2.1

Bootstrap loading the Explorer system involves several stages and

SECTION 2

Bootstrap Loading

INTRODUCTION

several types of loads. While the remainder of this document

involved with system operation, bootstrap loading occurs before
the system is operational and is, therefore, quite different from

what follows in later sections.

2.2 TYPES OF LOADS

There are four type of loads:

#

Power on / System reset. These are exactly the same
except for the way they are initiated. A power on boot
is performed when power is cycled on the main chassis.
A system reset 1is performed by issuing the boot key
chord META-CTRL-META-CTRL-ABORT. Much goes on during
this type of load. but when the LISP system is being
loaded., the primary software entity that gets loaded 1is
the ‘"primitive" microcode (from now on this will be
referred to as the "primitive"). Microcode is loaded
from a microload band <(also known as a microcode
partition) on secondary storage into the writable
control store (WCS) of the processor. The system
microcode in turn loads the system (the LISP system
software) from a load band on secondary storage.

Cold boot. This 1is performed by issuing the boot key
chord META-CTRL-META-CTRL-RUBOUT. This causes the
Explorer to reload the current system microcode and the
current system load band from secondary storage. The

‘previous environment is lost.

Warm boot. This 1is performed by issuing the boot key
choard META-CTRL-META-CTRL-RETURN. This causes the
Explorer to restart the system code in such a way as to
preserve the previous environment. Neither the system
microcode nor the system load are re-read from secondary
storage.

Menu boot. This is performed by issuing the boot key
chord META-CTRL-META-CTRL-M. This causes the Menuboot
microload (see description of Menuboot in the Power on /
Cold boot description below) to be loaded from the same
unit that the current system 1load was loaded from.
Menuboot is then executed as described below.

Note that each of the four boot key chords described above will
cause the Explorer processor to take a true hardware trap (not
just a polled event) to the appropriate point in microcode. So
even if the processor is stuck in a loop, it should respond to
any of the four chords. An additional key chord, META-CTRL-META-
CTRL-C, can be wused if the system appears to be in an infinite
loop. This causes the system to crash and to record the
currently running Lisp function.

I# the system microcode in Writable Control Store (WCS) has been
violated, then the Cold boot, Warm boot, and Menu boot may not
function .correctly. In this case you have no choice but to cycle
power or do a System reset.

2.3 POWER ON / SYSTEM RESET

Both of these actions cause a NuBus reset which forces all boards
that have a self-test to perform it. A NuBus reset causes the
Explorer processor to enter its boot ROM based Microcode at a
fixed location.

The first action it takes is to perform the processor self-tests.
Then all internal memories and registers are cleared.

I+ the Explorer I processor fails self-test, it will crash with a
light code #xB89. The Explorer II processor reports individual
selftest numbers as they are run, with the failing test number
left on the 1lights in case of failure. {(See the light codes
table.)

System Test — if the processor passes its self-test, it proceeds
to the next phase, System Test and Boot.

1. First the processor determines whether it is to be the
System Test & Boot Master (STBM) or if some other
processor will be. In a single processor system, the
Explorer will of course be the STBM. In a multi-
processor environment, the processor in the lowest
numbered slot that is an STBM candidate and has passed

2-2

(¥

self-test (within 10 seconds) is the STBM.

If the Explorer processor is not the STBM, it enters
Secondary mode and waits for the STBM to post an event
to awaken it. It then performs secondary booting
operations.

Assuming the Explorer is the STBM, it performs the
following actions:

NOTE

All searches for rtesources are performed by
starting with slot O and looking at boards in
successively higher numbered slots until slot
15 has been checked. For each slot, the STBM
first checks for a value of #xC3 in the 1ID
character of the boards Configuration ROM
{see paragraph on the Configuration ROM).
This indicates the board has a wvalid
Configuration ROM. Next, check that the CRC
in the configuration ROM is correct. Then
the Resource Type field in the Configuration
ROM of each board is examined to see if the
board contains the desired resource.

a. Search for NVRAM. I+ the NVRAM bit of the

Resource Type +ield 1is set, then the board
contains NVRAM. The Explorer checks the CRC on
the contents of the NVRAM (Explorer I does not)
and the format generation number to verify it
contains a value of #x01. Upon finding a valid
NVRAM. the STBM extracts pointers to a Monitor,
Keyboard, and Load Source for later use. See the
paragraph on NVRAM for format details.

b. Find a monitor. If a valid NVRAM was found. then
the monitor slot and unit numbers from NVRAM are
used and the monitor is validated by first
checking that +the monitor bit in the Resource
Type field 1is set, and then by 1issuing the
Initialize— Monitor device driver call. If this
completes successfully the monitor has been
found. I+ there was no valid NVRAM. or if the
Initialize—-monitor call failed, then the
processor searches for a board with the monitor
bit on in the Resource Type field of the
configuration ROM. If it finds one it calls the
Initialize—-monitor function of the device driver

-3

on that board. If the call completes
successfully, the monitor has been found. I+ no
monitor can be found, the processor attempts to
perform a default boot.

Display the message "Slot § TESTING SYSTEM",
where S is the slot number of the processor
board, on the monitor.

Find a memory board. The processor searches for
a board with the memory bit set in the Resource
Type field. When it finds one, it validates it
by running the Interface Diagnostic, located in
the ROM on that board. The diagnostic is Tun
with messages disabled. I# it passes, that
memory board is used. Otherwise, the processor
searches for another memory board. It is assumed
that every memory board will have at least two
megabyte of memory. I# no valid memory board can
be found, the message "ERROR: NO 600D MEMORY
FOUND" (Explorer I = "ERROR: 00000004") 1is
displayed on the monitor, and the processor
crashes with a 1light code (Explorer I = #xBA;
Explorer II = #x74)

I# a memory board was found, the processor then
performs Chassis Testing where it performs the
following actions on each successive board in the
system, starting with slot O and ending with slot
15. 1f any test fails, the rest of the tests for
that board are skipped.

- Tests whether a board is present in the slot
(if no NuBus timeout is received when reading

the configuration ROM, then a board is
present). I+ the slot is empty, go to next
slot.

- Displays "Slot S" on the monitor, where 5 is
the slot number of the board under test.

- Tests whether the Configuration ROM contents
are valid: ID character = #xC3 and CRC
verifies. If not, display "ROM" ("TESTS
FAILED" displayed later).

-~ If the ROM #flags in the Configuration ROM
indicate that the board performs a self-test,
then wait up to 20 seconds for the self-test
to complete. The board will reset a bit in
the onboard Flag Register (see paragraph on
Configuration ROM) when its self-test is
complete. Check the Flag Register for a self-

test failure, and if one occurred, display
"SELF" ("TESTS FAILED" displayed later).

- If the ROM flags in the Configuration ROM
indicate that the board participates in NuBus
tests, command it to do so and check the

results. If a failure is detected, display
"NUBUS" ("TESTS FAILED" displayed later).

- I# the Configuration ROM Diagnostic Offset
field 1is not = #xFFFFFF, execute the boards
Interface Diagnostic.

- If all tests for a slot have passed, then turn
off the slot Test LED in the Configuration
Register (see paragraph on the Configuration
ROM), and display "passed", otherwise display
"TESTS FAILED".

Find a keyboard. If a wvalid NVRAM was found,
then the keyboard slot and unit number from NVRAM
is used and the keyboard is validated by first
checking that the keyboard bit in the Resource
Type field 1is set, and then by issuing the
Initialize- keyboard device driver call. If this
completes successfully the keyboard has been
found. I# there was no valid NVRAM, or if the
Initialize—keyboard call failed, then the
processor first attempts to initialize a keyboard
at the same slot and unit as the system monitor
currently in use (not supported by Explorer 1I).
I# that also fails then it searches for a board
with the keyboard bit on in the Resource Type
field of the configuration ROM. I# it finds one
it calls the Initialize—keyboard function of the
device driver on that board. I# +the call
completes successfully, the keyboard has been
found.

If no keyboard can be found, the processor
performs a default load wusing the boot device
slot and unit from NVRAM. If there was no valid
NVRAM, the processor searches for a boot device
by first searching for a slot that has the boot
source bit (Explorer I: and not the LAN bit) in
the Resource Type field set, and then using the
lowest numbered unit at that slot. The microcode
specified as default in the partition table are
loaded.

Initial Menu ~- if a keyboard was found, the processor sounds a
tone and displays the 1Initial Menu: "D=Default load, M=Menu
load, R=Retest, E=Extended tests :" If no key is pressed within
approximately 15 seconds and no boards have failed Chassis Test,
the processor attempts a default load of the MCR partition marked
as default on whichever 1load source 1is determined to be the
default load source. Pressing "D" or "RETURN" also results in a
default load.

1. Pressing "R" <causes the Chassis Testing phase,
described above, to be repeated.

2. Pressing "E" causes the Chassis Testing phase to be
repeated, but each Interface Diagnostic 1is run in
"extended mode”. In extended mode, an interface
diagnostic will display the board identifier, the part
number, the name of each test it runs on the screen.
and an indication of whether each test passed or
failed. Additional testing may also be performed. For
example, the memory board diagnostic tests all of
memory in extended mode. but not in normal mode.

3. Pressing "M" causes the processor to go into the menu
boot sequence, described below.

4. At this point there are a number of "hidden options” in
addition to those already mentioned. They are intended
for use by expert users such as system managers and
maintenance personnel.

a. Pressing "8§8" tells the processor that you want to
do a default boot, but you want ¢to use a boot
unit other than the default unit. The processor
will then present the device selection menu
{(described below), but will perform the boot as
soon as you have selected the device.

b. Pressing "G" tells the processor that you want to
load GDOS, the diagnostic operating system. The
processor will then present the device selection
menu (described below) but will boot GDOS as soon
as you have selected the device.

c. Pressing "N" means that you want to type in the
names of microcode and load bands to be booted.
The processor will then prompt you for each of
these names. You must type these names exactly
as they are displayed by print-disk—label; the
processor will not convert lower case to upper
case automatically. The shift key or caps lock
key will give you upper case. The rubout key
will let you correct mistakes. Once you have
typed in a name, the return key indicates you are

2-6

ready to proceed. When you have entered both
names, the processor presents the device
selection menu {(described below). As soon as you
select a device, the processor will boot the
microcode and load band you typed in.

d. Pressing "F" (not supported on Explorer I) tells
the processor that you want to load FDOS, the
Factory version of the diagnostic operating
system. The processor will then present the
device selection menu (described below) but will
boot FDOS as soon as you have selected the

device.

e. Pressing "1!" {not supported on Explorer I)
causes the processor to enter a Debug utility
menu.

Default Boot. After D 1is selected for Default Boot., the
processor attempts to load from either the default load source
specified in NVRAM or the first wunit found by searching all
slots. A "waiting" message is displayed until the default load
source is ready., then the STBM interprets the Device Driver in
the load source interface board configuration ROM to load the
first MCR partition with the default bit set. Under the Release
3.0 the MCR_ named PRIM is used for an Explorer I, BOOT for an
Explorer II. ’

Both BOOT and PRIM are primitives and the term "primitive" refers
to both. The "primitive" has three primary functions which are:

1. The "primitive"” co-ordinates the booting of a machine
with multiple processors. Since the Explorer does not
currently have multiple processors, this is not done in
the "primitive" even though it has a skeleton design
for such a function.

2. The "primitive" performs slave device downloading.
Downloading can be thought of as patching the ROM on a
controller board such as a disk controller board. If

there is a software bug in the controller board ROM, it
can be fixed by loading new software into a RAM area on
the controller board and executing out of the RAM area
rather than the ROM area.

3. The "primitive" 1locads the Lisp MCR <code into the
processor.

To do all of the above, the "primitive" uses a special type of
partition called a Configuration partition. There may be several
configuration partitions on the default disk. The default
configuration partition is used by the "primitive".

A configuration partition has several entries in it, which are
the name of the Lisp MCR, the name of the Lisp Load band, the
name of the download software partition, and other information

reflecting the machines configuration. If the default
configuration reflects an erroneous machine configuration an
error will occur. Later in this section there will be a

description of the configuration partition and the algorithm used
by the "primitive".

It should be noted that on an Explorer I PRIM and BOOT are
identical but separate software partitions. On the Explorer 11
the single partition BOOT takes on both roles as "primitive” and
menuboot. Both Menuboot and the ‘'primitive" assume 2MB or
greater memory boards.

Menu Boot - If you entered an "M" at the Initial Menu the
processor then presents the device selection menu (the header is
"AVAILABLE LOAD DEVICES"). This menu lists the available load
devices and asks you to select one. After you select a device,
the processor then loads a microcode band called "BOOT" from the
device you selected. This is Menuboot, which then takes over the
remainder of the boot process. It should be noted that this is
the point where the processor 1leaves ROM and enters code
(Menuboot) that has been downloaded intoc WCS. This is important
because if for some reason Menuboot does not exist on the device
you selected (or if it has been wiped out), this step will not
work. I# Menuboot 1is non-existent, the message "MICROLOAD NOT
FOUND" will be displayed. If Menuboot has been wiped out, ¢the
message "BAD MICROLOAD FORMAT" will be displayed. These messages
can also occur on any other microcload attempt.

The first thing Menuboot does is to present the menu "L=LISP
load, M=Multi-unit load, =Diagnostic load. P=Print device
label, C=Configuration Boot"

1. To do a Configuration Boot you enter an C or simply
press RETURN since Configuration Boot is the default.
After a C is pressed a menu of 1load devices appear.
The operator is to select the desired device. After
the device 1is selected, a 1list of configuration
partitions appear on the screen. The operator then
selects which configuration partition is to be used in
the booting process.

2. To do a Lisp load enter "L" . The processor presents a

2-8

B

menu of available load bands on the device previously
selected. Asterisks may appear by some of the 1load
bands. The asterisks should be ignored and the user
should select the desired load band.

Once you have selected a 1load band, you will be
presented with a menu of available microcode bands.
Again, asterisks may appear by some microcode bands.
The asterisk may be ignored as above. The microcode
that is preferred by +the 1load band you previously
selected will be named in a header message above the
microcode menu. The preferred microcode is simply the
one that the 1load band was saved with. You can
generally use microcodes other than the preferred one.
but the system will have to load the error table over
the network. Once you have selected a microcode
partition, the processor will load that microcode and
pass it the name of the load band to be used.

3. If you select "M" the processor will present you with
the the device selection menu before each partition
menu. This allows you to select the system microcode
and and system load band from different devices.

4. If you select "D" the processor will present you with

the device selection menu (described above). Once you
select a device the processor will display a menu of
available diagnostic microloads for that device.

Selecting one will cause that microcode to be loaded
and executed.

5. If you select "P" the processor will present you with
the device selection menu again (see above). When you
select a device the processor displays the 1list of
partitions on that device, similar to what is displayed
by a (print—-disk—label) form in LISP.

2.4 CONFIGURATION ROM

A machine based on the NuBus architecture has up to 16 NuBus
slots. The Explorer has seven. Each slot may contain one board.
Each board contains a configuration ROM. The configuration ROM
is located at the highest NuBus physical addresses allocated for
each slot (i.e. the ROM ends at address FsFFFFFC, where s is the
slot number of the board) with data stored one byte per NuBus
word.

The Configuration ROM fields that are of concern to the booting

2-9

process are as follows:

Resource Type field — This is a one byte field, located at
address FSFFFFOO. Each bit that 1is set to one indicates a
resource that the board contains.

Bit O Memory - board contains memory that may be used
during booting. This memory will start at FS000000
and be at least one contiguous megabyte long.

Bit 1 Boot source — board is a controller (e.g. disk.
tape, LAN) that has a unit(s) that may be used as a
load device. This board contains a load device
driver.

Bit 2 LAN - board contains a Local Area Network (LAN)
controller that may provide a load device via the
network This board may contain a load device
driver.

Bit 3 Monitor — board has a unit that can be used as the
system monitor during the boot process. This board
contains a monitor device driver.

Bit 4 Bootable processor — board is capable of performing
the standardized functions of a ‘"secondary"
processor to an STBM during system booting
operations.

Bit S Keyboard - board has a unit that can be used as the
system keyboard during the boot process. This
board contains a keyboard device driver.

Bit & NVRAM - board contains non—-volatile RAM that may
contain system test and boot default parameters.
I# this bit is set the three byte board relative
offset to the NVRAM is stored in locations FSFFFEF4
-~ FSFFFEFC {(one byte per word) and the log 2 of the
NVRAM size is stored in location FSFFFEFO.

Identification character - This is a one byte field, located at
address FSFFFFO4. I# it contains the value #xC3, then the
configuration ROM contains valid data, otherwise it does not.
This provides a way for "foreign" boards to exist in the system
without confusing the STBM.

ROM Flags — a one byte field at location FSFFFF10 which contains
the following flags (and several others which do not concern us
here):

Bit O A one indicates the board does self-test.

Bit 1 A one indicates the board will participate in NuBus
tests.

Bit 2 A one indicates the board is capable of being an
STBM.

2-10

Flag Register Offset — a three byte field at locations FSFFFF14 -
FSFFFF1IC (one byte per word) containing the board relative offset
to the Flag Register. The Flag Register is a one byte field
containing the following flags:

Bit O A one indicates self-test is still in progress.

Bit 1 A one indicates the board failed self-test.

Bit 2 A one indicates that a peripheral or subsystem
controlled by this board failed test.

Diagnostic Offset - a three byte field at locations FSFFFF20 -
FSFFFF28 containing the board relative offset to the Diagnostic
Engine code that makes up the interface diagnostic. A value of
“FFFFFF indicates there is no interface diagnostic.

Device Driver Offset - a three byte field at locations FSFFFF2C -
FSFFFF34 containing the board relative offset to the Diagnostic

Engine code making up the boards device driver(s). There must be
one device driver for each of the following bits that are set in
the Resource Type field: boot source, monitor, keyboard.

Configuration Register Offset — a three byte field at locations

FSFFFF38 - FSFFFF40 containing the board relative offset to the

Configuration Register, which is a 8 bit field which contains

(among other information) the following:

Bit O Reset — writing a one resets the board

Bit 1 NuvBus Master Enable — a one enables the board to
read and write via the NuBus (0 disables the boards
Nubus interface)

Bit 2 Test LED - A one turns on the red LED on the board.
A zero turns it off.

Bit 3 Test — when set to one during system testing
requests the board to perform its NuBus Test.

CRC Signature - A 2 byte field at locations FSFFFFB8 - FSFFFFBC
that contains the CRC value computed over the boards ROM. The
ROM size is stored in location FSFFFFB4.

2.5 THE STBM AND DEVICE INDEPENDENCE

One of the goals of the STBM is to allow the ROM code on each
board to be independent of the other boards in the system. For
example, it must be possible to replace the disk controller board
with one that provides a different interface to the processor,
but not to have to change the processors boot ROMs. This is
accomplished by having a boot source device driver (DDR) in the
ROM on the disk controller. The DDR provides the processor with
a generic interface to the device. The DDR is written in a

2-11

processor independent, interpreted language, called Diagnostic
Engine code, and 1is executed by the processor. Since it is
interpreted, the processor must have a Diagnostic Engine
Interpreter in its ROM. Being processor independent means the
disk controllers ROM does not have to change if the processor is
replaced with one of a different type. It is called Diagnostic
Engine code because the scheme was originally developed to allow
processor independent diagnostics to be written. Most boards in
the system have an Interface Diagnostic written in Diagnostic
Engine code in their Configuration ROM.

There are three type of DDRs: load source, monitor, and
keyboard. They provide the processor with a generic interface to
the three peripheral resources it requires to perform system
testing and load. The monitor and keyboard allow the processor
to communicate with the operator, and the load source provides a
source from which to load code. Load source interfaces currently
exist for disk, tape, and LAN, and the processor-to-boot-source
interface is generic enough to support wvirtually any kind of
device that is capable of loading code. DDRs are intended to be
used for bootstrap loading, not for normal system use.

2. &6 NVRAM FORMAT

The information in NVRAM is accessed as though it were stored one
byte per word. The first part of NVRAM contains system default
configuration information. which is accessed during the boot
process:

base addr + #x00 = STBM Monitor unit number LSB byte Binary
base addr + #x04 = 5TBM Monitor unit number MID byte Binary
base addr + #x08 = STBM Monitor unit number MSB byte Binary
base addr + #x0C = STBM Monitor slot number (FF = none) Binary
base addr + #x10 = STBM Keyboard unit number LSB byte Binary
base addr + #x14 = STBM Keyboard unit number MID byte Binary
base addr + #x18 = STBM Keyboard unit number MSB byte Binary
base addr + #x1C = STBM Keyboard slot number (FF = none) Binary
base addr + #x20 = Boot source unit number LSB bhyte Binary
base addr + #x24 = Boot source unit number MID byte Binary
base addr + #x28 = Boot source unit number MSB byte Binary
base addr + #x2C = Boot source slot number (FF = none) Binary
base addr + #x30 = NVRAM format generation number.

Equal 01 for all NuGeneration devices Binary

base addr + #x34 = NVRAM format superset revision
number. Binary

base addr + #x38 = NVRAM CRC LSB byte Binary

2-12

base addr + #x3C = NVRAM CRC.MSB byte Binary

The NVRAM contains additional information in a specific generic
format so that it can be accessed by any type of processor. The
format is described in detail in the NuBus System Architecture
Specification.

2.7 ERROR CODES AND MESSAGES

For the most common error conditions. textual error messages are
displayed. However, in some cases, the STBM ROM code and
Menuboot will display hexadecimal error codes.

2.7.1 STBM ROMS - Error Codes.

ERROR: 00000002 - Load device offline or not responding.
The device is powered down or is not
connected.

ERROR: 00000003 — Load device error.

The load device experienced an
unrecoverable error.

ERROR: 00000004 - Processor could not find a memory board
that passed tests. The processor checks
the following when looking for a memory
board: Look for the value #xC3 in
Configuration ROM ID character.

Look for memory bit set in Configuration
ROM Resource Type field.

Make sure CRC in configuration ROM is
correct. Run the Interface Diagnostic
in the board’s ROM and check that it had
ROM and check that it had no failures.

DEVICE ERROR: 00000005 -~ Unexpected NUBUS error.
The processor was executing diagnostic engine
code in a device driver in the NuBus
Peripheral Interface (NUPI) or SIB ROM
when an unexpected NUBUS error occurred.

DEVICE ERROR: 0000006 - Command timeout.
The NUPI device driver issued a NUPI command
blaock and the NUPI did not set the complete
bit in the status field. The minimum timeout
value is 10 seconds. If the disk label is
messed up, it could possibly cause this problem.
The NUPI could also be faulty. If the NUPI
considers a command block to be invalid, it
will exhibit this failure mode. The last NUPI

DEVICE

DEVICE
DEVICE

DEVICE

DEVICE

DEVICE

DEVICE

ERROR:

ERROR:
ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

command block that the NUPI device driver
issued is located at location FS00C000, where
S is the slot number of the memory board in
the lowest numbered slot.

00000009 - Network down.
The Ethernet is disconnected, shorted, or open.

0000000A - Invalid unit number for the load device.
0000000B — Ethernet board failed to initialize.

00000010 — Bad DEI instruction header.
A board was found with a valid configuration ROM,
but the Diagnostic Engine code that the
Diagnostic offset or Device Driver offset
in the configuration ROM points
to has an invalid header. This possibly means
that the ROM is bad.

00000011 - Invalid DEI request.
The ROM on the board is good, but a request
was made that could not be handled by that
board. (e.g. a boot request was given to
the monitor). This probably means that the
contents of NVRAM are invalid. Try doing
a menu boot, specifying the boot unit.
Once the system is booted type in
(si: setup-nvram) to the LISP Listener.

00000012 - Diagnostic Engine code instruction
space (ispace) problems.
The processor found an invalid instruction
when trying to execute Diagnostic Engine
code out of the ROM on one of the boards.
This could happen when executing a diagnostic
or a device driver. This possibly means the
ROM is bad.

00000013 - Diagnostic Engine code data space
(dspace) problems.
The processor found one of the following
problems when trying to execute Diagnostic
Engine code out of the ROM on one of the
boards: stack overflow, stack underflow, or
dspace variable out of range. This could
happen when executing a diagnostic or a
device driver. This could be
due to a bug in the code being executed, or
the ROM could be bad.

DEVICE ERROR: 60000000 and above — NUPI command status.

These are errors that the NUPI device driver

2-14

Menu Boot and Primitive — Error Codes and Error Messages.

00000014
00000015

00000016

00000017

passes back from the status field of the
NUPI command block. See the NUPI Hardware
Specification.

Device access error. The NUPI returned bad

status.
Invalid label. The first word of block O
did not contain "“LABL".

Invalid partition table. The first word of
the partition table did not contain "PRTN".

No available microloads. Theré were no

Explorer microcode partitions in the
partition table.

2-15

2.7.2.1 Menuboot and Primitive

Message

Warning: No Microcode
Partitions on Device

Warning: No ConFiguration
Partition on Device

No Default Configuration
Partition

Unable to Read Device

Invalid Slot or Unit
Number in the Configuration
Partition.

Bad Load Partition or Load
Device

Currently Executing CPU

is not in Configuration

Cannot Download Device

Unable to Read the

pan 2

=

Error Messages.

Meaning

Device selected in a Lisp load
or device specified in a
configuration partition had
no microcode.

Device selected in a
Configuration Boot had
no configuration
partition on it.

On default boot, the "primitive”
could not locate a default
configuration partition.

An error occurred when trying
to read the load device.

The portion of the configuration
partition containing the disk
slot and unit number for the
Lisp MCR is invalid.

The entry portion of the
configuration partition
containing the information
about the load band has
invalid information in it

A configuration partition was
used which did not have a
valid entry for the Explorer
processor board.

When trying to download a .,
device, one of four problems
occurred. First, the part
number in the entry field
may not match;, second, there
is a problem with the disk
slot or unit number specified;
third, there is a problem in
matching the CPU type to the
board type in the
configuration partition; and
last, there is no match on
the download partition name.

This means the data in the

16

Partition Table partition table is not set
up correctly. To be set up
correctly the following must
be true: There must be a
default entry named LABEL
with partition type of Volume
Label and CPU type of generic.
There also must be a default
entry named PTBL with
partition type of Partition
Table and CPU type of generic.

2.8 LIGHT CODE TABLE

In some cases the processor cannot proceed and cannot display a
message,. In these cases the processor will crash and display a
code in the amber colored light-emitting diodes (LEDs) located on

the processor board. These can be viewed by opening the front
door on the system unit and looking through the slot on the
interlock door. The 1lights are read as an eight bit binary
number (seven bits for Explorer II) with the lowest amber LED as
the least significant bit. The codes shown below are
hexadecimal. -

~2.8.1 Explorer I STBM LED Codes.
Physical locations of LEDs:

(H) (XS (@) 1 (D (2) (1) (D)1 (Fault)

H = Halt amber
&:0 = gtatus indicators amber
Fault = Fault indicator red
81 = Power failure. The processor took the power failure

hardware trap.

82 = The processor took the control store parity error trap.
This probably means that the processor‘s WCS is faulty.

83-87 = Should never occur. If they do the processor is
probably faulty.

88 = The processor received an unexpected NuBus error.

89 = Processor failed self test.

8A = No memory. If the processor can find a monitor it will
also display ERROR: 00000004 as described above.

8B = No boot device. This crash will only occur if the

2-17

8c

8D

8E

processor cannot find a boot device and can not find a ;?Q
monitor on which to display a message.

Microload problems. This will only occur if the processor
cannot find a monitor on which to display the message
“"BAD MICROLOAD FORMAT"

DEI PROBLEMS. This will only occur if the processor
cannot find a monitor on which to display the device
errors 10 - 13 described above.

Monitor device driver problems. The processor got a
non—zero completion code on a call to the monitor device
driver.

2.8.2 Explorer II STBM LED Codes.

Physical locations of LEDs:
(HYBY (LY (RYI(F) (63(3)(4)1(3)(2)(1)(0)! (Fault)

H = Halt amber

B = Busy , amber

L = cache hit left amber

R = cache hit right amber

F = cache filling amber .
6:0 = gtatus indicators amber

Fault = Fault indicator red

with Fault LED on:

selftests:

7F = Processor unable to locad code from EPROM

01-05 = Part 1 self-tests (Kernel tests)

Cé6 = Passed kernel selftests, attempting to load
remainder of tests and STBM (Part 2)

07-39 = Part 2 Lisp Chip and processor board selftests

3A-3C = Floating Point Board tests

crash codes:

71

76

= No online devices from which to download

Bad microcode format found during attempted
download
Device error during attempted download

No good system memory found

NuBus error during download from Nubus memory
to internal memories

MCR partition requires floating point board
which is not present

Fault LED off:

On
in
2n
3n

4x

5n
60

61

63
&4
&5
bé
70

71

= STBM arbitration phase, looking at slot n

NVRAM search phase, loocking at slot n

Monitor search phase, looking at slot n

Memory search phase, looking at slot n

STBM testing chassis slot

41 = ROM test (C3, format version, CRC)
42 = Selftest

44 = NuBus test

48 = Interface diagnostic

Keyboard search phase, loocking at slot n

At top level STBM menu

Attempting default boot

Building device menu

Waiting for load device to come ready
Reading partition from load source
Processing MCR sections (except last)
Loading WCS, PDL to A/M, and enter new code
Waiting for first Secondary event

Processing first Secondary event

2-19

72 = Waiting for second Secondary event
73 = Booting quietly
78 = Waiting RAM download (P3 mode 5)

2.9 MICROLOADS

The writable control store and other internal memories of the
Explorer processor are loaded from a microload. A microload is
read by the boot PROM from a mass storage device, interpreted,
and the internal memories are loaded.

The Explorer microassembler produces an output file in the "MCR"
format. The file name will be "xxx.mcr" where "xxx.lisp" is name
of the source file. The "load-mer—-file"” function converts the
"mcr" file to the microload format and installs it as an "MCR"
partition on a disk. This compact representation can be loaded
by the Device Driver on the disk controller board when directed
to do so by the processors bootstrap PROM. This format provides
for the 1loading of I-mem, A/M memories, D-mem, and main memory.
On the Explorer II it also provides load data and initialization
instructions for additional onboard I0 space structures. The
Explorer II MCR format is specified in Appendix A.

2. 10 INTERFACE BETWEEN BOOT PROM AND MICROLDADS

When a microload is loaded by the boot ROMs, certain information
is passed to the microload in dedicated A memory locations. The
following A memory locations are used for the purpose of passing
parameters between the boot ROM and microloads:

variable name A memory location
A-BOOT-COMMAND-BLOCK #x3F8
A-BOOT-LOD-DEVICE #x3F9
A-BOOT-MEMORY #X3FA
A-BOOT-MONITOR #x3FB
A-BOOT-KEYBOARD #x3FC
A-BOOT-DEVICE #x3FD
A-BOOT-MCR-NAME #x3FE
A-BOOT-LOD-NAME #x3FF

2-20

The boot ROM sets up the following locations as parameters passed
to a microload that is loaded:

A-BOOT-MEMORY is set to Fs000000 where s is the slot
number of either the first memory board found or (if in
secondary mode) the memory specified for this processor
in the Command Block received from the STBM Primitive.

A-BOOT-MONITOR is set to designate the system monitor.
The slot number is in the most significant byte and the
unit number is in the three least significant bytes.

A-BOOT-KEYBOARD is set to designate the system keyboard.
The format is the same as for a-boot—-monitor.

A-BOOT-DEVICE is set to designate the boot device. The
format is the same as for a-boot-monitor.

A-BOOT-MCR-NAME contains the name of the microload in
ASCII little endian format.

A-BOOT-LOD-NAME contains the name of the load band. The
format is ABCII little endian. If a load band was not
selected, this word will contain a value of binary zero

The boot ROM will only set up A-BOOT-COMMAND~BLOCK if the
Explorer processor is being booted as a secondary processor, in
which case it shall have the NuBus address of the Command Block.

I+ Menuboot is run, it will store the system load name in A-BOOT-
LOD-NAME in ASCII little endian format. If the system load is on
a different unit than the microload, then A-BOOT-LOD-DEVICE will
be set to that unit. Otherwise, it will contain the same value
as A-BOOT-DEVICE. I# Menuboot is not run. A-BOOT-LOD-DEVICE will
contain a value of binary zero. The system microcode must check
this variable to determine where to get the system load.

In order for Menuboot <(or other WCS5 microcode programs) to
request the load of another microload into WCS, there are special
processor dependent mechanisms that must be used to reenter ROM.
The following A memory locations must be set up for all
proCessors: A-BOOT-MEMORY, A-BOOT-MONITOR. A-BOOT-KEYBOARD., A~
BOOT-DEVICE, A-BOOT-MCR-NAME. For the Explorer I the requesting
code must turn off the PROM-disable and Bus—-Error-Trap-Enable
bits in the Machine Control Register (MCR) and then jump to PROM
location #x1E. For the Explorer II the requesting code must
enable refresh, IROM, and memory cycles in the Machine Control
Register (MCR), set the highest M-memory register to #xC3, and
then jump to IROM address at #xFF.

The Explorer II ROM code also supplies information to the
downloaded code about the type of load which has just occured.

=21

PDL location O is loaded with a value indicating the boot type:
0 = STBM, default mode

STBM, non—-default

Secondary, default

Secondary, non—-default

Special RAM load mode

nnnn

S WU

2. 11 CONFIGURATION PARTITION, PRIM ALGORITHM, AND DOWNLOADING

A Configuration Partition is a 17 block disk partition which
supplies boot time parameters for a system. These include
information such as which software shall be 1loaded by each
downloadable processor and controller and values which allocate
ownership of system resources amongst processors. The partition
is divided into two parts: the partition header and the
configuration modules.

1. The partition header is one block long and is divided
into two parts which are both a half block long. The
first half of the headers contains the following:

a. At offset O the four characters "CNFG" are found.
These characters are used to validate the fact
that this is a configuration partition.

b. The next two characters are used as a CRC valve.
The "primitive" does not use this.

¢c. The next . four characters are wused as the
generation and revision values. The "primitive"
does not use these values.

d. The rTemaining portion of the first half of the
configuration partition is available for comment
space.

pa

The entries in the second half of the header are called
pointers. Pointers are 16 bytes long. The following
byte values are relative to offset X200 of the header
block. The pointer values are:

a. Bytes O0,1: A pointer to a configuration module.
The pointer is relative to the start of the
configuration partition. If the pointer value is
0, this implies that this entry is empty.

b. Bytes 2,3: Length in blocks of the configuration
partition.

c. Bytes 4 - 7: A boot timeout. This is primarily
for multiprocessing systems and is not used by

2-22

the Explarer.

d. Bytes 8 — B: The count of configuration entries.
This value will be discussed in the configuration
module portion of this section.

e. Bytes C,D: A CRC value +for the configuration
module associated with this entry.

f. Bytes E,F: The board type. I# the board
associated with this entry is a processor, then
the value in this position 1is equal to the
processor value found in the processor
configuration ROM at location FSFFFF%C. For a
controller, this value 1is equal +to the disk
partition type assigned to the download software
for a particular controller.

g. Bytes 10,11: Implies via a 1 in a bit position.
what slot the board may be in. For instance, an
Explorer I board can only be in slot six so bit
six would be set to a one for the Explorer I
board. Some boards can be in any slot so this
value would be all ones for those boards. Notice
a configuration partition assumes a sixteen slot
chassis.

h. Bytes 12,13: Indicates board type. The value 1
indicates that this entry expected a processor
board. A 2 indicates that this entry expected a
downloadable controller. No other values have
meaning.

i. Bytes 14 — 1F: Reserved.

The next entries in the configuration partition are
called configuration modules. They can be accessed by
another processor when they are in main memory. This
feature is not used by the Explorer processor.
However., much of the information in the configuration
module 1is wused by the Explorer ‘“primitive”. The
following byte values are relative to the beginning of
the <configuration module. The information in the
configuration module is as follows:

a. Bytes O — 3: The busy status flag. This flag is
used when the configuration is in memory. The
Explorer "primitive" does not use this field.

b. Bytes 4 - 7: NuBus memory base address. This is
not used by the Explorer "primitive".

¢. Bytes 8 — B: Monitor slot and unit. This value

2-23

is set up by the Explorer Primitive.

Bytes C - F: Keyboard slot and wunit number.
This value is set up by the Explorer "primitive".

Bytes 10 - 13: Disk slot and unit number where
the Lisp MCR partition is to be found. The
Explorer ‘'"primitive" expects this value to
already be set up. If a value of all ones(-1) is
found: a default disk is assumed. The assumed
default disk is the disk from which the Explorer
"primitive" was loaded. If bytes 12,13 of the
pointer entry is a 2, then this entry is the disk
address of a download software partition.

Bytes 14 — 17: A four—character ASCII name of
either the Lisp MCR partition or the download
software partition. Bytes 12,13 of the pointer
entry pointing to +this configuration module
indicates which one of the two this 1is. Note.
all four characters must be exactly as found on
disk. A name with less than four characters must
be blanked filled.

Bytes 18 — i1B: The disk slot and unit number of
the configuration partition currently being used
by the Explorer "primitive". This value 1is set
up by the Explorer "primitive".

Bytes 1C - IF: The four character ASCII name of
the configuration partition being used by the
Explorer "primitive"”. This is set wup by the
Explorer "primitive".

Bytes 20 - 23: The synchronization +flag. This
is for multiple processors and not used by the
Explorer "primitive".

Bytes 24 - 43: The 32 character hardware
identification wvalve. This wvalue is used only
when downloading is required (bytes 12,13 of the
pointer field = 2). This is a part number
followed by a three character 1ID. This wvalue
must match exactly the information found in the
configuration ROM on the board to be downloaded
or no download occurs.

Bytes 44 - 63: A list of 32 byte ASCII entry.
The number of entries in the list is in bytes B -
B of the pointer entry for this configuration
module. Note, these entries are predefined and
are strictly formatted. A removal or addition of
a blank within these ASCII entries will cause the

2-24

"primitive" to fail. For an Explorer the entries
are as follows:

- Entry O The part number and id
value as described above.

- Entry 1: ASCII wvalue "Explorer

Processor® or "Explorer I1
Processor". The Explorer
primitive keys off the string
"Explorer".

- Entry 2: "Slots owned: ({ASCII
slot numbers each separated by a
space). This entry is not used by

the Explorer primitive.

- Entry 3: "l.oad Slot :(Single
digit ASCII slot number of the
disk unit containing the Lisp load
band)*".

- Entry 4: "Load Unit :(Six digit
ASCII wunit number of the disk
containing the Lisp 1load band)".
Note, if either entry 3 or 4 is an
asterisk, then a default disk is
used to load the Lisp 1load band.
The disk defaulted to is the same
disk from which the primitive was
loaded.

- Entry 5: "Load Name : (name of the
Lisp 1load band)". I# an asterisk
is used, then the first Lisp load
band with the default bit set in
the disk partition table is used.
The primitive searches for a
partition of type Explorer or of
type TI Lisp.

2.11.1 The Algorithm.

The following describes the algorithm in determining if a board
in the system matches and entry in the configuration partition.
I+ a match is made then either a download occurs or a CPU entry
is pushed on the stack.

First, the primitive scans each NuBus slot searching for board in

a NuBus slot begining with slot O. If a board is found a search
is made through the pointer entries in the configuration

2-25

partition to find a 1 bit in the corresponding bit position in
bytes 10,11 of the pointer entry. If a match is not found, the

search for a board in higher slot numbers continues. If @ match
is +found, the primitive fetches bytes 12,13 of the matching
pointer. If the board found is not the same type as specified in

bytes 12,13 of the pointer the above search continues. The "Same
Type"” check fetches byte 12,13 of the pointer to determine if the
pointer entry expected a controller board or a CPU in this slot.
I# the board in the slot was a controller and the pointer entry
of the configuration partition expected @ a controller board, the
the controller type is checked. I# the types compare then a
download 1is performed assuming there 1is a download software
partition for this board. If the board type was a CPU and the
pointer expected a CPU, the the configuration module address for
this CPU is pushed onto a stack for later use; this assumes the
CPU types matched. If no match occurs, then the slot search
continues. The algorithm is complete when all slots have been
examined.

2.11.2 Downloading.

Downloading is a method to patch ROM code on a controller board
by inserting new code intoc the RAM portion of the board and using
the RAM resident «code rtather than the ROM resident code.
Previous discussions indicated that the "primitive" performed the
downloading. This is only partially correct. Once the primitive
has determined that the a board is to be downloaded, the disk is
searched for the software partition associated with that board.
The software partition contains Diagnostic Engine Code which has
been previously discussed in this section. The Diagnostic Engine
code performs the actual downloading. The software partition
found by the primitive contains the Diagnostic Engine code in the
first portion and the ROM replacement code in the second portion
of the partition.

Once the Diagnostic Engine Code partition has been loaded by the
primitive, it is then interpreted by the primitive’s DE code
interpretor. At the completion of the DE code‘s execution. an
error indicator is «checked by the primitive. I# an error
occurred during downloading, a&an error message is generated.
Otherwise the algorithm continues.

2-26

