found and altered as specified. T is
returned if it was found, NIL if it was not {(presumably the
page 1is swapped out). SWAP-STATUS and ACCESS-STATUS-AND-
META-BITS can be NIL if those fields are not to be changed.

NOTE

This subprimitive is extremely dangerous
since it does no error checking. The
integrity of the virtual memory system can be
irreparably damaged if this functian is
called improperly.

“compute—page—hash (virtual-address)

%compute-page—hash—-lisp (va %optional max-byte—index max-byte-
size)

“rehash (old-pht—-index %optional max—index)
The first two return the hash value for VIRTUAL-ADDRESS
(Va) . The hash value is a byte offset into the Page Hash
Table (located in physical memory) where the PHT entry for
VIRTUAL-ADDRESS hashes to. However, this entry may already
be in use. In that case, “REHASH may be used (given the old
hash value) to find the next place to look.

ZCOMPUTE-PAGE-HASH-LISP and ZREHASH are coded in Lisp. They
take optional parameters which allow testing of the hash
function on different sized hash tables. The defaults for
the optional arguments are the values suitable #for the
whatever the rtunning configuration is.

pages—of—physical-memory

Returns the total number of physical memory pages in the
current memory configuration. Any number in the range [0 .

6-15

(1- (PAGES-DF—PHYSICAL—MEMDRY))J can be used as a valid page
frame number (PFN) for functions which require them.

convert-physical-address—to-pfn (physical-address)
convert-pfn—to-physical-address (pfn)
convert-slot-offset~to-pfn (nubus—-slot offset—into-slot)
convert-pfn—to-slot—offset (pfn)
convert—physical-page-to-pfn (phys-pg)

convert—-pfn—to-physical-page (pfn)

These routines use the A-Memory Physical Memory Map to
perform conversions between a 1logical page frame number
(PFN) and a physical NuBus address. A PFN is simply a page
number between zero and the number of physical pages
available in the current configuration (which can be
obtained by the PAGES-OF-PHYSICAL-MEMORY function). The
physical address is a NuBus byte-oriented address which
corresponds to PFN.

The manner in which the physical address 1is expressed
depends on the function you use. CONVERT-PHYSICAL-ADDRESS-
TO-PFN and CONVERT-FFN-TO-PHYSICAL-ADDRESS use 32-bit NuBus
addresses. The next two use the slot/byte-offset into slot
form of expressing a NuBus address (two values are returned
from CONVERT-PFN-TO-SLOT-OFFSET). The ones with PHYSICAL-
PAGE in their names use just the top 21 bits of the NuBus
address.

“delete-physical-page (pfn)

This is used to delete pfn (which is a logical page number
of physical memory) from the virtual memory pool. Any
virtual page that is currently in pfn will be swapped out
{if necessary) and the page will be marked so that the
virtual memory system will not use it in the future for
holding virtual pages. This is wuseful +for reserving
physical memory for use, say, as an I/0 buffer for a device
which does DMA I1/0. It can also be used to force a virtual
page to be swapped out of physical memory.

Returns T if page was deleted successfully. Returns NIL if
page was already deleted.

%“create-physical-page (pfn)
This reverses the action of “delete-physical page. That is,
given a deleted pfn, Ycreate-physical-page marks it so that
it can be used in the by the virtual memory system to hold a
virtual page.

6-16

Software Design Notes Paging and Disk Management

set-memory-size (new—-size-—in-pages)

Specifies the size of physical memory available to the
virtual memory system to NEW-SIZE-IN-PAGES. Can be used to
decrease the number of physical pages available to virtual
pages, or to increase it back to the system maximum if SET-
MEMORY-SIZE has previously been used to lower it. This may
be useful for measuring performance based on the amount of
memoTy.

To determine the actual number of physical pages in the
current configuration, vuse the PAGES-OF-PHYSICAL-MEMORY
function. The variable YWORKING-MEMORY-SIZE contains the
NEW-SIZE-IN-PAGES that you set using SET-MEMORY-SIZE.

SET-MEMORY-SIZE uses %DELETE-PHYSICAL-PAGE and %CREATE-
PHYSICAL-PAGE.

get—-contiguous—physical-pages {(number—of-pages)

return—contiguous—physical-pages (number—of-pages slot offset)

GET-CONTICUOUS-PHYSICAL-PAGES may be used to obtain a block
of physically contiguous memory (and always on the same
memory board). NUMBER-OF-PAGES is the amount desired. A
physical page is 2048 bytes (the value of the variable PAGE-
SIZE~IN-BYTES). The pages thus obtained will not be
available to the virtual memory system until returned by the
RETURN-CONTIGUOUS-PHYSICAL-PAGES function.

1 NUMBER-OF-PAGES contiguous pages cannot currently be
freed for use, NILs are returned. Otherwise, two values are
returned: a NuBus slot number and the byte offset in the
slot which together specify the 32-bit NuBus address of the
start of the physical memory block obtained.

%physical-address (virtual-address)
Returns the NuBus physical address which VIRTUAL-ADDRESS
currently occupies in main memory. This value is
unpredictable if the virtual page is not swapped in;
therefore, this function should be used only on wired pages.
or you should do

(WITHOUT-INTERRUPTS .
(%ZP-POINTER virtual-address) iswap it in
(ZPHYSICAL-ADDRESS virtual-address))

Unless you assure that the page is wired. or wuse the physical
address returned in a section of code that is guaranteed not to
change the contents of physical memory, the value returned may
not be meaningful for long.

%virtual-page—number (pfn)
Given a logical page frame number (PFN), returns the virtual

6-17

page number currently in the physical page, or NIL if there
is none currently. The virtual page number returned can
change wunpredictably unless the page is wired down, or
unless you assure that no interrupts (or consing of any
kind, which «can cause a swapout) occurs in the section of
caode using the value.

“page—frame-number {(va) ‘
Given a virtual address (VA), returns the logical page frame
number (PFN) it currently resides in, or NIL if none. Use
of this value is subject to the same restrictions as for the
two preceding functions.

%add-page-device (real-unit start-block band-size)
This function 1is used by the CONFIGURE-PAGE-BANDS function
to add a PAGE band to the virtual memory system. REAL-UNIT
is the physical wunit where the PAGE band resides. START-
BLOCK is the PAGE band’s first block number, and BAND-SIZE
is its total size in blocks.

“findcore
Frees a page of physical memory {(removes it from paging) and
returns its logical page frame number (PFN).

“page—in (pfn vpn)
Creates a Page Hash Table (PHT) entry that indicates that
virtual page number VPN is located in 1logical page frame
number PFN. This had better be true or you’ll be in
trouble.

“page—trace
Ne 1longer implemented. Signals an illegal instruction
error.

deallocate-swap—-space (region)
Called by the garbage collector to free up any swap space on
PAGE bands that is wused by the virtual memory in REGION.
REGION is an Oldspace region which the garbage collector has
finished collecting, so that now its virtual memory (and any
associated swap space) can be freed for later re-use.

“return-page—-cluster (swap-device-number cluster-offset)
This is the routine called by DEALLOCATE-SWAP-SPACE to do
the real work. SWAP-DEVICE-NUMBER is the logical page
device number of a PAGE band and CLUSTER-OFFSET specifies
the cluster number in that paging device to be freed.

“disk—address {(va)
Used to +find the disk address, if any associated with
virtual address VA. This address may be on the LOD band or
on any of the PAGE bands in the current configuration.
Returns three values, if VA is a wvalid virtual memory
address: the absolute disk block address of the page

6-18

A

containing VA,
status

the physical disk unit, and the DPMT device

code for the page. See the constants in the ZDPMTE-

DEVICE-OFFSETS~FIELDS list for interpretation of this third

value.

6-19

