SECTION 3

Interrupts

3.1 INTRODUCTION

Hardware event signals (interrupts) are the lowest level of
mechanisms in the Explorer virtual architecture. An interrupt,
therefore, cannot rely on any higher level to perform its work.
Hence, interrupts are serviced by the lowest level of the
microcode implementation without reference to virtual memory,
garbage collected memory, or macro instructions. (Virtual memory
service for memory map handling is considered very low level and
is permitted in some interrupt contexts.)

An interrupt is caused by an I/0 device requesting service,
another processor signalling an event, or by system bus and

internal processor errors. In order to simplify interaction
between interrupts and higher levels, interrupts are not
auvtomatically processed, but are polled at convenient times by
higher 1levels of the implementation. When an interrupt is

noticed by polling, control transfers to an appropriate handler
for the interrupt.

Interrupts communicate with higher 1levels of the system via
shared memory in the form of flags in internal processor memories
and shared memory. The shared memory must not be garbage
collected and must be wired (so no page fault can occur when
accessing it) and fixed (so it cannot be moved by the garbage
collector). In other words, neither the garbage collector nor
the page fault handler can be invoked by the interrupt handler.

A check for pending interrupts is made at most virtual memory
operations, especially instruction fetch. Interrupts are also
checked at other times during internal processing ({e.g. during
disk paging waits). As a result, interrupt response time, while
vsually within a few microseconds, has no guaranteed maximum.
Iinterrupt handlers must, therefore, handle the case that the
response was too slow if it could cause problems.

Interrupts are the primary means for external events to signal
the Lisp system. In most cases, interrupts set flags for higher
level processing to notice or move data between the 1I/0 device
and an I/0 buffer in wired memory. However, certain time-
critical processing may be best performed as part of the
interrupt handler.




3.2 INTERRUPTS ON THE EXPLORER PROCESSOR

The Explorer processor has hardware to ease the detection and
processing of interrupts. Since the Explorer processor is NuBus
based, most interrupt are events signaled over the system bus by
writing a word or byte with the low order bit set into special
locations in the control space of the Explorer processor. A map
of the interrupt locations and the priority of each is shown in
Table 3-1.

Table 3-1 Explorer Control Space

NuBus Address Interrupt Priority Level
(Hex) {Decimal)
FsEQQO3C 15 (Lowest)
FsEQDO038 14
FsEQQO34 13
FsEQ0030 12
FsE0QO0QR2C 11
FsEQOO28 10
Fse00024 9
FsE00020 8
FsEQOQO1C 7
FsEQ0018 6
FsEQDO14 5
FsE00010 4
FsEQOOOC 3
FsEQO00O8 2 (Highest)
FsEQ0004 1 (Preemptive) Boot request
FsE00000 0 (Preemptive) Powerfail

Interrupt pending is a condition testable individually and in
combination with the page fault and sequence break conditions for
Jump and abbreviated Jump microinstructions. Microcode tests
whether there is an interrupt pending by performing a conditional
call to the interrupt service routine if the interrupt pending
condition is true.

The interrupt service routine will process all interrupts before
returning to the <caller. Interrupts are, of course, processed
from highest priority to lowest. Interrupt priority is linked to
the location in the control space of the processor as shown above
in Table 3-1. The highest priority level with an interrupt
pending is indicated by a special field in the machine control
register (MCR) of the Explorer, or the Pending Event register at

3-2




ID space address #x3A000000 on the Explorer II. 0On any level
with several devices, all devices that could interrupt to that
level must be polled. For each interrupt level, there is a list
of device descriptor blocks. The device descriptor block is
shown in Figure 3-1.

0 ? Pointer to Next Device Descriptor ?
1 ? iD! Device Type ;
2 | ;

i Device Specific Information 5

Figure 3-1 Device Descriptor Block

The 1lists are anchored by the interrupt vector table. The
interrupt vector table is indexed by interrupt priority and
contains a pointer to the interrupt descriptor block list for all
the devices on that interrupt vector or priority. The value zero
indicates the null 1link or empty list. The interrupt vector
table is shown in Table 3-2.

Table 3-2 Interrupt Vectors

Interrupt
Priority
Level
] Powerfail (empty vector)
1 Boot request (empty vector)
2 Device descriptor block address
15 Device descriptor block address

Once the highest priority interrupt level has been determined,
the event request is cleared by writing a word with the low order
bit set to zero into the word of the processor control space that
corresponds to the interrupt level of the device. Interrupt
levels O and 1 are dedicated to Powerfail and Boot request

3-3




respectively. These events are handled as aborts, i.e. the
processor traps directly to processing of the event. I either
of these events are detected as polled interrupt events then the
processor failed to trap. The interrupt processor will cause the
machine to halt.

For levels 2 to 15 the interrupt service routine uses the highest
priority level with an interrupt pending to index into the
interrupt vector table. This yields the 1list of device
descriptor blocks for this interrupt level. The interrupt
processor then traverses this list. For each block in this list
the interrupt type is extracted from word 1 and the specific
handler for this interrupt type is called. This interrupt type
specific handler is responsible for determining if the device
pertaining to this descriptor block has requested interrupt
processing, and if so, performing that processing. When this
interrupt handler returns, the next block in the 1list 1is
examined, etc., until the end of the list is reached.

When the end of the list has been reached the interrupt pending
condition is tested. I#f no interrupts are pending, the interrupt
processing 1is complete and the interrupt service routine returns
to its caller. If an interrupt is pending, the entire process is
repeated.




