SECTION 5

The Virtual Memory System

5.1 VIRTUAL MEMORY

Virtual Memory is the simulation of a large fast primary memory
by the wuse of a fast but smaller primary memory and a large but
slow secondary memory. Blocks, called pages, are moved between
primary and secondary memory according to a page management
strategy.

A page management strategy that moves a page into primary memory
when it 1is referenced but not present in primary memory (a page
fault) is termed demand paging. Usually, a page being moved into
primary memory displaces some other page. The choice of the page
toc remove is made by appluing the page replacement policy. I1f
the page chosen for replacement has been altered while in primary
memory, it must be written to secondary memory before it can be
replaced. A page in primary store that has been altered is

called a dirty page

Some pages are exempted from paging. These are termed wired
pages. Wired pages are used for interrupt handler buffers
because interrupts cannot take a page fault; for pages containing
paging tables on which a page fault cannot be allowed; for pages
involved in DMA transfers; and other pages containing critical
data which must be accessed without a page fault or for which the
performance penalty for taking a page fault is too great.

In the Explorer, semiconductor memory is used as primary memory
and disk is used as secondary memory. Pages are moved into
primary memory when referenced and not present —— demand paging.
Every attempt is made to replace a page which 1is not dirty so
that a write to secondary memory is not needed.

A page exception is said to occur when for some reason the
virtual to physical address mapping could not be completed by the
mapping hardware without microcode support. There are many
reasons for this; only one of those reasons requires access to
secondary storage. I+ a page is referenced and this Treference
cannot be completed without operations with secondary storage,
then a page fault has occurred. This distinction is made so that
page exception rates and page fault rates can be distinguished.

VYirtual memory references are processed below everything except
interrupts in the Explorer hierarchy (they are depended on by

S5-1

everything except interrupts). A virtual memory reference is
considered an atomic operation on the Explorer system; that is,
the time spent waiting for a virtual memory reference to complete
(including time spent waiting for disk paging activity) is not
available for wuse by any other part of the system except
interrupt processing. This policy greatly simplifies the
implementation of various low-level Explorer subsystems.

5.2 PHYSICAL ADDRESSES

Memory 1is accessed by use of a physical address, a system—wide
name for some storage. The Explorer is based on the NuBus, a 32-
bit, high—-speed bus. All NuBus addresses are byte addresses with
words aligned so that the low order 2 bits are zero.

Explorer physical memory, monitor screen memoTy and 1/0
peripheral control registers all reside within the same 32-bit
address space. Not all bus addresses will be accessible directly
mapped in the Lisp virtual address space. This is true because
the 25-bit Lisp virtual address is smaller than the 32-bit NuBus
address space. Data can be read and written into unmapped
physical addresses wusing special physical I/0 functions from
Lisp.

5.3 VIRTUAL ADDRESSES

An address in the Explorer system is the size of a pointer field.

which is 25 bits. The virtual address is divided into a virtual

page number and a page offset. The virtual page number is the
high order 16 bits of the virtual address, and page offset is the
low order @ bits of the virtual address. Thus, each virtual page
contains 512 words (or 2048 bytes) of storage

The Explorer 1 and Explorer Il both have memory mapping hardware
based on a map page size of 256 word (or 1024 bytes). Therefore,
there are two hardware map pages for each virtual page. When
referring to these maps, the map page number is based on the high
order 17 bits of the virtual address and will be <called the
virtual page map number. The page offset is based on the low
order 8 bits and will be called the page map offset.

The Explorer has a simple memory map. ./0 is not, by default,
part of virtual memory. but 1instead 1is accessed by special
physical I/0 operations. The A-memory (the processor memory for
data accessed by the microcode) has a dedicated virtual address,
which is at the very +top of the virtual address space, but
consumes none of the physical address space.

N

In order to translate from a virtual to a physical address. the
virtual page map number is looked up in the hardware page maps to
produces a 22-bit page frame number. The page frame number is
concatenated with the 10-bit page map offset to make a 32-bit
physical address. This is used to address the primary memory
over the system (or other) bus.

The map also produces other outputs for use by the processor: 2
access bits, 2 status bits, & meta bits and 2 garbage <collector
volatility bits. These outputs are used by the microcode to help
manage page aging, storage allocation attributes (on a per-region
basis), garbage collection, and other functions.

The Explorer microprocessor has a standard NuBus interface. In
addition, The Explorer I microprocessor has a special bus to
"local memory". This 1local memory also exists in the NuBus

address space but the special high-speed dedicated bus to this
memory reduces the NuBus traffic.

5.4 PHYSICAL MEMORY USE

The physical memory present in the machine can be divided into
two categories according to its usage. A portion of memory is
set aside for use by the paging system itself and by microcode
and Lisp device handlers that perform physical addressing. Data
in this space is said to reside in physical memory which is not
accessible in the virtual memory address space. Such physical
memory is termed the permanently wired pages. The rest of the
local physical memory is used as a transient page area, i.e., the
virtual memory system assigns the pages of the virtual memory to
physical locations as a part of its management functions.

5.5 VIRTUAL MEMORY PARTITIONING

To avoid the need for a very large mapping memorTy. OT an
associative memory. both the Explorer I and Explorer II use two-

level memory maps for the virtual-to-physical address
translation. Several sections following this one describe the
hardware maps in detail. This section, however, is meant to

provide an overview and motivation for the map functions.

The first level map (called the Level-1 map on the Explorer I and
the Address Space Map on the Explorer I1) effectively partitions
the virtual address space into segments of BK words (16 pages).
They both have 4096 entries and are indexed by the top 12 bits of
the virtual address. Note that there are two such entries per
32-page address space quantum. The 32-page address space quantum
is the unit in which address space is allocated to regions; that

5-3

is, a region must be at least 1 address space quantum long. and
must have a length evenly divisible by the address space quantum.

On both Explorer I and Explorer II, a number of second level maps
are allocated to the first 1level maps. The number of second
level maps differs; but in both cases it is much 1less than the
amount required to map in the entire 25-bit address space. I+
the address is not currently being mapped by the mapping
hardware, the microcode consults the Page Hash Table (PHT,
described later) which describes all pages in physical memory.

In general terms:. the first level maps can be thought of as a way
of segmenting the address space into blocks of contiguous virtual
pages with identical attributes in order to aid storage
allocation and garbage collection functions. The second level
maps can be thought of as a cache describing the most recently
accessed pages. Except for special system pages, the storage-
management and garbage-collection-specific information in the
memory maps 1is initially set up from the REGION BITS associated
with a virtual address. They may later be altered by the garbage
coilector.

5. 6 EXPLORER I MAPPING HARDWARE

The Explorer I Level-i Map (Figure 5-1) is 4096 words long and is
indexed by the top 12 bits of the virtual address. The first
level map, if valid, produces a 7-bit index into the second level
map along with several status bits.

15 14 13 12 11 109 7 6 0

o —— T s e e R L +
: Unused P MR WD AL VI O GCVI LVLZ2 INDEX!
——— e L T A s = + +

M 15> = last access mapped (not physical)

F 14> = last access forced

W “<13> = 1last access write fault

A 12> = last access access fault

v <i1> = map entry valid

O 10> = oldspace meta bit; O = oldspace

GCV <«9> = Garbage Collector volatility bits

LVL2 INDEX <6:0> = Level—-2 block number

Figure 5-1 Explorer I Level-1 Map (LVL1)

The second level map (Figure 5-2) consists of 128 blocks of 32-
registers each. Each set of two registers represents one map-
page entry. After wusing the most significant 12 bits of the

5-4

virtual page map number to index into LVL1, the remaining 5 bits
of the virtual page map number select a register within the LVL2
block. If both the LVL1 and LVL2 entries are valid, and if all
other status indications are positive, the selected LVLZ2 map
register produces the 22-bit physical page frame address. Note
that since the LVL2 map blocks are indexed by the least
significant 5 bits of the 17-bit virtual page map address, each
of the 128 blocks represents 16 contiguous virtual pages.

Memory Map Level 2 Control Bits

31 16 15 14 13 12 11 1098 &5 43 0O
——— + + T e el e e
! Unused TTMLITMO!Y LY GCV | FIAISTAT! REP! SPI
——— + + s e + + +

T™M1 <15 = last access TM1
TMO <142 = last access TMO
L <13 = Jlast access locked
GCV <<12:11» = Garbage Collector volatility bits
F 10 = force allowed
A <> = access bit; O = no access
STAT <B:6> = status bits (see Figure 5-4)
REP £5:4> = representation type:
0 = list
1 = structure

2,3 unused

Memory Map Level 2 Address Bits

31 a2 21 0
[Ip——

! Unused (Q)

o —

Physical Page Number

+ - +
+ -+

Figure 5-2 Explorer I Level-2 Maps (LVLZ2)

The second level map is rtead in as two separate functional
sources since the data field is greater than 32 bits. The field
is separated into Memory-Map-Level-2-Control-Bits and Memory-Map-
Level—-2-Address—Bits.

To handle a page exception a check must first be made to see if
the LVL1 entry 1is wvalid. A bit in the Memory-Map-Level-1

register indicates this. If the first level map entry is not
valid, a block of second 1level map must be allocated and
initialized with "map not valid" entries. The first level map

must be set up to point to it. From here the page exception is
handled as a second level map miss (described later).

5-5

ine vitTiual nemory oystem LUTlwalre vUedbdigll nNnNowvesS

I# the first level map entry is valid then the data in the second
level memory map control register determines the action to be
taken. The map status code is used to determine the processing
case.

5.7 EXPLORER I REVERSE FIRST LEVEL MAP

For each block of 128 Second Level Map registers, there is an
entry in the Reverse First Level Map which gives <the number of
the First Level Map entry which points to this block. or else

indicates that this block is unused. It contains a value which,
it placed in the Virtual Memory Address register (VMA), would
address that first level map entry, or else it contains -1 to

indicate that this block 1is not currently pointed to. The
Reverse First Level Map is held in A-memory and 1is 128 words
long. It is used when allocating map level-2 blocks.

5.8 EXPLORER I MEMORY MAP ALLOCATION

A simple clock scheme is wused for allocation of second level
memory map blocks. If a level-1 map fault occurs. the Reverse
First Level Map is consulted to see if the level-2 map block is
owned by this level—-1 block. If so, the valid (V) bit is set and
the memory reference is restarted. If not, a new level-2 map
block must be allocated to this level-1 entry.

To find a level-2 map block to allocate, the Reverse First Level
Map is scanned. If the value is -1 then this level-2 map block
is free and can be allocated. I# the value is not -1 then it
contains the address of the map level-1 entry which owns this
level-2 map block. If the level-1 valid (V) bit of this entry is
not set then this block has not been wused recently and is
allocated to the new entry. I# the valid (V) bit 1is set, then
this entry is in use. The level one entry is aged by turning off

the wvalid bit. The scan continues at the next Reverse First
Level Map entry. The scan will wrap around if the end of the
table is encountered. GSince the aging is done during the scan,

if the entire structure is scanned and no level-2 map block is
found, then the scan merely continues and will choose the next
entry since it was aged during the last scan.

The map level-2 block is allocated by setting the index in the

map level—-1 entry and updating the Reverse First Level Map to
reflect the new allocation.

5-6

Software Design Notes The Virtual Memory System

5.9 EXPLORER II MEMORY MAP HARDWARE

The Explorer II map hardware consists of the Address Space Map
(ASM), the Virtual Memory Maps Status (VMM Status). and the
Virtual Memory Maps (VMM). The Address Space Map and the VMM
Status replace the 1level-1 maps on the Explorer I and the VMM
replaces both level-2 maps.

The Address Space Map (see Table 5-1) contains garbage collection
oldspace and volatility information. There are 4K entries in
this table., one entry for every 16 pages or 8K words, which is
equivalent to two entries for every address space quantum (16K
words; the smallest region size). This table is addressed by the
high order 12 bits of the 25 bit virtual page address.

Table 5-1 Address Space Map Bits Assignment

7 b6 5 4 3 0

————t— + + +
IGCVS: GCV | 08 | Meta |
B i s St Tt
GCVS <7 : Garbage Collection volatility

valid status. 0 = true

GCV <6:5> : Volatility level for this address
space half quantum

as L4 : 01d Space bit, O = Oldspace

Meta <3:0> : Address space Map Meta bits

The Virtual Memory Map Status contains two entries for each
virtual page and therefore contains 128K entries. Each table
entry consists of two bits (see Table 5-2), which indicates
whether the VMM table has a valid entry. It also indicates in
which VMM bank. right or left, the valid entry can be found, if
one exists.

Table 5-2 Virtual Memory Maps Status

V <0>» : Valid bit, 1 if map is set up
B <1> : Bank select, 1 if right bank. O if left bank

The Virtual Memory System Software Design Notes

The Virtual Memory Map (VMM) consists of two banks. Each bank
has 16K 32 bit maps. Each entry has the 22 bit physical frame
address needed by the hardware to map from virtual memory to
physical memory. The maps also contain two access bits that
control the type of access to the maps. Bit 31 is the read/write
access bit, and will cause a page exception if not set on any
mapped cycle. Bit 30 is the write access bit, which is also the
top bit of the 3 bits status field (see Table 5-3), will cause a
page exception on mapped write cycles if not set.

When a mapped «cycle is done, the mapping hardware will first
check the the Virtual Memory Map Status Ram by indexing into it
with bits 8 though 24 of the virtual address used. If# the valid
bit is not set, then a map miss page exception occurs. I# <the
valid bit is set, then the hardware checks the bank select bit in
the Virtual Memory Map Status to see which VMM bank it should
use, the right or left. It then gets the entry from the correct
bank by indexing into with bits 8 through 21 of the virtual
address. If the read/write bit is set in the VMM and the cycle
is a read or if both the read/write access and write access is
set and the cycle is a write, then it can complete the cycle by
using the physical address. I# the access bits are not set
correctly then a page exception occurs. The 32-bit physical
address is constructed from the top 22-bit physical page number
along with the B-bit map page offset from bits O through 7 of the
virtual page address, with byte offset. the 1last two digits,
being Q.

S8ince the VMM banks are indexed by bits 8 through 21 of the
virtual address, bits 22 through 24 indicate the 8 different
pages that will index to the same VMM index. Since there are two
banks, 2 of these 8 pages can be set up at the same time.

I# +the <cache inhibit bit is not set, the hardware will use the
cache if it can, and do cache fills as needed.

5-8

31 30 28 27 26 25 24 23 22 21 0

F——t—— +— s . s - -

1A ISTATUS | REP 10 | GCV iICI! PHYSICAL PAGE NUMBER

e +- e St S TS -t

A 31> : Access bit, O is no access

Status <30: 28> : Status (see Figure 5-4)

Rep L27: 26> : Region representation, O is list space, 1 is
structure space, 2 and 3 are unused

o LS : Oldspace bit, O = oldspace

GCV 24 23> . Garbage Collection Volatility bits

Ci L22 : Cache Inhibit, 1 = inhibit

Physical Page Number

<21: 0> . The top 22 bits of the 32-bit physical page
address.

Software Design Notes The Virtual Memory System

Table 5-3 Virtual Memory Map

5.9.1 Explorer II Map Usage Table (MUT).

The Explorer II Map Usage Table (MUT) resides in physical memory

and contains 8192 entries (see Table 5-4). Since there are two
entries per 32 bit word, it occupies 4094 words of physical
memory. Since one 2K page uses two maps. each entry has

information for two left and two right VMM maps. For each pair
of maps, it shows which of the 8 possible virtual memory pages is
using the left bank and which is using the right bank. It also
shows which bank to use next when one of the remaining & pages is
accessed and therefore needs the maps set up

The Virtual Memory System Software Design Notes

Table 5-4 Map Usage Table (MUT)

15 14 13 8 7 2 1 0

! ! left | right ! Next!

+ -+ + + +
Next <0:1> : 00 --» wired page, always in left bank

01 --> use right bank next
10 —-2> use left bank next
il -—-=> unused

Right <{2:7> : The bottom 3 bits of this field indicate
the top 3 bits of the page that currently
has the map in the right bank. If the
field is -1, then it is currently unused.

Left <8:13> : The bottom 3 bits of this field indicate
the top 3 bits of the page that currently
has the map in the left bank. If the field
is -1, then it is currently unused.

<15: 14> : Unused.

5.10 EXPLORER II MEMORY MAP ALLOCATION

Explorer II map allocation is much easier then the Explorer 1.
When a map exception occurs, bits 9 through 21 are used to index
into the MUT (actually, bits 10 through 21 are used to get the
correct word and bit 9 is used to select the halfword). The NEXT
field is accessed to see if the new map should be set up in the
right or left VMM bank. I+ the left bank has a wired page, the
right bank is always used. The appropriate RIGHT or LEFT field
from the MUT entry is accessed to see who currently owns the map.
If it is -1, then there is no current ocwner. The current wuser
virtual address is calculated from the bottom 3 bits of the LEFT
or RIGHT field from the MUT along with bits 9 through 21 of the

current virtual address (i.e., the one that needs the maps set
up). This is used to invalidate the VMM Status Table for the two
maps that currently are wusing the bank needed. The MUT is

changed to reflect the new owner, the NEXT field is updated to
use the other bank next time (unless it has wired status) and the
table entry is rewritten. The VMM data in the correct bank is
set up, and the VMM Status is set to valid with the correct bank
select. The memory cycle that caused the page exception is then
restarted.

5-10

5.11 PAGE EXCEPTION HANDLING

A memory reference which causes the maps to be altered, but can
then complete produces a page exception. This includes
references which must go to the PHT to reset the maps. A
reference which cannot complete without access to disk (no wvalid
information even in the PHT) is said to cause a page fault. This
section describes page exception handling.

A page exception can be generated by the memory mapping hardware
for a number of different reasons during the 2-level map 1lookup.
A level-1 miss can occur if <the valid bit is not set in the
level-1 map. A level-2 miss occurs when a non-normal map status
is found 1in the second level map. Examples page exceptions
include inappropriate read/write access privileges; page 1is in
the processor’s PDL buffer or A-memory:; page is marked as "trap
on any access” (the "MAR" break feature) and others. Depending
on the circumstances, some of these conditions may eventually be
signalled as traps by the microcode. or the reference may
continue and complete normally. The specific exception handling
is based on the {Memory Access and Memory Status fields and is
described in detail below.

5.11.1 Memory Access Codes.

Memory Access codes are listed in Figure 5-3. Access codes are
determined by combining the access bit and the most significant
bit of the status bits field. These codes specify what memory
operations (read, read/write or none) are to be permitted to

these pages. If the desired access is permitted the memory
system performs the operation. If the desired access is
inappropriate, the page fault condition is set and the page
exception handler is invoked. The exception handler then vuses

the status code to determine what steps to take next.

Access Bit MS Status Bit Code Access-Type Meaning

o} X 0,1 No Access
1 0 2 Read Only
1 i 3 Read/Write

Figure 5-3 Memory Map Access Cades

9.11.2 Memory Map Status Codes

In this section each memory map status code is examined in
detail. The possible map status values and their interpretations

o-11

e

W PWEaI S WME SAagil 1TV YR e R fife &I VWA 1TRIIWEI B9 o= vewind

location information. In other words, there is first-level map
information available, but no physical mapping information. This
type of map entry is created when a pointer to an object is used
but the object itself is not referenced. The oldspace and region
representation type bits in such a map entry are needed by the
garbage collector. An attempt to access the storage associated
with the object later will be treated like a map miss.

5.11.2.3 6Status Code 2: Read Only.

An attempt was made to write to a page that is set to read-only
will cause a page exception. A special case is made for a forced
write operation. In this case, the write occurs and no access
fault 1is declared. This is needed so that the garbage
collector/compactor can move data structures that ordinarily need
protection.

I+ the operation is a regular, non-garbage collection write and
the special A-memory/Lisp variable SYS: ZINHIBIT-READ-ONLY is NIL.
then the operation is declared illegal and an error is signaled.
I# SYS:%ZINHIBIT-READ-ONLY is non—NIL, the access is allowed.

5 11.2.4 Status Code 3: Read/Write First.

A page exception occurs on an attempt to write. The processing
for this exception consists of changing the status in the map and
the page hash table to read/write, indicating the contents of the
page have been modified. The reference 1is restarted. This
facility implements the dirty page status.

I# the page that is being set to dirty is currently assigned to a
read-only page band, then it will be reassigned to a read/write
page band (given swap space) later when the page needs to be
swapped out of physical memory.

5.11.2.5 Status Code 4: Read/Write

A normal, fully mapped page. No exception should occur on this
type of page. If this status occurs, the hardware is faulty, and
a crash sequence will be initiated.

5 11. 2.6 GStatus Code 5: Fage might be in PDL Buffer.

Certain areas which contain regular PDLs arrange to get the map
set to this status for their pages (instead of read/write). The
microcode has to decide, on every reference, whether the page 1is
in the processor’s PDL buffer registers or in main memory., and
simulate the appropriate operation. It may be that only part, or
none, of the page is in the PDL buffer on a particular reference.
Thus the page exception handler must test the virtual address to
see if it falls in the range which is really in the PDL buffer
right now. If not, temporarily turn on read/write access: make
the reference, and turn it off again. Pages may be swapped out

5-13

LER L 3 VA i VWS a A A A | e~ Ehdi i Baadhan S D~ ST T T e B

without regard for whether or not they are in the PDL. This
works because the normal course of swapping out invalidates the
second—-level map. If the page is then referenced as memory, it
will be swapped in normally and its map status restored from the
Region-Bits table, in the normal fashion. This will then restore
the Maybe-PDL map status. Otherwise, the addressed word is in
the PDL buffer. Translate the virtual address to a PDL buffer
address and return the appropriate register contents.

5.11.2.7 Status Code 4: Possible MAR Trap.

The memory address register (MAR) facility allows any word or
contiguous set of words to be monitored constantly, and cause a
trap if the words are referenced in a specified manner. The name
MAR is from the similar device on the ITS PDP-10‘s. The MAR trap
status is set for all pages that are in the range of addresses
being monitored. This range is indicated in the A-memory/Lisp
variables SYS:ZMAR-LOW and SYS: ZMAR-HIGH. When the MAR trap
occurs, the virtual address is checked to see if it falls in the
Tange. If so, a trap may be called. It should be noted that
traps, since they cause sequence breaks, are not allowed during
stack group switches, so if a MAR-monitored address is
referenced, a sequence break flag 1is set, and the break will
cccur at the next appropriate time.

I+ an address falls within the MAR‘d range. then the action taken
depends on the currently active MAR-mode (MAR-mode is actually a
2-bit +field in each stack group’s mode flags). The action taken
for various flag word values is shown in Table 5-5.

Table 5-5 MAR Status Codes

Valvue Memory Operation MAR Mode Action
9] Read MAR disabled No trap
i Read ' Read Trap Trap
2 Read Write Trap No trap
3 Read Read/Write Trap Trap
4 Write MAR disabled No trap
=} Write Read Trap No trap
6 Write Write Trap Trap
7 Write Read/Write Trap Trap

5.11.3 GCV and Oldspace Exceptions.

In addition to access/status fault exception handling. exception
handling 1is also performed for two garbage-collection— related
conditions: Garbage Collection Volatility Fault and Oldspace.
These two are described briefly below. More information on them

5-14

P

is presented in Section 9 (Garbage Collection). These exceptions
are different from access/status exceptions in that the mapping
hardware does not signal the page fault condition for them.
Rather, the reference produces GCV and Oldspace conditions that
the microcode can then selectively dispatch vupon.

5.11.3.1 0Oldspace.

The Oldspace condition is indicated by the Oldspace Meta Bit in
the first-level map being O. It indicates that objects in these
pages are currently being garbage collected. The Oldspace Meta
Bit can be ORed selectively into a microcode dispatch. The
TRANSPORT dispatches wuse this bit. The TRANSPORTER is invoked.
which decides if this is an object that needs to be moved for
garbage callection. For more information on the TRANSPORTER, see
Section 9.

5.11.3.2 Garbage Collection Volatility Faults.

The Garbage Collection Volatility Fault condition is also a 1-bit
field. It is signaled whenever a younger object (contained in
MD. memory data register) is written into older memoTy
(represented by VMA, the memory address register). The GCV
output is determined by a comparator which examines the 3-bit GCV
field in the first—-level map and the 2-bit GCV +field in the
second-level map. The details of the fault inputs and output,
along with their interpretations in the Temporal Garbage
Collection implementation, are presented in Section 9.

On the Explorer I, the GCV fault is stored in an inaccessible i-
bit GCV register, and is preserved only wuntil the next memory
reference 1is performed. Thus, it can only be sensed by a
dispatch using GCV done immediately after the memory cycle. On
the Esxplorer II, the GCVY register can be read and written as a
functional source and destination, hence can be stored across
other memory references

5.12 VIRTUAL MEMORY SYSTEM TABLES

There are some additional tables associated with paging that are
used by the microcaode: the Page Hash Table (PHT) contains an
entry for every virtual page that is currently memory resident.
The physical page data table (PPD) contains an entry for every
physical page of memory. These tables are described in further
detail below.

5.12.1 Page Hash Table.

The page hash table (PHT) resides in physical memory and 1is not
part of the virtual address space. It describes every virtual

5-15

page that is currently resident in physical memory. When the
microcode detects a map miss, the PHT is consulted to see if the
virtual page is still in physical memory. If so, the Level 2
maps (Explorer I) or VUMM hardware (Explorer II) can be set up
from the information stored in the PHT, and the memory reference
will be restarted. Since the mapping hardware now contains valid
mapping information, the reference should complete normally. If
there is no valid PHT entry for a virtual address, a page fault
is said to have occurred, and the page must be read in from disk.

The page hash table is also used to store information used by the
page aging and swap management functions. A full description of
the role of the page hash table in these contexts is described in
a later section.

5.12.2 Physical Page Data Table.

The Physical Page Data Table (PPD) resides in physical memory and
is not part of virtual address space. When the system is booted,
the system determines the size of primary memory and allocates a
suitable portion of physical memory for this table.

An entry for a page in the Physical Page Data Table is shown in
Table 5-4. There is one PPD entry for every Si2-word page of
physical memory. A PPD entry thus represents a logical page
frame or page frame number (PFN) in the physical memory pool.
Each entry is broken into two parts. The low order 16 bits of
the word contain an index into the Page Hash Table or a page
allocation status. The high order 16 bits of the word contain an
index into the Physical Page Data Table linking this page to the
next most recently used physical memory page.

All the physical pages that are allocated to hold ‘the microcode
management tables are marked #x+FFFFFFFF, to indicate that these
pages are not to be used in the virtual memory page pool.

The Physical Page Data Table is used to determine which wvirtual
page is contained in a given physical page. The microcode page
aging and replacement algorithms are driven by a scan of the
Physical Page Data Table.

5-16

s

wWwWl YW © ue:b!ll PN W N o vy - v &= & = T - - | Dl B

Table 5-6 Physical Page Data Area Word Format

Value ‘ Meaning

PHT INDEX FIELD:

FFFF (hex) System wired or permanently
wired page. Page is not
available in virtual

' memory pool.

FFFE Free page. Page is available
in the virtual memory pool
but is not currently in use.

PHT Index Normal page. Value contains the
index of the page hash table
entry for this page.

PPD LINK FIELD:

FFFF (hex) Not available. Page is not
available in virtual memory pool.
FFFE Write in progress. Page is in

virtual memory pool, but is
currently being written to disk.

FFFD End of LRU list. Page is the most
recently referenced page in
virtual memory pool.

PPD Link Normal page. Value is index of the
physical page table entry of the
next most recently referenced page
in the virtual memory pool.

Given a page frame number, information about the virtual page
associated with the physical page can be determined as follows.
Use the PFN as a word index into the PPD. If the PPD index field
is valid (greater than FFFE), then there is a virtual page in
this page frame. Use the index field shifted left by 1 as a word
index into the PHT.

5.13 A-MEMORY PAGING INFORMATION

In addition to the Explorer I Reverse-First-Level—-Map, other
virtual-memory~specific information is kept in portions of A-
memary, as described below.

°-17

5.13.1 PDL Buffer Handling.

A-memory also contains the first virtual address which currently
resides in the PDL buffer (in A-PDL-BUFFER-VIRTUAL-ADDRESS), and
the PDL buffer index corresponding to that address (in A-PDL-
BUFFER-HEAD). Note that the valid portion of the PDL buffer can
wrap around as shown in Figure 5-5.

When a page exception is taken for a page that might be in the
PDL Buffer: the microcode handler must check to see if the
virtual memory address falls in the wvalid portion of the PDL
Buffer. The further processing of this case is explained under
the map level 2 status code for PDL Buffer (status code 5).

PDL Buffer 1023

o]

valid invalid valid

e -
<+

4+ -0 -- +
-]
o

$ - - 4
w
]

4 -t

Figure 5-5 PDL Buffer Wrap-Around

5.13.2 Physical Memory Map.

The Physical Memory Map (PMM) is a set of A-memory locations
which describe which logical page frame numbers (PFNs) reside at
which physical memory (NuBus) board addresses. Each entry in the
PMM describes one or more 2MB quantums of physical memory. The
number of 2MB quantums is kept in the low 10 bits, while the top
22 bits give the (NuBus) physical page frame number where the
first quantum starts (see Figure 5-64).

31 10 9 0
o
! physical page frame number

——

of quanta

+ -+
+ -+

Physical Memory Map Entry

Figure 5-6 Physical Memory Map Entry

o-18

