
e
for Information Technology -

Programming Language
Common Lisp

r ANSZX3.226-1994

merican National Standards Institute
77 West 42nd Street
New York, New York

70036

ANSI@
X3.226-1 994

American National Standard
for Information Technology -

Programming Language -
Common Lisp

Secretariat

lnformaton Technology industry Council

Approved December 8, 1994

American National Standards Institute, Inc.

American
National
Standard

Approval of an American National Standard requires review by ANSI that the
requirements for due process, consensus, and other criteria for approval have
been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards
Review, substantial agreement has been reached by directly and materially
affected interests. Substantial agreement means much more than a simple
majority, but not necessarily unanimity. Consensus requires that all views and
objections be considered, and that a concerted effort be made toward their
resolution.

The use of American National Standards is completely voluntary; their existence
does not in any respect preclude anyone, whether he has approved the standards
or not, from manufacturing, marketing, purchasing, or using products, processes,
or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in
no circumstances give an interpretation of any American National Standard.
Moreover, no person shall have the right or authority to issue an interpretation of
an American National Standard in the name of the American National Standards
Institute. Requests for interpretations should be addressed to the secretariat or
sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or
withdrawn at any time. The procedures of the American National Standards
Institute require that action be taken periodically to reaffirm, revise, or withdraw
this standard. Purchasers of American National Standards may receive current
information on all standards by calling or writing the American National Standards
Institute.

CAUTION: The developers of this standard have requested that holders of patents that may be required for the
implementation of the standard disclose such patents to the publisher. However, neither the developers nor the publisher
have undertaken a patent search in order to identify which, if any, patents may apply to this standard. As of the date of
publication of this standard and following calls for the identification of patents that may be required for the implementation
of the standard, no such claims have been made. No further patent search is conducted by the developer or publisher in
respect to any standard it processes. No representation is made or implied that licenses are not required to avoid
infringement in the use of this standard.

Published by

American National Standards Institute
11 West 42nd Street, New York, New York 10036

Copyright 1996 by Information Technology Industry Council (ITI)
All rights reserved.

No part of this publication may be reproduced in any
form, in an electronic retrieval system or otherwise,
without prior written permission of ITI, 1250 Eye Street NW,
Washington, DC 20005.

Printed in the United States of America

Programming Language-Common Lisp ANSI X3.226-1994

Contents

Chapter 1 (Introduction)
1.1 Scope, Purpose, and History
1.1.1 Scope and Purpose
1.1.2 History _
1.2 Organization of the Document .
1.3 Referenced Publications . , .
1.4 Definitions .
1.4.1 Notational Conventions
1.4.1.1 Font Key .
1.4.1.2 Modified BNF Syntak . : . : . : . t . . . ’ . ’ . : ’ ’
1.4.1.2.1 Splicing in Modified BNF Syntax : t .
1.4.1.2.2 Indirection in Modified BNF Syntax
1.4.1.2.3 Additional Uses for Indirect Definitions in Modified~BNF’S&ax . :
1.4.1.3 Special Symbols .
1.4.1.4 Objects with Multiple Notations
1.4.1.4.1 Case in Symbols
1.4.1.4.2 Numbers
1.4.1.4.3 Use of the Dot’Character . : . : . : . . : . t . . ’ .
1.4.1.4.4NIL :. . . : ’ :. . . ’ .
1.4.1.5 Designators

. : . . : : : .
.

1.4.1.6 Nonsense Words
1.4.2 Error Terminology
1.4.3 Sections Not Formally Part Of This Standard . : ’ : . . .
1.4.4 Interpreting Dictionary Entries
1.4.4.1 The “Affected By” Section of a Dictionary Entry

.

.

.
. . .

. .

. .

. .

. . . .

t.

. l-l
l-l
l-l
l-4
l-5

. l-7

. l-7
l-7
l-7
l-7
l-9
l-9
l-9

l-11
l-11

. 1-12
. . . 1-12
. . 1-12
. . 1-13

. 1-13
. . . 1-14

. 1-16

. 1-16

. 1-16
1.4.4.2 The UArguments” Section of a Dictionary Entry . .
1.4.4.3 The “Arguments and Values” Section of a Dictionary Entry . .

l-17
. . : . . : ’ . : . . : ’ . . : : : 1-17

1.4.4.4 The “Binding Types Affected” Section of a Dictionary Entry 1-17
1.4.4.5 The “Class Precedence List” Section of a Dictionary Entry 1-17
1.4.4.6 Dictionary Entries for Type Specifiers 1-17
1.4.4.6.1 The “Compound Type Specifier Kind” Section of a Dictionary Entry l-17
1.4.4.6.2 The “Compound Type Specifier Syntax” Section of a Dictionary Entry l-18
1.4.4.6.3 The “Compound Type Specifier Arguments” Section of a Dictionary Entry 1-18
1.4.4.6.4 The “Compound Type Specifier Description” Section of a Dictionary Entry 1-18
1.4.4.7 The “Constant Value” Section of a Dictionary Entry 1-18
1.4.4.8 The “Description” Section of a Dictionary Entry : : ’ . : : . : : : ’ 1-18
1.4.4.9 The “Examples” Section of a Dictionary Entry 1-18
1.4.4.10 The “Exceptional Situations” Section of a Dictionary Entry 1-18
1.4.4.11 The “Initial Value” Section of a Dictionary Entry ,
1.4.4.12 The “Argument Precedence Order” Section of a Dictionary Entry _ 1 . . ’ . :

1-18
1-19

1.4.4.13 The “Method Signature” Section of a Dictionary Entry 1-19
1.4.4.14 The “Name” Section of a Dictionary Entry l-19
1.4.4.15 The “Notes” Section of a Dictionary Entry l-20
1.4.4.16 The “Pronunciation” Section of a Dictionary Entry 1-21
1.4.4.17 The “See Also” Section of a Dictionary Entry l-21
1.4.4.18 The “Side Effects” Section of a Dictionary Entry . l-21
1.4.4.19 The “Supertypes” Section of a Dictionary Entry . l-21

. - - - . ._ . . _ : _ _ _ _ _ _ L - __- . . - . - . . - .

A N S I X 3 . 2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e - C o m m o n L i sp

1 .4 .4 .20 T h e “Syn tax” Sec t i o n o f a D ic t i ona ry En t r y
1 .4 .4 .20 .1 Spec i a l “Syn t ax” No ta t i ons fo r O v e r l o a d e d O p e r a t o r s . .
1 .4 .4 .20 .2 N a m i n g Conven t i o n s fo r Res t P a r ame t e r s . .
1 .4 .4 .20 .3 Requ i r i n g Non -Nu l l Res t P a r ame t e r s i n t he “Syn tax” Sec t i o n
1 .4 .4 .20 .4 Re t u r n va l ues i n t he “Syn tax” Sec t i o n
1 .4 .4 .20 .4 .1 N o A r g u m e n t s o r V a l u e s i n t he “Syn tax” Sec t i o n .
1 .4 .4 .20 .4 .2 Uncond i t i o na l T rans fe r o f Con t r o l i n t he “Syn tax” Sec t i o n
1 .4 .4 .21 T h e “Va l i d Con tex t” Sec t i o n o f a D ic t i ona ry En t r y
1 .4 .4 .22 T h e “V a l u e Type” Sec t i o n o f a D ic t i ona ry En t r y
1 . 5 C o n f o r m a n c e . .
1 .5 .1 Con f o rm i n g Imp l emen ta t i ons
1 .5 .1 .1 R e q u i r e d L a n g u a g e Fea t u r es . .
1 .5 .1 .2 Documen t a t i o n o f Imp l emen t a t i o n -Dependen t Fea t u r es
1 .5 .1 .3 Documen t a t i o n o f Ex t ens i ons
1 .5 .1 .4 T r ea tmen t o f Excep t i o na l S i t ua t i ons
1 .5 .1 .4 .1 Reso l u t i o n o f A p p a r e n t Conf l ic ts i n Excep t i o na l S i t ua t i ons
1 .5 .1 .4 .1 .1 E x a m p l e s of Reso l u t i o n o f A p p a r e n t Conf l ic ts i n Excep t i o na l S i t ua t i ons
1 .5 .1 .5 C o n f o r m a n c e S ta temen t
1 .5 .2 Con f o rm i n g P r o g r a m s
1 .5 .2 .1 U s e of Imp l emen t a t i o n -De f i n ed L a n g u a g e Fea t u r es .
1 .5 .2 .1 .l U s e of R e a d - T i m e Cond i t i o na l s
1 .5 .2 .2 Cha r ac t e r Se t fo r Po r t a b l e C o d e
1 . 6 L a n g u a g e Ex tens i ons .
1 . 7 L a n g u a g e Subse t s : :
1 . 8 D e p r e c a t e d L a n g u a g e Fea t u r es
1 .8 .1 D e p r e c a t e d Func t i ons . . .
1 .8 .2 D e p r e c a t e d A r g u m e n t Conven t i o n s .
1 .8 .3 D e p r e c a t e d Va r i a b l e s . .
1 .8 .4 D e p r e c a t e d R e a d e r Syn t ax . .
1 . 9 Symbo l s i n t he C O M M O N - L I S P P a c k a g e

C h a p t e r 2 (Syn tax)
2 . 1 Cha r ac t e r Syn t ax . .
2 .1 .1 Read t a b l e s
2 .1 .1 .1 T h e Cu r r e n t R e a d t a b l e :
2 .1 .1 .2 T h e S t a n d a r d R e a d t a b l e .
2 .1 .1 .3 T h e Init ia l R e a d t a b l e .
2 .1 .2 Va r i a b l e s that affect t he L i sp R e a d e r

’ . : : .
.

2 .1 .3 S t a n d a r d Cha r ac t e r s
2 .1 .4 Cha r ac t e r Syn t ax Types . .
2 .1 .4 .1 Cons t i t uen t Cha r ac t e r s
2 .1 .4 .2 Cons t i t uen t Tra i ts . ’ . . ’
2 .1 .4 .3 Inva l i d Cha r ac t e r s .
2 .1 .4 .4 M a c r o Cha r ac t e r s . .
2 .1 .4 .5 Mu l t i p l e E s c a p e Cha r ac t e r s .
2 .1 .4 .5 .1 E x a m p l e s of Mu l t i p l e E s c a p e Cha r ac t e r s
2 .1 .4 .6 S i n g l e E s c a p e Cha r ac t e r
2 .1 .4 .6 .1 E x a m p l e s of S i n g l e E s c a p e Cha r ac t e r s
2 .1 .4 .7 Wh i t e s pace Cha r ac t e r s
2 .1 .4 .7 .1 E x a m p l e s of Wh i t e s pace Cha r ac t e r s .
2 . 2 R e a d e r A l go r i t hm
2 . 3 In te rp re ta t i on o f T okens . . . t t .
2 .3 .1 N u m b e r s a s Tokens
2 .3 .1 .1 Po ten t i a l N u m b e r s a s Tokens . . . :
2 .3 .1 .1 .1 E s c a p e Cha r ac t e r s a n d Po ten t i a l N u m b e r s
2 .3 .1 .1 .2 E x a m p l e s of Po ten t i a l N u m b e r s . .

. .

. .

. .

. .

. .

. .

. .

. . . .

. .
.

. .
. .

.
. .

. .
. . .

.
. . .

.

.

. .

. . .

. .

. .
. .

. .
. .

. . .

1 - 2 1
1 - 2 1
1 - 2 2
1 - 2 2
l - 2 2
1 - 2 2
l - 2 2
l - 2 2
l - 2 3
l - 2 4
l - 2 4
l - 2 4
l - 2 4
l - 2 4
1 - 2 4
1 - 2 4
1 - 2 4
1 - 2 5
l - 2 5
1 - 2 5
1 - 2 5
l - 2 6
l - 2 7

. l - 2 8
l - 2 9
l - 2 9
l - 2 9

t.. l - 2 9
. . l - 2 9

. . . l - 3 0

2 - l
. 2 - l

2 - 1
. . . 2 - l

2 - l
2 - 2

. . . 2 - 2
. . 2 - 3

. . . . 2 - 5

. . . . 2 - 5
. . . . 2 - 6

. 2 - 7
2 - 7

. . 2 - 7
.

. , . ;I;
. 2 - 8

2 - 8
. 2 - 9

2 - 1 1
. 2 - 1 1
. . 2 - 1 1

2 - 1 2
. 2 - 1 2

11 Con ten t s

Programming Language-Common Lisp ANSI X3.226-1994

2.3.2 Constructing Numbers from Tokens
2.3.2.1 Syntax of a Rational
2.3.2.1.1 Syntax of an Integer
2.3.2.1.2 Syntax of a Ratio
2.3.2.2 Syntax of a Float
2.3.2.3 Syntax of a Complex
2.3.3 The Consing Dot . .
2.3.4 Symbols as Tokens .
2.3.5 Valid Patterns for Tokens
2.3.6 Package System Consistency Rules
2.4 Standard Macro Characters .
2.4.1 Left-Parenthesis
2.4.2 Right-Parenthesis
2.4.3 Single-Quote
2.4.3.1 Examples of Single-Quote. . . .
2.4.4 Semicolon
2.4.4.1 Examples of Semicolon . . .
2.4.4.2 Notes about Style for Semicolon
2.4.4.2.1 Use of Single Semicolon . . .
2.4.4.2.2 Use of Double Semicolon .
2.4.4.2.3 Use of Triple Semicolon
2.4.4.2.4 Use of Quadruple Semicolon . . .
2.4.4.2.5 Examples of Style for Semicolon
2.4.5 Double-Quote .
2.4.6 Backquote
2.4.6.1 Notes about Backquote . . .
2.4.7 Comma .
2.4.8 Sharpsign
2.4.8.1 Sharpsign Back&h t
2.4.8.2 Sharpsign Single-Quote . .
2.4.8.3 Sharpsign Left-Parenthesis
2.4.8.4 Sharpsign Asterisk .
2.4.8.4.1 Examples of Sharpsign Asterisk .
2.4.8.5 Sharpsign Colon
2.4.8.6 Sharpsign Dot .
2.4.8.7 Sharpsign B

. 2.4.8.8 Sharpsign 0
2.4.8.9 Sharpsign X
2.4.8.10 Sharpsign R
2.4.8.11 Sharpsign C
2.4.8.12 Sharpsign A
2.4.8.13 Sharpsign S
2.4.8.14 Sharpsign P
2.4.8.15 Sharpsign Equal-Sign .
2.4.8.16 Sharpsign Sharpsign .
2.4.8.17 Sharpsign Plus
2.4.8.18 Sharpsign Minus
2.4.8.19 Sharpsign Vertical-Bar
2.4.8.19.1 Examples of Sharpsign Vertical-Bar

.

.

. .

. . . .

. .

. .

. .

.

. . .

. . . .

I .

,

. . . .

. . .

. . .

. .

. .

. .

2.4.8.19.2 Notes about Style for Sharpsign Vertical-Bar
2.4.8.20 Sharpsign Less-Than-Sign
2.4.8.21 Sharpsign Whitespace
2.4.8.22 Sharpsign Right-Parenthesis
2.4.9 Re-Reading Abbreviated Expressions . .

.

I

.

. . .

. .

.
. .

. .

. .

. .

. .

. .

. .
.

. . .

. . 2-25
2-26

. 2-26
2-26
2-27
2-27

. 2-27
. . . 2-28

. . 2-28
. . . 2-28

2-29

. . . .

. . .
. .

.

2-12
2-13
2-13
2-13
2-13
2-14
2-14
2-14
2-16
2-17
2-18
2-18
2-18
2-18
2-18
2-19
2-19
2-19
2-19
2-19
2-19
2-19
2-20
2-20
2-20
2-22
2-22
2-22
2-23

. 2-24
2-24
2-24
2-25
2-25
2-25

. . 2-29
. . . 2-29

. 2-29
. 2-30

. . . 2-30
. . . . 2-31

. . . 2-31
. . . . 2-31

Contents
. . .
ill

ANSI X3.226-1994 Programming LanguageCommon Lisp

Chapter 3 (Evaluation and CompiIation)
3.1 Evaluation
3.1.1 Introduction to Environments
3.1.1.1 The Global Environment
3.1.1.2 Dynamic Environments
3.1.1.3 Lexical Environments
3.1.1.3.1 The NuII Lexical Environment
3.1.1.4 Environment Objects
3.1.2 The Evaluation Model
3.1.2.1 Form Evaluation
3.1.2.1.1 Symbols as Forms. : : : : :

.............. ...
...

3.1.2.1.1.1 Lexical Variables
3.1.2.1.1.2 Dynamic Variables
3.1.2.1.1.3 Constant Variables

..... 3.1.2.1.1.4 Symbols Naming Both LexicaI and Dynamic~Vkabl~
3.1.2.1.2Consee as Forms
3.1.2.1.2.1 Special Forms
3.1.2.1.2.2 Macro Forms

.

. . . .

. . .

3.1.2.1.2.3 Function Forms
3.1.2.1.2.4 Lambda Forms
3.1.2.1.3 Self-Evaluating Objects
3.1.2.1.3.1 Examples of Self-Evaluating Objects . : : .
3.1.3 Lambda Expressions
3.1.4 Closures and Lexical Binding
3.1.5 Shadowing .
3.1.6 Extent . .

. . .
. . . .

. .

3.1.7 Return Values. 1: 1 . 1 . . 1: .
.

.
3.2 Compilation
3.2.1 Compiler Terminology
3.2.2 Compilation Semantics
3.2.2.1 Compiler Macros
3.2.2.1.1 Purpose of Compiler Macros
3.2.2.1.2 Naming of Compiler Macros
3.2.2.1.3 When Compiler Macros Are Used : . : : ’ : : : :
3.2.2.1.3.1 Notes about the Implementation of Compiler Macros
3.2.2.2 Minimal Compilation
3.2.2.3 Semantic Constraints
3.2.3 File Compilation
3.2.3.1 Processing of Top Level Forms . . , . .
3.2.3.1.1 Processing of Defining Macros
3.2.3.1.2 Constraints on Macros and Compiler Macros . .
3.2.4 Literal Objects in Compiled Files
3.2.4.1 Externalizable Objects
3.2.4.2 Similarity of Literal Objects
3.2.4.2.1 Similarity of Aggregate Objects : . : : : : . . : : .
3.2.4.2.2 Definition of Similarity
3.2.4.3 Extensions to Similarity Rules
3.2.4.4 Additional Constraints on Extemahiable Objects . ’ : :
3.2.5 Exceptional Situations in the Compiler
3.3 Declarations .
3.3.1 Minimal Declaration Processing Requirements
3.3.2 Declaration Specifiers ,
3.3.3 Declaration Identifiers :

. . .
.

3.3.3.1 Shorthand notation for Type Declarations
3.3.4 Declaration Scope
3.3.4.1 Examples of Declaration Scope

. .

. .

.

. .
. . .

. . .

.
. . . .

. . . .

. .

. . . .

. . .

.

.

. . .

. . . .

. .

. . .

. . .
. . .
. . . .
. . . .
. . .

.
.
.

. .
. .
. . . .

. .

.
. . .

. .

. .

. . .

. .

. .

. .
. . . .

,.. .
.
.

.

. I

. .

. . . .

. .

. .

. . . .

. . . .

. . . .
. . .
. . .
. .

. . .

. .

.

.
. .
. .

.

.

.

.

.

. . . .

.
. .

.
.

3-l
3-1
3-l
3-l
3-2
3-2
3-2

. . 3-3
3-3
3-3
3-3
3-4
3-4

. 3-4

. 3-5

. . 3-5
. 3-5

3-6
. . . 3-7

. . .
;z;

. . . 3-7

3”:;
. . ‘3-10

. . . . 3-11

. . . 3-12
. . . 3-12

. . . . 3-13

. . . . 3-13
. . . 3-13

. 3-14

. . . . 3-14
. . . 3-14

. 3-15

. . . . 3-15

. . . 3-16

. . . 3-17

. . . . 3-10

. 3-19

. 3-19

. 3-19

. . . . 3-20

. 3-20
. . . 3-20

. 3-21

. 3-22

. . . . 3-23

. . . 3-24

. . . . 3-24

. . . . 3-24
. . . 3-24

. . . . 3-24
. . . 3-25

. 3-25

iv Contents

Programming Language-Common Lisp ANSI X3.226-1994

3.4 Lambda Lists
. : . . . 3.4.1 Ordinary Lambda Lists . . .

3.4.1.1 Specifiers for the required parameters
3.4.1.2 Specifiers for optional parameters
3.4.1.3 A specifier for a rest parameter
3.4.1.4 Specifiers for keyword parameters . .
3.4.1.4.1 Suppressing Keyword Argument Checking . . t .
3.4.1.4.1.1 Examples of Suppressing Keyword Argument Checking . .
3.4.1.5 Specifiers for &aux variables
3.4.1.6 Examples of Ordinary Lambda Lists t . : : .
3.4.2 Generic Function Lambda Lists : .
3.4.3 Specialized Lambda Lists
3.4.4MacroLambdaLists
3.4.4.1 Destructuring by Lambda Lists’ .

.... . . . 1:. .’ . ..I’
. .

3.4.4.1.1 Data-directed Destructuring by Lambda Lists. ’ . ’ : : .
3.4.4.1.1.1 Examples of Data-directed Destructuring by Lambda Lists .
3.4.4.1.2 Lambda-list-directed Destructuring by Lambda Lists
3.4.5 Destructuring Lambda Lists
3.4.6 Boa Lambda Lists t..
3.4.7 Defsetf Lambda Lists
3.4.8 Deftype Lambda Lists .
3.4.9 Define-modify-macro Lambda Lists . t : : :
3.4.10 Define-method-combination Arguments Lambda Lists
3.4.11 Syntactic Interaction of Documentation Strings and Declarations .
3.5 Error Checking in Function Calls
3.5.1 Argument Mismatch Detection
3.5.1.1 Safe and Unsafe Calls
3.5.1.1.1 Error Detection Time in Safe Calls ’ ’
3.5.1.2 Too Few Arguments
3.5.1.3 Too Many Arguments . .

t . 3.5.1.4 Unrecognized Keyword Arguments . . t
3.5.1.5 Invalid Keyword Arguments
3.5.1.6 Odd Number of Keyword Arguments . . .
3.5.1.7 Destructuring Mismatch
3.5.1.8 Errors When Calling a Next Method : .
3.6 Traversal Rules and Side Effects
3.7 Destructive Operations
3.7.1 Modification of Literal Objects . . :
3.7.2 Transfer of Control during a Destructive Operation
3.7.2.1 Examples of Transfer of Control during a Destructive Operation
3.8 Evaluation and Compilation Dictionary

Chapter 4 (Types and Classes)
4.1 Introduction
4.2Types . . .
4.2.1 Data Type Definition . , .
4.2.2 Type Relationships . . .
4.2.3 Type Specifiers . .
4.3 Classes .
4.3.1 Introduction’to‘dlasses . :
4.3.1.1 Standard Me&classes . .
4.3.2 Defining Classes . .
4.3.3 Creating Instances of ciasses
4.3.4 Inheritance
4.3.4.1 Examples of Inheritance .
4.3.4.2 Inheritance of Class Options

.

. . . .

. .

. .

. .

. .
.

.
.

. . . .
.

. . .

.

. .

. . .

. . .

. . . .

. . . .
. .

. . .
. . . .

. .
. .
. .

. . .
. . .
. .

. 3-42
. . . . 3-43

.
Ei

. . . 3-45
. . 3-45

. . . 3-46

3-27
3-27
3-28
3-28
3-29
3-29
3-30
3-30
3-30
3-31
3-32
3-33
3-33

. 3-35
. . . 3-35

3-35
. 3-35

3-36
. . 3-37

. . . 3-38
3-39

. . 3-39

. . . 3-39
. . . 3-39

. . . 3-40
. . 3-40

. 3-40
3-41

. . 3-41
. . 3-41

. . . 3-41
. . . 3-41

3-41
3-42

. . . .

. . .

. . . .

.

.

. . . .
. .

. . .
.

. . .

. . . 4-l
. . . 4-2

. . . 4-2

. . . 4-2

. . . 4-3
. . . . 4-6

. . . 4-6
. . . . 4-7

. . . 4-7
. . . 4-8
. . 4-8
. . . . 4-8

. . 4-9

Contents V

ANSI X3.226-1994 Programming Language-Common Lisp

4.3.5 Determining the Class Precedence List
4.3.5.1 Topological Sorting . . .
4.3.5.2 Examples of Class Precedence List Determination
4.3.6 Redefining Classes
4.3.6.1 Modifying the Structure of Instances . .
4.3.6.2 Initializing Newly Added Local Slots . .
4.3.6.3 Customizing Class Redefinition
4.3.7 Integrating Types and Classes . . .
4.4 Types and Classes Dictionary . .

Chapter 5 (Data and Control Flow)
5.1 Generalized Reference
5.1.1 Overview of Places and Generalized Reference
5.1.1.1 Evaluation of Subforms to Places
5.1.1.1.1 Examples of Evaluation of Subforms to Places
5.1.1.2Setf Expansions
5.1.1.2.1 Examples of S&f Expansions
5.1.2 Kinds of Places
5.1.2.1 Variable Names as Places . : :
5.1.2.2 Function Call Forms as Places .
5.1.2.3 VALUES Forms as Places .
5.1.2.4 THE Forms as Places : . : . : .
5.1.2.5 APPLY Forms as Places
5.1.2.6 Setf Expansions and Places
5.1.2.7 Macro Forms as Places ,
5.1.2.8 Symbol Macros as Places
5.1.2.9 Other Compound Forms as Places
5.1.3 Treatment of Other Macros Based on SETF t : . :
5.2 Transfer of Control to an Exit Point
5.3 Data and Control Flow Dictionary

Chapter 6 (Iteration)
6.1 The LOOP Facility
6.1.1 Overview of the Loop Facility
6.1.1.1 Simple vs Extended Loop
6.1.1.1.1 Simple Loop
6.1.1.1.2 Extended Loop . .
6.1.1.2 Loop Keywords
6.1.1.3 Parsing Loop Clauses
6.1.1.4 Expanding Loop Forms
6.1.1.5 Summary of Loop Clauses
6.1.1.5.1 Summary of Variable Initialization and Stepping Clauses
6.1.1.5.2 Summary of Value Accumulation Clauses . .
6.1.1.5.3 Summary of Termination Test Clauses . .
6.1.1.5.4 Summary of Unconditional Execution Clauses .
6.1.1.5.5 Summary of Conditional Execution Clauses . .
6.1.1.5.6 Summary of Miscellaneous Clauses
6.1.1.6 Order of Execution
6.1.1.7 Destructuring .
6.1.1.8 Restrictions on Side-Effects . :
6.1.2 Variable Initialization and Stepping Clauses
6.1.2.1 Iteration Control
6.1.2.1.1 The for-as-arithmetic subclause . . .
6.1.2.1.1.1 Examples of for-as-arithmetic subclause . . .
6.1.2.1.2 The for-as-in-list subclause

. .

. .

. .

. .
. .

. .

. .

.

. . . .

. .

, .
. .

. . . .
. .
. I .

.
. . . .

.

. . .

4-9
4-9

4-10
4-11
4-12
4-12
4-12
4-13
4-15

5-l
5-l
5-l

. 5-2
5-2
5-3
54
54
5-4
5-7
5-7
5-8
5-8
5-8

. . 5-8
5-8

. . . 5-9
5-10

. 5-11

. . .
. .

.

.

. . . .
. .

6-l
6-l
6-l
6-l

. 6-l
6-l

. 6-l

. 6-2
6-3

. 6-3
6-3

. 6-3
64

.E

. 6-5
6-5
6-7
6-7
6-7

ii2
6-9

vi Contents

Programming Language-Common Lisp ANSI X3.226-1994

. . . .
.

6.1.2.1.2.1 Examples of for-as-in-list subclause
6.1.2.1.3 The for-as-on-list subclause . .
6.1.2.1.3.1 Examples of for-as-on-list subclause .
6.1.2.1.4 The for-as-equals-then subclause .
6.1.2.1.4.1 Examples of for-as-equals-then subclause .
6.1.2.1.5 The for-as-across subclause . .
6.1.2.1.5.1 Examples of for-as-across subclause

. .
.

6.1.2.1.6 The for-as-hash subclause . .
6.1.2.1.7 The for-as-package subclause . . .
6.1.2.1.7.1 Examples of for-as-package subclause . . .
6.1.2.2 Local Variable Initializations .
6.1.2.2.1 Examplesof WITH clause
6.1.3 Value Accumulation Clauses . . .
6.1.3.1 Examples of COLLECT clause
6.1.3.2 Examples of APPEND and NCONC clauses .
6.1.3.3 Examples of COUNT clause . .
6.1.3.4 Examples of MAXIMIZE and MINIMIZE clauses
6.1.3.5 Examples of SUM clause
6.1.4 Termination Test Clauses
6.1.4.1 Examples of REPEAT clause
6.1.4.2 Examples of ALWAYS, NEVER, and THEREIS clauses
6.1.4.3 Examples of WHILE and UNTIL clauses
6.1.5 Unconditional Execution Clauses . .
6.1.5.1 Examples of unconditional execution
6.1.6 Conditional Execution Clauses .
6.1.6.1 Examples of WHEN clause
6.1.7 Miscellaneous Clauses
6.1.7.1 Control Transfer Clauses’

, .

6.1.7.1.1 Examples of NAMED clause
. . . .

. . .
6.1.7.2 Initial and Final Execution . .
6.1.8 Examples of Miscellaneous Loop Features’ : : : .

.

.

.

6.1.8.1 Examples of clause grouping
6.1.9 Notes about Loop
6.2 Iteration Dictionary . . .

Chapter 7 (Objects)
7.1 Object Creation and Initialization .
7.1.1 Initialization Arguments
7.1.2 Declaring the Validity of Initialization Arguments . . ,
7.1.3 Defaulting of Initialization Arguments
7.1.4 Rules for Initialization Arguments
7.1.5 Shared-Initialize . .
7.1.6 Initialize-Instance .
7.1.7 Definitions of Make-Instance and Initialize-Instance
7.2 Changing the Class of an Instance . .
7.2.1 Modifying the Structure of the Instance
7.2.2 Initializing Newly Added Local Slots .
7.2.3 Customizing the Change of Class of an Instance .
7.3 Reinitializing an Instance
7.3.1 Customizing Reinitialization
7.4 Meta-Objects . .
7.4.1 Standard Meta-objects . .
7.5 Slots .
7.5.1 Introduction to Slots . .
7.5.2 Accessing Slots . . .
7.5.3 Inheritance of Slots and Slot Options . . .

. .
. .

6-Q
6-10
6-10
6-10
6-10
6-10
6-11
6-11
6-12
6-13
6-13
6-14
6-14
6-16
6-16
6-17
6-17
6-17
6-17
6-19
6-19
6-20
6-20
6-21
6-21

. 6-21
. . 6-22
. . 6-22

6-22
. . 6-23

. . . 6-23
6-24

. 6-25
. 6-26

. 7-l
. 7-l

. . 7-2

. . 7-3
7-4

. . 7-5

. 7-5

. 7-6
7-8
7-8
7-8

. . 7-8
7-Q
7-Q

‘7-10
. 7-10
. 7-11

7-11
7-11

. 7-12

Contents vii

ANSI X3.226-1994 Programming Language-Common Lisp

7.6 Generic Functions and Methods _
7.6.1 Introduction to Generic Functions
7.6.2 Introductipn to Methods
7.6.3 Agreement on Parameter Specialisers and Qualifiers . :

.
.

7.6.4 Congruent Lambda-lists for all Methods of a Generic Function
7.6.5 Keyword Arguments in Generic Functions and Methods
7.6.5.1 Examples of Keyword Arguments in Generic Functions and Methods
7.6.6 Method Selection and Combination
7.6.6.1 Determining the Effective Method
7.6.6.1.1 Selecting the Applicable Methods , . : . .

. .

7.6.6.1.2 Sorting the Applicable Methods by Precedence Order
7.6.6.1.3 Applying method combination to the sorted list of applic~ble’met~ods
7.6.6.2 Standard Method Combination
7.6.6.3 Declarative Method Combination .
7.6.6.4 Built-in Method Combination Types . . .
7.6.7 Inheritance of Methods
7.7 Objects Dictionary _

Chapter 8 (Structures)
8.1 Structures Dictionary

. . . .
. .

.

Chapter 9 (Conditions)
9.1 Condition System Concepts
9.1.1 Condition Types * .
9.1.1 .l Serious Conditions
9.1.2 Creating Conditions
9.1.2.1 Condition Designators

.
.

9.1.3 Printing Conditions . . ’ :
9.1.3.1 Recommended Style in Condition Reporting
9.1.3.1.1 Capitalization and Punctuation in Condition Reports . .
9.1.3.1.2 Leading and Trailing Newlines in Condition Reports . . .
9.1.3.1.3 Embedded Newlines in Condition Reports
9.1.3.1.4 Note about Tabs in Condition Reports
9.1.3.1.5 Mentioning Containing Function in Condition H.epor;s

. . .
. .

9.1.4 Signaling and Handling Conditions
9.1.4.1 Signaling . . .
9.1.4.1.1 Resignaling a Conditioh : . . . : . : : . . : . : : .
9.1.4.2 Restarts
9.1.4.2.1 Interactive VSe of Restarts . . 1 . 1 1 1 . ’ . 1 1 . . ’ . 1 t
9.1.4.2.2 Interfaces to Restarts
9.1.4.2.3 Restart Tests
9.1.4.2.4 Associating a Restart with a Condition
9.1.5 Assertions . .
9.1.6 Notes about the Conhition Syi&‘s Bgckgro&d . . . : . . :
9.2 Conditions Dictionary

. .
. . .

. . . .

. . . .
. . . .
. . . .
. . . .

. .
. . . .

. . . .

. . .

. . . .

. .

Chapter 10 (Symbols)
10.1 Symbol Concepts
10.2 Symbols Dictionary . ,

Chapter 11 (Packages)
11.1 Package Concepts .
11.1.1 Introduction to Packages . ’ . ’ . . : .

. . .
.

11.1.1.1 Package Names and Nicknames :

.

. . .

. .

. .
. . . .
. . .

. .

. .
. .
. .

. .

. .

.

7-14
7-14
7-15
7-16
7-17
7-17

. 7-17
7-18
7-18
7-18
7-19
7-19
7-20
7-21
7-21
7-22
7-23

. . .
. . .

. . . .
. .

. .
. . .
t. . .

. .

.
. . . .

.
. . .

. . . .
. .

.

.

.

. . .
. .

. .
. . . .

. . I

. . , .

.

. 8-l

9-l
. 9-l

9-2

E
9-3

.9-4

.E
9-4

E
9-5

.!+6

E
9-7

. 9-7
9-8

. 9-8

. 9-8

10-l
10-2

11-l
11-l
11-l

. . .
vu1 Contents

Programming Language-Common Lisp ANSI X3.226-1994

11.1.1.2 Symbols in a Package . .
11.1.1.2.1 Internal and External Symbols : . : . . .

.
.

11.1.1.2.2 Package Inheritance
11.1.1.2.3 Accessibility of Symbols in a Package
11.1.1.2.4 Locating a Symbol in a Package
11.1.1.2.5 Prevention of Name Conflicts in Packages . .
11.1.2 Standardized Packages
11.1.2.1 The COMMON-LISP Package . . ,
11.1.2.1.1 Constraints on the COMMON-LISP Package for Conforming Implementations .
11.1.2.1.2 Constraints on the COMMON-LISP Package for Conforming Programs
11.1.2.1.2.1 Some Exceptions to Constraints on the COMMON-LISP Package for Conforming

Programs . . .
11.1.2.2 The COMMON-LISP-USER Package . . : .

.

11.1.2.3 The KEYWORD Package ,
11.1.2.3.1 Interning a Symbol in the KEYWORD Package
11.1.2.3.2 Notes about The KEYWORD Package
11.1.2.4 Implementation-Defined Packages
11.2 Packages Dictionary

Chapter 12 (Numbers)
12.1 Number Concepts
12.1.1 Numeric Operations . . . I . . .
12.1.1.1 Associativity and Commutativity in Numeric Operations . .
12.1.1.1.1 Examples of Associativity and Commutativity in Numeric Operations .
12.1.1.2 Contagion in Numeric Operations .
12.1.1.3 Viewing Integers as Bits and Bytes
12.1.1.3.1 Logical Operations on Integers
12.1.1.3.2 Byte Operations on Integers ,
12.1.2 Implementation-Dependent Numeric Constants . .
12.1.3 Rational Computations
12.1.3.1 Rule of Unbounded Rational Precision
12.1.3.2 Rule of Canonical Representation for Rationals
12.1.3.3 Rule of Float Substitutability . . .
12.1.4 Floating-point Computations
12.1.4.1 Rule of Float and Rational Contagion
12.1.4.1.1 Examples of Rule of Float and Rational Contagion
12.1.4.2 Rule of Float Approximation
12.1.4.3 Rule of Float Underffow and Overflow
12.1.4.4 Rule of Float Precision Contagion ,
12.1.5 Complex Computations
12.1.5.1 Rule of Complex Substitutability’

. .
.

12.1.5.2 Rule of Complex Contagion
12.1.5.3 Rule of Canonical Representation for Complex RationaIs . . .
12.1.5.3.1 Examples of Rule of Canonical Representation for Complex RationaIs
12.1.5.4 Princinal Values and Branch Cuts . .

. .

12.1.6 Interval-Designators . .
12.1.7 Random-State Operations .
12.2 Numbers Dictionary I . . .

Chapter 13 (Characters)
13.1 Character Concepts
13.1.1 Introduction to Characters
13.1.2 Introduction to Scripts and Repertoires . . .
13.1.2.1 Character Scripts .
13.1.2.2 Character Repertoires . .

.

.

11-l
11-1
11-2
11-2
11-2
11-2

. . 11-3
1 l-3
11-4
114

11-5
11-5
11-6
11-6
11-6
11-6
11-7

12-1
. 12-1

12-2
. . . 12-2

. . 12-2

. . . 12-2
I 12-2
. 12-3

. 12-3
. . 124

. 12-4
124
124

. 12-5
. . . 12-5

. . . . 12-5
. . . 12-6

. 12-6
. . 12-6

. . . 12-6
. 12-6

. . 12-6

. 12-7
12-7

. 12-7
12-8
12-9

. . 12-10

13-1
13-1

. 13-1
. 13-1

13-2

Contents ix

- ^__. -- - --. _-=_

ANSI X3.226- 1994 Programming Language-Common Lisp

13.1.3 Character Attributes
13.1.4 Character Categories . .
13.1.4.1 Graphic Characters
13.1.4.2 Alphabetic Characters
13.1.4.3 Characters With Case
13.1.4.3.1 Uppercase Characters
13.1.4.3.2 Lowercase Characters
13.1.4.3.3 Corresponding Characters in the Other Case . .
13.1.4.3.4 Case of Implementation-Defined Characters
13.1.4.4 Numeric Characters
13.1.4.5 Alphanumeric Characters
13.1.4.6 Digits in a Radix ,
13.1.5 Identity of Characters . .
13.1.6 Ordering of Characters
13.1.7 Character Names
13.1.8 Treatment of Newline during Input and Output
13.1.9 Character Encodings
13.1.10 Documentation of Implementation-Defined Scripts .
13.2 Characters Dictionary

Chapter 14 (Conses)
14.1 Cons Concepts
14.1.1 Comes as Trees
14.1.1.1 General Restrictions on Parameters that must be Trees :
14.1.2 Conses as Lists
14.1.2.1 Lists as Association Lists
14.1.2.2 Lists as Sets .
14.1.2.3 General Restrictions on Parameters that must be Lists
14.2 Conses Dictionary

Chapter 15 (Arrays)
15.1 Array Concepts
15.1.1 Array Elements
15.1.1.1 Array Indices
15.1.1.2 Array Dimensions .
15.1.1.2.1 Implementation Limits on Individual Array Dimensions .
15.1.1.3 Array Rank
15.1.1.3.1 Vectors . . .
15.1.1.3.1.1 Fill Pointers .
15.1.1.3.2 Multidimensional Arrays
15.1.1.3.2.1 Storage Layout for Multidimensional Arrays
15.1.1.3.2.2 Implementation Limits on Array Rank
15.1.2 Specialized Arrays
15.1.2.1 Array Upgrading
15.1.2.2 Required Kinds of Specialized Arrays . . .
15.2 Arrays Dictionary

Chapter 16 (Strings)
16.1 String Concepts
16.1.1 Implications of Strings Being Arrays
16.1.2 Subtypes of STRING
16.2 Strings Dictionary

.

. . .

. 15-1

. 15-1
. 15-1

, 15-1
. . . I 15-1

. . . 15-1
. . 15-1

. . . 15-1
. . . 15-2

,.. . 15-2
. 15-2

. . . 15-2

. . 15-2
. . . 15-3

. . . . 15-4

13-2
13-2
13-2
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-4
134
134
134
13-5
13-5
13-5
13-6
13-7

14-1
. . 14-1

. 14-1
14-1

. . . 14-2
14-2
14-2

. . . 14-3

. 16-1
. 16-1

. 16-1
. 16-2

X Contents

Programming Language-Common Lisp ANSI X3.226-1994

Chapter 17 (Sequences)
17.1 Sequence Concepts
17.1.1 General Restrictions on Parameters that must be Sequences
17.2 Rules about Test Functions
17.2.1 Satisfying a Two-Argument Test
17.2.1.1 Examples of Satisfying a TwoArgument Test

.

17.2.2 Satisfying a One-Argument Test
17.2.2.1 Examples of Satisfying a One-Argument Test
17.3 Sequences Dictionary . .

Chapter 18 (Hash Tables)
18.1 Hash Table Concepts . . .
18.1.1 Hash-Table Operations
18.1.2 Modifying Hash Table Keys
18.1.2.1 Visible Modification of Objects with respect to EQ and EQL
18.1.2.2 Visible Modification of Objects with respect to EQUAL .
18.1.2.2.1 Visible Modification of Conses with respect to EQUAL
18.1.2.2.2 Visible Modification of Bit Vectors and Strings with respect to EQUAL
18.1.2.3 Visible Modification of Objects with respect to EQUALP
18.1.2.3.1 Visible Modification of Structures with respect to EQUALP
18.1.2.3.2 Visible Modification of Arrays with respect to EQUALP
18.1.2.3.3 Visible Modification of Hash Tables with respect to EQUALP
18.1.2.4 Visible Modifications by Language Extensions
18.2 Hash Tables Dictionary

17-1
17-1
17-2
17-2
17-2
17-3
17-4
17-5

18-1
18-1
18-1
18-2
18-2
18-2
18-2
18-2
18-2
18-2
18-2
18-3
184

Chapter 19 (Filenames)
19.1 Overview of Filenames
19.1.1 Namestrings as Filenames
19.1.2 Pathnames as Filenames
19.1.3 Parsing Name&rings Into Pathnames
19.2 Pathnames
19.2.1 Pathname Components
19.2.1.1 The Pathname Host Component .
19.2.1.2 The Pathname Device Component
19.2.1.3 The Pathname Directory Component .
19.2.1.4 The Pathname Name Component .
19.2.1.5 The Pathname Type Component
19.2.1.6 The Pathname Version Component
19.2.2 Interpreting Pathname Component Values . .
19.2.2.1 Strings in Component Values
19.2.2.1.1 Special Characters in Pathname Components
19.2.2.1.2 Case in Pathname Components
19.2.2.1.2.1 Local Case in Pathname Components
19.2.2.1.2.2 Common Case in Pathname Components
19.2.2.2 Special Pathname Component Values
19.2.2.2.1 NIL as a Component Value
19.2.2.2.2 :WILD as a Component Value
19.2.2.2.3 :UNSPECIFIC as a Component Value
19.2.2.2.3.1 Relation between component values NIL and :UNSPECIFIC
19.2.2.3 Restrictions on Wildcard Pathnames
19.2.2.4 Restrictions on Examining Pathname Components
19.2.2.4.1 Restrictions on Examining a Pathname Host Component
19.2.2.4.2 Restrictions on Examining a Pathname Device Component
19.2.2.4.3 Restrictions on Examining a Pathname Directory Component
19.2.2.4.3.1 Directory Components in Non-Hierarchical File Systems

19-1
19-1

. . 19-1
19-2

. 19-3

. 19-3
. 19-3

. . 19-3
. . 19-3

19-3
. . 19-3

19-3
. . 19-3

. . . 19-3
. . 19-3

. I.. 194
. 19-4

. . . r. 19-4
194
194
19-5

. . 19-5
19-5
19-5
19-6
19-6

. 19-6
19-6
19-7

Contents xi

ANSI X3.226-1994 Programming Language-Common Lisp

19.2.2.4.4 Restrictions on Examining a Pathname Name Component
19.2.2.4.5 Restrictions on Examining a Pathname Type Component
X3.2.2.4.6 Restrictions on Examining a Pathname Version Component
19.2.2.4.7 Notes about the Pathname Version Component
19.2.2.5 Restrictions on Constructing Pathnames
19.2.3 Merging Pathnames .
19.2.3.1 Examples of Merging Pathnames _
19.3 Logical Pathnames
19.3.1 Syntax of Logical Pathname Namestrings . . .
19.3.1.1 Additional Information about Parsing Logical Pathname Nan-restrings
19.3.1.1.1 The Host part of a Logical Pathname Namestring .
19.3.1.1.2 The Device part of a Logical Pathname Namestring . .
19.3.1.1.3 The Directory part of a Logical Pathname Namestring
19.3.1.1.4 The Type part of a Logical Pathname Namestring . . .
19.3.1.1.5 The Version part of a Logical Pathname Name&ring . .
19.3.1.1.6 Wildcard Words in a Logical Pathname Namestring
19.3.1.1.7 Lowercase Letters in a Logical Pathname Namestring
19.3.1.1.8 Other Syntax in a Logical Pathname Namestring
19.3.2 Logical Pathname Components I
19.3.2.1 Unspecific Components of a Logical Pathname .
19.3.2.2 Null Strings as Components of a Logical Pathname . . .
19.4 Filenames Dictionary

Chapter 20 (Files)
20.1 File System Concepts . . .
20.1.1 Coercion of Streams to Pathnames

. . .
. . .

20.1.2 File Operations on Open and Closed Streams . . .
20.1.3 Truenames
20.1.3.1 Examples of Truenames
20.2 Files Dictionary , . . .

Chapter 21 (Streams)
21.1 Stream Concepts
21.1.1 Introduction to Streams
21.1.1.1 Abstract Classifications of Streams . .
21.1.1.1.1 Input, Output, and Bidirectional Streams
21.1.1.1.2 Open and Closed Streams .
21.1.1.1.3 Interactive Streams
21.1.1.2 Abstract Classifications of Streams
21.1.1.2.1 File Streams
21.1.1.3 Other Subclasses of Stream
21.1.2 Stream Variables
21.1.3 Stream Arguments to Standardized Functions
21.1.4 Restrictions on Composite Streams
21.2 Streams Dictionary . .

. . .
.

. . .

. .
. . .

.

. . . .
. .

.
.

Chapter 22 (Printer)
22.1 The Lisp Printer
22.1.1 Overview of The Lisp Printer
22.1.1.1 Multiple Possible Textual Representations
22.1.1.1.1 Printer Escaping
22.1.2 Printer Dispatching . .
22.1.3 Default Print-Object Methods . : . : : . . : : . : : : : : . : : . .
22.1.3.1 Printing Numbers

. .
. .

.

19-7
19-7
19-7
19-8
19-8
19-8
19-8

19-10
19-10
19-10
19-10
19-11
19-11
19-11
19-11
19-11
19-11
19-11
19-11
19-11
19-11
19-12

20-l
20-l
20-l
20-Z
20-2
20-3

21-1
21-1
21-1
21-1
21-2
21-2
21-2
21-2
21-3
21-3
214
214
21-5

22-l
. 22-l
. . . 22-l

. . . 22-2
. . . 22-2

. 22-2
. 22-2

xii Contents

Programming Language-Common Lisp ANSI X3.226-1994

22.3.1.2 Tilde Percent: Newline
22.3.1.3 Tilde Ampersand: Fresh-Line
22.3.1.4 Tilde Vertical-Bar: Page
22.3.1.5 Tilde Tilde: Tilde . . .

. . .
. . . .

22.3.2 FORMAT Radix Control
22.3.2.1 Tilde R: Radix . .
22.3.2.2 Tilde D: Decimal
22.3.2.3 Tilde B: Binary
22.3.2.4 Tilde 0: Octal , .
22.3.2.5 Tilde X: Hexadecimal
22.3.3 FORMAT Floating-Point Printers .
22.3.3.1 Tilde F: Fixed-Format Floating-Point . .
22.3.3.2 Tilde E: Exponential Floating-Point .
22.3.3.3 Tilde G: General Floating-Point
22.3.3.4 Tilde Dollarsign: Monetary Floating-Point .
22.3.4 FORMAT Printer Operations
22.3.4.1 Tilde A: Aesthetic
22.3.4.2 Tilde S: Standard . , ’ . :
22.3.4.3 Tilde W: Write : . .
22.3.5 FORMAT Pretty Printer Operations .
22.3.5.1 Tilde Underscore: Conditional Newline .
22.3.5.2 Tilde Less-Than-Sign: Logical Block .
22.3.5.3 Tilde I: Indent

22.1.3.1.1 Printing Integers
22.1.3.1.2 Printing Ratios
22.1.3.1.3 Printing Floats
22.1.3.1.4 Printing Complexes . ,
22.1.3.1.5 Note about Printing Numbers
22.1.3.2 Printing Characters
22.1.3.3 Printing Symbols
22.1.3.3.1 Package Prefixes for Symbols
22.1.3.3.2 Effect of Readtable Case on the Lisp Printer
22.1.3.3.2.1 Examples of Effect of Readtable Case on the Lisp Printer
22.1.3.4 Printing Strings
22.1.3.5 Printing Lists and Conses
22.1.3.6 Printing Bit Vectors
22.1.3.7 Printing Other Vectors ,
22.1.3.8 Printing Other Arrays
22.1.3.9 Examples of Printing Arrays . . .
22.1.3.10 Printing Random States
22.1.3.11 Printing Pathnames
22.1.3.12 Printing Structures
22.1.3.13 Printing Other Objects ,
22.1.4 Examples of Printer Behavior
22.2 The Lisp Pretty Printer
22.2.1 Pretty Printer Concepts
22.2.1.1 Dynamic Control of the Arrangement of Output
22.2.1.2 Format Directive Interface
22.2.1.3 Compil ing Format Strings
22.2.1.4 Pretty Print Dispatch Tables : . . ’ : . : .
22.2.1.5 Pretty Printer Margins
22.2.2 Examples of using the Pretty Printer
22.2.3 Notes about the Pretty Printer’s Background ,
22.3 Formatted Output
22.3.1 FORMAT Basic Output . : . . : ’

.
. . . . _

22.3.1 .l Tilde C: Character

.
. .

. .

t. .

t. .
. .

. .

. .

. .

. .

. .

. .

. . .

. .

. .

. .

. .
. .

.

. .
. .

t. .
. . .

. . .
. . .

. . .
. .

. . .

. . . .

. .

. .,

. . 22-2
22-2
22-3
22-3

. . . 22-3
22-3
22-3

. . 22-4

. . 22-4
22-5

.

. . .
. .

. .
. .

. . . .

. . .

.

.
. .

. . . .

. . . .

. 22-6
22-6
22-7
22-8
22-8
22-9
22-9
22-9

t 22-9
r 22-10

22-10
. 22-12

22-12
22-12
22-13

. 22-13
. . 22-14

22-14
. . . 22-14
. . 22-19

. 22-20
. . . 22-21
. . 22-21

. . 22-21
. . 22-21

. . . 22-21
. . . 22-22

. 22-22
. 22-22

. . . 22-22

. . . 22-23

. . . 22-23

. . . 22-23

. . . . 22-23

. . . . 22-23
. . . 22-24

. . . 22-25
. 22-26

. . 22-26

. . 22-26

. . . 22-26
. 22-27
. . 22-27

. . . 22-27
. . . 22-27

. . 22-28

Contents
. . . xlll

_.__ ___. -. -~. - -

ANSI X3.226-1994 Programming Language-Common Lisp

22.3.5.4 Tilde Slash: Call Function .
22.3.6 FORMAT Layout Control . . . : : : . . : .
22.3.6.1 Tilde T: Tabulate
22.3.6.2 Tilde Less-Than-Sign: Justification
22.3.6.3 Tilde Greater-Than-Sign: End of Justification
22.3.7 FORMAT Control-Flow Operations
22.3.7.1 Tilde Asterisk: GoTo
22.3.7.2 Tilde Left-Bracket: Conditional Expression
22.3.7.3 Tilde Right-Bracket: End of Conditional Expression .
22.3.7.4 Tilde Left-Brace: Iteration

. . 22.3.7.5 Tilde Right-Brace: End of Iteration
22.3.7.6 Tilde Question-Mark: Recursive Processing
22.3.8 FORMAT Miscellaneous Operations
22.3.8.1 Tilde Left-Paren: Case Conversion
22.3.8.2 Tilde Right-Paren: End of Case Conversion
22.3.8.3 Tilde P: Plural
22.3.9 FORMAT Miscellaneous Pseudo-Operations
22.3.9.1 Tilde Semicolon: Clause Separator
22.3.9.2 Tilde Circumflex: Escape Upward
22.3.9.3 Tilde Newline: Ignored Newline
22.3.10 Additional Information about FORMAT Operations .
22.3.10.1 Nesting of FORMAT Operations
22.3.10.2 Missing and Additional FORMAT Arguments
22.3.10.3 Additional FORMAT Parameters
22.3.10.4 Undefined FORMAT Modifier Combinations . .
22.3.11 Examples of FORMAT . . .
22.3.12 Notes about FORMAT
22.4 Printer Dictionary

Chapter 23 (Reader)
23.1 Reader Concepts
23.1.1 Dynamic Control of the Lisp Reader
23.1.2 Effect of Readtable Case on the Lisp Reader . .
23.1.2.1 Examples of Effect of Readtable Case on the Lisp-Reader . . : .
23.1.3 Argument Conventions of Some Reader Functions
23.1.3.1 The EOF-ERROR-P argument . . . _
23.1.3.2 The RECURSIVEP argument . .
23.2 Reader Dictionary . .

Chapter 24 (System Construction)
24.1 System Construction Concepts . .
24.1.1 Loading 1 .

24.1.2 Features .
24.1.2.1 Feature Expressions
24.1.2.1.1 Examples of Feature Expressions .
24.2 System Construction Dictionary

Chapter 25 (Environment)
25.1 The External Environment
25.1.1 Top level loop
25.1.2 Debugging Utilities .
25.1.3 Environment Inquiry
25.1.4 Time
25.1.4.1 Decoded Time

. . .

.
.

. .

. .

. .

.

. . . .

. . .
. .

22-28
22-28
22-28
22-29
22-30
22-30
22-30
22-30
22-31
22-31
22-32
22-32
22-33
22-33
22-33
22-33
22-33
22-33
22-34
22-35
22-35
22-35
22-35
22-36
22-36
22-36

. . 22-38
. 22-39

. . 23-l

. . . . 23-l
. . 23-I

. . 23-l
. 23-2

23-2
. . . . 23-2

. 23-4

. . . 24-l
. 24-l

. . 24-l
. 24-l
. 24-l

. . 24-3

. 25-l
. . . . 25-1

25-l
. . . . 25-l

. 25-2
25-2

xiv Contents

Programming Language-Common Lisp ANSI X3.226-1994

25.1.4.2 Universal Time
25.1.4.3 Internal Time
25.1.4.4 Seconds
25.2 Environment Dictionary

Chapter 26 (Glossary)
26.1 Glossary

Chapter A (Appendix)
A.1 Removed Language Features
A.l.l Requirements for removed and deprecated features
A.1.2 Removed Types .
A. 1.3 Removed Operators
A. 1.4 Removed Argument Conventions
A. 1.5 Removed Variables
A.1.6 Removed Reader Syntax
A.1.7 Packages No Longer Required .

.

.

25-3
25-3
25-4
25-5

26-l

A-l
A-l
A-l
A-l
A-l
A-l
A-l
A-l

Contents xv

Programming Language-Common Lisp ANSI X3.226-1994

Figures

Chapter 1 (Introduction)
l-1. Notations for NIL
l-2. Deprecated Functions : .

.

l-3. Functions with Deprecated :TEST-NOT Arguments
l-4. Symbols in the COMMON-LISP package (part one of twelve).
l-5. Symbols in the COMMON-LISP package (part two of twelve).
l-6. Symbols in the COMMON-LISP package (part three of twelve).
l-7. Symbols in the COMMON-LISP package (part four of twelve).
l-8. Symbols in the COMMON-LISP package (part five of twelve).
l-9. Symbols in the COMMON-LISP package (part six of twelve). .
l-10. Symbols in the COMMON-LISP package (part seven of twelve).
l-11. Symbols in the COMMON-LISP package (part eight of twelve).
1-12. Symbols in the COMMON-LISP package (part nine of twelve).
1-13. Symbols in the COMMON-LISP package (part ten of twelve).
1-14. Symbols in the COMMON-LISP package (part eleven of twelve).
1-15. Symbols in the COMMON-LISP package (part twelve of twelve).

Chapter 2 (Syntax)
2-l. Readtable defined names.
2-2. Variables that influence the Lisp reader.
2-3. Standard Character Subrepertoire (Part 1 of3:‘Latin Characters)
2-4. Standard Character Subrepertoire (Part 2 of 3: Numeric Characters)
2-5. Standard Character Subrepertoire (Part 3 of 3: Special Characters)
2-6. Possible Character Syntax Types . .
2-7. Character Syntax Types in Standard Syntax .
2-8. Constituent Traits of Standard Characters and Semi-Standard Characters
2-9. Syntax for Numeric Tokens
2-10. Examples of reserved tokens
2-l 1. Examples of symbols
2-12. Examples of symbols or potential numbers
2-13. Examples of Ratios . .
2-14. Examples of Floating-point numbers
2-15. Examples of the printed representation of symbols (Part 1 of 2)
2-16. Examples of the printed representation of symbols (Part 2 of 2)
2-17. Valid patterns for tokens
2-18. Examples of the use of double-quote
2-19. Standard # Dispatching Macro Character Syntax .
2-20. Radix Indicator Example .
2-21. Complex Number Example . .

Chapter 3 (Evaluation and Compilation)
3-l. Some Defined Names Applicable to Variables
3-2. Common Lisp Special Operators
3-3. Defined names applicable to macros
3-4. Some function-related defined names
3-5. Some operators applicable to receiving multiple values
3-6. Defined names applicable to compiler macros

. . .

1-12
l-29
l-29
l-30
1-31
l-32
l-33
1-34
1-35
l-36
l-37
l-38
l-39
l-40
1-41

2-1
. 2-2
. 2-2

2-3
2-3
2-4
2-4
2-6

2-11
2-12
2-12
2-12
2-13
2-14
2-15
2-15
2-16
2-20
2-23
2-26
2-27

3-3
3-5
3-6
3-7

3-l 1
3-13

xvi

ANSI X3.226-1994 Programming Language-Common Lisp

3-7. EVAL-WHEN processing .
3-8. Defining Macros That Affect the Compile-Time Environment

3-17
3-19

3-9. Common Lisp Declaration Identifiers
What Kind of Lambda Lists to Use 3-10.

3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3720.
3-21.

. . 3-24
. 3-27

Defined names applicable to lambda lists
Standardized Operators that use Ordinary Lambda Lists
Lambda List Keywords used by Ordinary Lambda Lists
Lambda List Keywords used by Generic Function Lambda Lists
Standardized Operators that use Specialized Lambda Lists
Lambda List Keywords used by Specialized Lambda Lists .
Operators that use Macro Lambda Lists
Lambda List Keywords used by Macro Lambda Lists
Lambda List Keywords used by Defsetf Lambda Lists
Lambda List Keywords used by Define-modify-macro Lambda Lists
Lambda List Keywords used by Define-method-combination arguments Lambda Lists -. _ ~. - -

3-27
3-27
3-28
3-32
3-33
3-33
3-33
3-34
3-38
3-39
3-39
3-68
3-69
3-70
3-80

3-22. Global Declaration Speciliers
3-23. Standardized Forms In Which Declarations Can Occur
3-24. Local Declaration Specifiers . .
3-25. Optimize qualities

Chapter 4 (Types and Classes)
4-l. Cross-References to Data Type Information
4-2. Standardized Atomic Type Specifiers
4-3. Standardized Compound Type Specifier Names . .
44. Standardized Compound-Only Type Specifier Names
4-5. Defined names relating to types and declarations. . . .
4-6. Standardized Type Specifier Names
4-7. Object System Classes
4-8. Classes that correspond to predefined type specifiers
4-9. Result possibilities for subtypep

Chapter 5 (Data and Control Flow)
5-l. Examples of setf
5-2. Operators relating to places and generalized reference.
5-3. Sample Setf Expansion of a Variable
54. Sample Setf Expansion of a CAR Form

. ’ . . . 5-5. Sample Setf Expansion of a SUBSEQ Form
5-6. Sample Setf Expansion of a LDB Form .
5-7. Functions that setf can be used with-l
5-8. Functions that setf can be used with-2.
5-9. Read-Modify-Write Macros .
5-10. Macros that have implicit tagbodies.
5-11. Operators that always prefer EQ over EQL
5-12. Summary and priorities of behavior of equal . . ’
5-13. Summary and priorities of behavior of equalp

Chapter 6 (Iteration)

Chapter 7 (Objects)
7-l. Standardized Method-Defining Operators
7-2. Built-in Method Combination Types .

Chapter 8 (Structures)

.

.
. .

. .

. .

.

. .

4-2
4-3
44
44

. 4-4
4-5
4-6

4-14
4-28

. 7-14

. 7-21

xvii

Programming Language-Common Lisp ANSI X3.226- 1994

Chapter 9 (Conditions)
9-l. Standardized Condition Types . .
9-2. Operators that define and create conditions. .
9-3. Operators that read condition slots. .
9-4. Operators relating to handling conditions.
9-5. Defined names relating to signaling conditions.
9-6. Defined names relating to restarts.
9-7. Operators relating to assertions. .

Chapter 10 (Symbols)
10-l. Property list defined names
10-2. Symbol creation and inquiry defined names

Chapter 11 (Packages)
11-l. Some Defined Names related to Packages
11-2. Standardized Package Names

Chapter 12 (Numbers)
12-1. Operators relating to Arithmetic. 12-l
12-2. Defined names relating to Exponentials, Logarithms, and Trigonometry. 12-1
12-3. Operators for numeric comparison and predication. 12-1
12-4. Defined names relating to numeric type manipulation and coercion. 12-1
12-5. Defined names relating to logical operations on numbers. 12-3
12-6. Defined names relating to byte manipulation. 12-3
12-7. Defined names relating to implementation-dependent details about numbers. 12-3
12-g. Functions Affected by Rule of Float Substitutability 12-5
12-9. Trigonometric Identities for Complex Domain 12-7
12-10. Quadrant Numbering for Branch Cuts . 12-8
12-11. Random-state defined names . 12-9
12-12. Recommended Minimum Floating-Point Precision and Exponent Size 12-13
12-13. Uses of /=, =, C, >, <=, and >= 12-19
12-14. Mathematical definition of arc sine, arc cosine, and arc tangent 12-25
12-15. Quadrant information for arc tangent . 12-27
12-16. Mathematical definitions for hyperbolic functions 12-28
12-17. Bit-Wise Logical Operations . 12-57
12-18. Bit-wise Logical Operations on Integers . . 12-60

Chapter 13 (Characters)
13-1. Character defined names - 1
13-2. Character defined names - 2

Chapter 14 (Conses)
14-1. Some defined names relating to conses. 14-1
14-2. Some defined names relating to trees. 14-1
14-3. Some defined names relating to lists. 14-2
14-4. Some defined names related to assocation lists. 14-2
14-5. Some defined names related to sets 14-2
14-6. CAR and CDR variants 14-9

Chapter 15 (Arrays)
15-1. General Purpose Array-Related Defined Names 15-2
15-2. Operators that Manipulate Strings 15-3

9-2
9-2
9-2
9-6
9-6
9-7
9-8

10-l
10-l

11-1
11-3

13-1
13-1

1 . .

XVIJI

ANSI X3.226-1994 Programming Language-Common Lisp

15-3. Operators that Manipulate Bit Arrays 15-3
154. Bit-wise Logical Operations on Bit Arrays 15-32

Chapter 16 (Strings)

Chapter 17 (Sequences)
17-1. Standardized Sequence Functions
17-2. Operators that have Two-Argument Tests to be Satisfied
17-3. Operators that have One-Argument Tests to be Satisfied

.

Chapter 18 (Hash Tables)
18-1. Hash-table defined names .

Chapter 19 (Filenames)
19-1. Pathname Operations
19-2. Pathname functions using a :CASE argument
19-3. Special Markers In Directory Component

Chapter 20 (Files)
20-l. File and Directory Operations
20-2. File Functions that Treat Open and Closed Streams Differently
29-3. File Functions where Closed Streams Might Work Best

Chapter 21 (Streams)
21-1. Some General-Purpose Stream Operations
21-2. Operators relating to Input Streams. . .
21-3. Operators relating to Output Streams.
21-4. Operators relating to Bidirectional Streams.
21-5. Defined Names related to Specialized Streams
21-6. Standardized Stream Variables
21-7. Operators that accept either Open or Closed Streams
21-8. Operators that accept Open Streams only

Chapter 22 (Printer)
22-1. Standardized Printer Control Variables
22-2. Additional Influences on the Lisp printer.
22-3. Example of Logical Blocks, Conditional Newlines, and Sections
22-4. Defined names related to pretty printing.
22-5. Format directives related to Pretty Printing
22-6. Examples of format control strings
22-7. Argument correspondences for the WRITE function.

Chapter 23 (Reader)
23-l. Values of standard control variables

Chapter 24 (System Construction)
24-l. Features examples

Chapter 25 (Environment)
25-l. Variables maintained by the Read-Eval-Print Loop

17-1
17-2
17-3

18-1

19-2
19-4
19-7

20-l
20-l
20-l

21-1
21-1
21-1
21-2
21-3
21-3
21-4
21-4

22-l
22-l

22-13
22-13
22-13
22-20
22-53

23-15

24-2

25-l

xix

Programming Language-Common Lisp ANSI X3.226-1994

25-2. Defined names relating to debugging 25-1
25-3. Defined names relating to environment inquiry.. 25-l
25-4. Defined names involving Time. . 25-2
25-5. Defined names involving time in Decoded Time. 25-3
25-6. Defined names involving time in Universal Time. . . . 25-3
25-7. Defined names involving time in Internal Time. 25-3
25-8. Defined names involving time in Seconds. . . . 25-4

Chapter 26 (Glossary)
26-l. Exponent Markers
26-2. Standardized I/C Customization variables t
26-3. Standardized Iteration Forms
26-4. Standardized Restart Functions

26-18
26-24
26-27
26-40

Chapter A (Appendii)

xx

Foreword (This foreword is not pan of American National Standard X3.226-l 994.)

Lisp is family of general purpose, object-oriented languages with a long
history dating back to ideas developed by John McCarthy in 1956. Many
important dialects, languages and embedded systems have emerged from
this work, and many important ideas from other languages have been
adopted into Lisp and further refined. In 1981, representatives of several
major dialects began to pool their efforts to design Common Lisp, an
“industrial strength” dialect of Lisp that would provide stability for commer-
cial applications. The initial design of Common Lisp was well received, and
in 1986 X3J13 was formed to transform this work into a formal standard.
The resulting design, X3.226-1994, is a standard for Common Lisp - not
for the entire Lisp family. The common Lisp standard improves on earlier
Common Lisp work by placing much greater emphasis on portability, clari-
fying many aspects of compilation semantics, and adding several major
pieces of new functionality: an object-oriented programming system, a
condition handling system, an improved iteration facility, and better sup-
port for large character sets.

Request for interpretation, suggestions for improvement or addenda, or
defect reports are welcome. They should be sent to the X3 Secretariat,
Information Technology Industry Council, 1250 Eye Street, NW, Suite 200,
Washington DC 20005.

This standard was processed and approved for submittal to ANSI by
Accredited Standards Committee on Information Technology, X3.
Committee approval of the standard does not necessarily imply that all
committee members voted for its approval. At the time it approved this
standard, the X3 committee had the following members:

Mr. James D. Converse, Chairman
Mr. Donald C. Loughry, Vice Chair
Ms. Joanne Flanagan, Secretary

Organization Represented Name of Representative
American Nuclear Society.. .. Geraldine C. Main

Sally Hartzell (Alt.)
AMP, Inc. .. Edward Kelly

Charles Brill (Alt.)
Apple Computer, Inc.. .. David K. Michael
AT&T Global Information Systems Robert K. Kramer

Thomas F. Frost (Alt.)
Bull HN Information Systems, Inc William M. George, Jr.
Compaq Computers.. ... Ed Olkkola
Digital Equipment Corporation ... Scott K. Jameson

Richard Hovey (Alt.)
Eastman Kodak Company.. .. James D. Converse

Michael Nier (Alt.)
Guide International, Inc. .. Frank Kirshenbaum

Tony Gualtieri (Alt.)
Hewlett-Packard .. Donald C. Loughry
Hitachi America, Ltd .. John Neumann

Kei Yamashita (Alt.)
Hughes Aircraft Company.. .. Harold Zebrack
IBM Corporation .. Joel Urman

Mary Anne Lawler (Alt.)
Institute for Certification of Computer

Professionals (ICCP) ... Kenneth Zemrowski
National Communications Systems Dennis Bodson

Granger Kelley (Alt.)

xxi

Organizatiqn Represented Name of Representative
National Institute of Standards and Technology.. Michael Hogan

James H. Burrows (Alt.)
Neville & Associates .. Carlton Neville
Northern Telecom, Inc ... Mel Woinsky

Subhash Pate1 (AIL)
Recognition Technology Users Association.. Herbert P. Schantz

Gerald Farmer (Alt.)
Share, Inc. .. Gary Ainsworth

David Thewlis (Alt.)
Sony Corporation .. Michael Deese
Storage Technology Corporation.. Joseph S. Zajaczkowski

Samuel D. Cheatham (Alt.)
Sun Microsystems, Inc ... Gary S. Robinson
Sybase, Inc ... Donald Ft. Deutsch
Texas Instruments, Inc. ... Clyde Camp

Fritz Whittington (Alt.)
3M Company ... Eddie T. Morioka

Paul D. Jahnke (Alt.)
Unisys Corporation.. .. John Hill

Stephen P. Oksala (AIL)
U.S. Department of Defense.. .. Will iam Rinehuls

C. J. Pasquariello (Alt.)
U.S. Department of Energy.. .. Alton Cox

Neil S. Jarrett (Alt.)
U.S. General Services Administration Patrick Plunkett

Douglas K. Arai (Alt.)
Wintergreen Information Services Jack L. Wheeler
Xerox Corporation ... Roy Pierce

Will iam Ted Smith (Alt.)

Subcommittee X3J13, Common Lisp, which developed this standard, had
the following members:

K. Barrett
F. Frayman
; ;;-f;,ih

H: Heff ernan
J. Hill
M. Ida
R. Kessler
G. Kiczales
J. Laubsch
K. Layer
T. Linden
0. Loeffler
L. Masinter
F. ;te$ons

K: Pitman
G. Steele
M. Swanson
W. Van Roggen
J. White

xxii

Programming Language-Common Lisp ANSI X3.226-1994

Credits

Principal Technical Editors:

Kent M. Pitman Harlequin, Inc. 1993present
Symbolics, Inc. 1990-1992

Kathy Chapman Digital Equipment Corporation 1987-1989

Occasional Guest Editors:

Richard P. Gabriel
Sandra Loosemore

Lucid, Inc.
self

Financial Contributors to the Editing Process:

Digital Equipment Corporation
Harlequin, Ltd. and Harlequin, Inc.
Symbolics, Inc.
Apple, Inc.
Franz, Inc.
Lucid, Inc.

Special thanks to Guy L. Steele Jr. and Digital Press for producing Common
Lisp: The Language, and for relaxing copyright restrictions enough to make it
possible for that document’s text to provide an early basis of this work.

. . .
xx111

ANSI X3.226-1994 Programming Language--Common Lisp

Edit and Review History:

Ol-Jan-89 Chapman
Ol-Jan-89 Pitman
Ol-May-89 Chapman
Ol-May-89 Gabriel
Ol-Jun-89 Loosemore
Ol-Jun-89 Pitman
15Jun-89 Gabriel
16Jun-89 Margolin
23Jun-89 Gabriel
07-Jul-89 Moon
12-Jul-89 Gabriel
15Jul-89 Pitman
18Jul-89 Gray
25Jul-89 Gabriel
26Jul-89 Gabriel
26Jul-89 Gabriel
27-Jul-89 Pitman
27-Jul-89 Gabriel
28Jul-89 Chapman
28Jul-89 Gabriel
Ol-Ott-89 Margolin
20-Jan-91 Pitman
24Jan-91 Waters
01-Mar-91 Moon
01-Mar-91 Barrett
01-Mar-91 Moon
U-Mar-90 Wechsler
21-Mar-91 Kerns
26-Apr-91 Margoiin
15-May-91 Barrett
04Jun-91 Laddaga
10-Jun-91 Pitman
02-Sep-91 Barrett
02-Sep-9 1 Barrett
15-Sep-91 Barrett

18-Sep-91 Wechsler
21-Sep-91 Barrett

28-Sep-91 Barrett

13-act-91 Barrett

15act-91 Waters
24Oct-91 Pitman
04Nov-91 Moon

11-Nov-91 Loosemore

02-Dee-91 Barrett

Draft of Chapters 1.1 (scope).
Draft of Chapters 5.1 (conditions).
Draft of 1.2-1.6.
Rewrite of Chapters 1.1 and 5.1.
Review of Chapter 4.2.
Review of Glossary
Rewrite of Glossary
Comments on Chapters 2.1-2.4 (types, objects).
Rewrite of 4.2.
Review of Chapters 4.1, 4.3
Revision of 4.2.
Review of Glossary
Comments on 5.1
Revision of Chapters 1.2-1.6, 2.2
Rewrite of 5.1
Rewrite of 4.1.
Revision of 5.1
Revision of 5.1
Draft of 2.2, 3.2, 3.3, 5.4
Revision of Glossary.
Review of Dictionary from Jun-89 draft.
Draft 8.81 (for X3J13 review). Document X3J13/91-101.
Review of 8.81/Chapter 23 (Printer).
Review of 8.81/Chapter 4 (Evaluation and Compilation).
Review of 8.81/Chapter 4 (Evaluation and Compilation).
Review of 8.81/Glossary.
Review of 8.81/Glossary.
Review of 8.81/Chapter 1.
Review of 8.81/Chapters l-12.
Review of 8.81/Chapters 5 (Mist), 11 (Conditions).
Review of 9.6O/Chapter 20 (Pathnames).
Draft 9.126 (for X3J13 review). Document X3J13/91-102.
Review of 9.28/Chapter 4 (Evaluation and Compilation).
Review of 9.52/Chapter 4 (Evaluation and Compilation).
Review of 9.126/Chapter 4 (Evaluation and Compilation)

and Chapter 7 (Evaluation/Compilation).
(some comments not yet merged)

Review of 9.126.
Review of lO.l6/Chapter 7 (Evaluation/Compilation).

(some comments not yet merged)
Review of 10.95/Chapter 25 (Printer).

(some comments not yet merged)
Review (and help editing) of lO.l04/Chapter 4

(Evaluation and Compilation)
Review of 10.95/Chapter 25 (Printer).
Draft 10.156 (for X3J13 review). Document X3513/91-103.
Review of lO.l56/Chapter 5 (Data and Control Flow)

and Chapter 26 (Glossary).
Review of lO.l56/Chapter 2 (Syntax),

Chapter 3 (Evaluation and Compilation),
Chapter 5 (Data and Control Flow), and Chapter 8 (Structures).

Review of lO.l56/Chapter 4 (Types and Classes),
and Chapter 10 (Symbols).

Programming Language-Common Lisp ANSI X3.226-1994

02-Dee-91

09-Dee-91

09Dee-91
09-Dee-91

lO-Dee-91

lO-Dee-91

10-Dee-91

18Dee-91
04Jan-92

04Jan-92

04Jan-92
04Jan-92

06Jan-92

06Jan-92

06Jan-92 Margolin
07-Jan-92 Margolin
03-Feb-92 AspinaIl
16Feb-92 Pitman
16Mar-92 Loosemore

16-Feb-92
09-Sep-92
22-act-92
23-act-92
09-Nov-92
1 l-Nov-92
17-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
24Nov-92
23-Nov-92
23-Nov-92

Barrett

Gabriel

Ida
Moon

Loosemore

Loosemore

Laubsch

Margolin
White

White

Barrett
Barrett

Loosemore

Loosemore

Pitman
Samson
Rose, Yen
Staley
Barrett
Moon
Loosemore
Margolin
Withington
Feinberg
Wechsler
Moore
Flanagan
Dalton
Gallagher
Norvig
Robertson
Kawabe
Barrett

Review of lO.l56/Chapter 3 (Evaluation and Compilation),
Chapter 6 (Iteration), Chapter 9 (Conditions),
and Chapter 14 (Conses).
(some comments not yet merged)

Review of lO.l56/Chapter 1 (Introduction),
Chapter 2 (Syntax), and Chapter 3 (Evaluation and Compilation).

Light review of lO.l56/Chapters 1-5.
Review of lO.l56/Chapter 3 (Evaluation and Compilation).

(some comments not yet merged)
Review of lO.l56/Chapter 10 (Symbols),

Chapter 20 (Files), and Chapter 13 (Characters).
Review of lO.l56/Chapter 14 (Conses).

(some comments not yet merged)
Review of lO.l56/Chapters 1 (Introduction),

Chapter 2 (Syntax), Chapter 3 (Evaluation and Compilation),
Chapter 4 (Types and Classes), Chapter 5 (Data and Control Flow),
Chapter 7 (Objects), Chapter 11 (Packages),
Chapter 19 (Filenames), and Chapter 21 (Streams).

Review of lO.l56/Chapter 18 (Hash Tables).
Review of lO.l56/Chapter 6 (Iteration),

Chapter 11 (Packages), Chapter 18 (Hash Tables),
and Chapter 23 (Reader).

Review of lO.l56/Chapter 26 (Glossary).
(some comments not yet merged)

Review of lO.l56/Chapter 18 (Hash Tables) and Chapter 16 (Strings).
Review of lO.l56/Chapter 15 (Arrays) and Chapter 21 (Streams).

(some comments not yet merged)
Review of lO.l56/Chapter 16 (Strings),

Chapter 17 (Sequences), and Chapter 25 (Environment).
Review of lO.l56/Chapter 21 (Streams) and Chapter 23 (Reader).

(some comments not yet merged)
Review of lO.l56/Chapter 2 (Syntax).
Review of lO.l56/Chapter 4 (Types and Classes).
Review of lO.l56/Chapter 12 (Numbers).
Draft 11.82 (for X3J13 letter ballot). Document X3J13/92-101.
Review of 11.82/Chapter 1, 3, 4, 5, 7, 8, 9, 10,

11, 12, 18, 22, 23, 24, 25, and 26.
Draft 12.24 (for X3 consideration). Document X3513/92-102.
Public Review Comments (#l). Documents X3J13/92-1001 to 92-1003.
Public Review Comments (#2). Documents X3513/92-1101 to 92-1103.
Public Review Comments (#3). Documents X3J13/92-1201 to 92-1204.
Public Review Comments (#4). Documents X3513/92-3101 to 92-3110.
Public Review Comments (#5). Documents X3513/92-3201 to 92-3248.
Public Review Comments (#6). Documents X3513/92-1301 to 92-1335.
Public Review Comments (#7). Documents X3513/92-1401 to 92-1419.
Public Review Comments (#8a). Documents X3J13/92-1501 to 92-1512.
Public Review Comments (#8b). Documents X3513/92-1601 to 92-1603.
Public Review Comments (#8c). Documents X3J13/92-1701 to 92-1703.
Public Review Comments (#9). Documents X3J13/92-1801 to 92-1802.
Public Review Comments (#lo). Documents X3J13/92-1901 to 92-1910.
Public Review Comments (#ll). Documents X3513/92-2001 to 92-2012.
Public Review Comments (#12). Documents X3513/92-2101 to 92-2103.
Public Review Comments (#13). Documents X3513/92-2201 to 92-2208.
Public Review Comments (#14). Document X3313/92-2301.
Public Review Comments (#15). Documents X3513/92-2401 to 92-2403.
Public Review Comments (#16). Documents X3513/92-2511 to X3513/92-2531.

xxv

ANSI X3.226-1994 Programming Language-Common Lisp

23-Nov-92
24Nov-92
24Nov-92
24Nov-92
23-Nov-92
30-Aug-93
04oct-93
05-act-93
OB-Nov-93
04Apr-94

Wertheimer Public Review Comments (#17). Document X3J 13/92-2601.
Pitman Public Review Comments (#lB). Documents X3513/92-2701 to 92-2742.
Mato Mira Public Review Comments (#19). Documents X3J13/92-2801 to 92-2805
Philpot Public Review Comments (#20). Document X3J 13/92-2901.
Cerys Public Review Comments (#21). Document X3513/92-3001.
Pitman Draft 13.65 (for X3J13 consideration). Document X3513/93-101.
X3J13 Minor fixes to Draft 13.65 before sending to X3.
Pitman Draft 14.10 (for X3 consideration). Document X3513/93-102.
Dalton “reply to reply to pr comments”. Document X3513/94311.
Boyer, Kaufmann, Moore

05Apr-94 Pitman
14Mar-94 Schulenburg
04Apr-94 Shepard
05-May-94 X3J13
lO-May-94 Pitman
12-Aug-94 X3J13

12-Aug-94 Pitman
15-Mar-95 Pitman

Public Review Comments (#l). Document X3513/94-305.
Public Review Comments (#2). Document X3513/94-306.
Public Review Comments (#3). Document X3513/94-307.
Late commentary. Document X3J 13194309.
Editorial-only changes to Draft 14.10 in response to comments.
Draft 15.17 (for X3 consideration). Document X3J13/94101.
Letter ballot to make specific corrections to Credits.
Drafts 15.17 and 15.17R are identical except for:

Changes to document date and version number.
Disclaimer added to back of cover page.
Changes to this Edit and Review History, page Credits iv.
Changes to names and headings, pages Credits v-vii.

Draft 15.17R (for X3 consideration). Document X3Jl3/94101R.
Draft 16.61 (for ANSI publication). Document ANSI X3.226-1994.

Same kinds of changes as for 15.17R, plus changes to ‘book design’
(page layout, vertical spacing, dictionary entry format). Some stray
occurrences of “Notes” and “Examples” labels removed where
followed by no text. New Index and Contents to match pagination.

xxvi

Programming Language--Common Lisp ANSI X3.226-1994

The following lists of information are almost certainly incomplete, but it was
felt that it was better to risk publishing incomplete information than to fail to
acknowledge important contributions by the many people and organizations who
have contributed to this effort.

Mention here of any individual or organization does not imply endorsement of
this document by that individual or organization.

Ad Hoc Group Chairs:

Characters
Charter
Compiler Specification

Editorial

Error and Condition System
Graphics & Windows

Iteration Facility
Language Cleanup

Lisp1 /Lisps
Macros

Object System
Presentation of Standard
Pretty Printer
Public Review
Types & Declarations
Validation

Linden, Thorn
Ennis, Susan P.
Haflich, Steven M.
Loosemore, Sandra
Chapman, Kathy
van Roggen, Walter
Pitman, Kent M.
Douglas Rand
Schoen, Eric
White, JonL
Masinter, Larry
Fahlman, Scott
Gabriel, Richard P.
Haflich, Steven M.
Pitman, Kent M.
Wegman, Mark
Bobrow, Daniel G.
Brown, Gary L.
Waters, Richard C.
Ida, Mssayuki
Scherlis, William L.
Berman, Richard

Major Administrative Contributions:

Barrett, Kim
Brown, Gary L.
Eiron, Hanoch
Gabriel, Richard P.
Haflich, Steven M.
Ida, Masayuki
Loeffler, David D.
Loosemore, Sandra
Masinter, Larry

Mathis, Robert
Pitman, Kent M.
Steele, Guy L., Jr.
Tyson, Mabry
Van Deusen, Mary
White, JonL
Whittemore, Susan
Woodyatt, Anne
Zubkoff, Jan L.

xxvii

ANSI X3.226-1994 Programming Language-Common Lisp

Major Technical Contributions:

Barrett, Kim A.
Bobrow, Daniel G.
Daniels, Andy
DeMichiel, Linda G.
Dussud, Patrick H.
Fahlman, Scott
Gabriel, Richard P.
Ida, Masayuki

Keene, Sonya
Kempf, James
Kerns, Robert W.
Kiczales, Gregor
Loosemore, Sandra
Margolin, Barry
Masinter, Larry
Mlynarik, Richard

Moon, David A.
Perdue, Crispin
Pitman, Kent M.
Steele, Guy L., Jr.
Waters, Richard C.
Weinreb, Daniel
White, JonL

Participating Companies and Organizations:

AI Architects, Inc. Lucid, Inc.
Amoco Production Co. MCC
Aoyama Gakuin University MIT
Apple Computer MITRE Corporation
Boeing Advanced Technology Center MSC
Carnegie-Mellon University NASA Ames Research Center
Chestnut Software National Bureau of Standards
Computer Sciences Nihon Symbolics
Computer & Business Equipment Manufacturing Association (X3 Secretariat)
CONTEL ParcPlace Systems, Inc.
csc Prime Computer
DARPA Siemens
Digital Equipment Corporation Southern Illinois University
Encore Sperry
Evans & Sutherland SRI International
Franz, Inc. Sun Microsystems
Gigamos Symbolics
GMD Tektronix
Gold Hill Texas Instruments
Grumman Data Systems Corporation The Aerospace Corporation
Harlequin, Ltd. Thinking Machines Corporation
Hewlett-Packard Unisys
Honeywell University of Bath
IBM University of Edinburgh
Ibuki University of Maryland
Integrated Inference Machines University of Utah
International LISP Associates US Army
Johnson Controls, Inc. USC/IS1
LMI Xerox

. . .
xxv111

Programming Languag~Common Lisp ANSI X3.226-1994

Individual Participants:

Adler, Annette
Allen, Stanley
Anton&e, Jim
Arbaugh, Bill
Balzer, Bob
Barrett, Kim
Bartley, David H.
Beckerle, Michael
Beiser, Paul
Benson, Eric
Berman, Richard
Bobrow, Daniel G.
Boelk, Mary P.
Brittain, Skona
Brown, Gary L.
Cbailloux, Jerome
Chapman, Kathy
Clinger, Will
Coffee, Peter C.
Cugini, John
Curtis, Pave1
Dabrowski, Christopher
Daessler, Klaus
Dalton, Jeff
Daniels, Andy
DeMichiel, Linda G.
Doi, Takumi
Drescher, Gary
Duggan, Jerry
Dussud, Patrick H.
Ennis, Susan P.
Fahlman, Scott
Frayman, Felix
Gabriel, Richard P.
Giansiracusa, Bob
Goldstein, Brad
Gray, David
Greenblatt, Richard
Hadden, George D.

Haflich, Steven M. Peck, Jeff
Harris, Richard M. Pellegrino, Bob
Hendler, Jim Perdue, Crispin
Hewitt, Carl Philipp, Christopher
Hornig, Charles Pierson, Dan
Ida, Masayuki Pitman, Kent M
Kachurik, Catherine A. Posner, Dave
Kahn, Ken
Keene, Sonya
Keller, Shaun
Kempf, James
Kerns, Robert W.
Kiczales, Gregor
Kolb, Dieter
Koschmann, Timothy
Kosinski, Paul
Larson, Aaron
Latto, Andy
Laubsch, Joachim
Layer, Kevin
Linden, Thorn
Loeffler, David D.
Loosemore, Sandra
Magataca, Mituhiro
Margolin, Barry
Masinter, Larry
Mathis, Robert
Matthews, David C.
McCarthy, John
Mikelsons, Martin
Mlynarik, Richard
Moon, David A.
Moore, Timothy
Nicoud, Stephen
Nilsson, Jar1
O’Dell, Jim
Ohlander, Ron
Padget, Julian
Palter, Gary

Raghavan, B.
Rand, Douglas
Rininger , Jeff
Rosenking, Jeffrey P.
Scherlis, William L.
Shiota, Eiji
Sizer, Andy
Slater, David
Sodan, Angela
Soley, Richard M.
Squires, Stephen L.
St. Clair, Bill
Stanhope, Philip
Steele, Guy L., Jr.
Tucker, Paul
Turba, Thomas
Unietis, Dave
Van Deusen, Mary
van Roggen, Walter
Waldrum, Ellen
Waters, Richard C.
Wechsler, Allan
Wegman, Mark
Weinreb, Daniel
Weyhrauch, Richard
White, JonL
Wieland, Alexis
Withington, P. Tucker
Wright, Whitman
York, Bill
Zacharias, Gail
Zubkoff, Jan L.

xxix

ANSI X3.226-1994

Programming Language-Common Lisp

1. Introduction

ANSI X3.226-1994 Programming Language-Common Lisp

ii Introduction

Programming Language--Common Lisp ANSI X3.226-1994

1.1 Scope, Purpose, and History

1.1.1

1.1.2

Scope and Purpose
The specification set forth in this document is designed to promote the portability of Common
Lisp programs among a variety of data processing systems. It is a language specification aimed
at an audience of implementors and knowledgeable programmers. It is neither a tutorial nor an
implementation guide.

History
Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John
McCarthy during the 1956 Dartmouth Summer Beaearch Project on Artificial Intelligence. Mc-
Carthy’s motivation was to develop an algebraic list processing language for artificial intelligence
work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the
IBM 7090, the Digital Equipment Corporation (DEC) PDP-1, the DEC PDP-6, and the PDP-10.
The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were
two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp.
For further information about very early Lisp dialects, see The Anotomy of Lisp or Lisp 1.5
Programmer’s Manual.

MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also
introduced the concept of functions that could take a variable number of arguments, macros,
arrays, non-local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis
on execution speed. By the end of the 1970’s, MacLisp was in use at over 50 sites. For further
information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Ma&p
Manual.

Interlisp introduced many ideas into Lisp programming environments and methodology. One of
the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by War-
ren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and
now in Common Lisp. For further information about Interlisp, see Interlisp Reference Manual.

Although the first implementations of Lisp were on the IBM 704 and the IBM 7090, later work
focussed on the DEC PDP-6 and, later, PDP-10 computers, the latter being the mainstay of
Lisp and artificial intelligence work at such places as Massachusetts Institute of Technology
(MIT), Stanford University, and Carnegie Mellon University (CMU) from the mid-1960’s through
much of the 1970’s. The PDP-10 computer and its predecessor the PDP-6 computer were, by
design, especially well-suited to Lisp because they had 36bit words and N-bit addresses. This
architecture allowed a cons cell to be stored in one word; single instructions could extract the
car and cdr parts. The PDP-6 and PDP-10 had fast, powerful stack instructions that enabled
fast function calling. But the limitations of the PDP-10 were evident by 1973: it supported a
small number of researchers using Lisp, and the small, l&bit address space (2” = 262,144 words)
limited the size of a single program. One response to the address space problem was the Lisp
Machine, a special-purpose computer designed to run Lisp programs. The other response was to
use general-purpose computers with address spaces larger than 18 bits, such as the DEC VAX
and the $1 Mark IIA. For further information about S-1 Common Lisp, see ‘S-1 Common Lisp
Implementation.”

The Lisp machine concept was developed in the late 1960’s. In the early 1970’s, Peter Deutsch,
working with Daniel Bobrow, implemented a Lisp on the Alto, a single-user minicomputer,
using microcode to interpret a byte-code implementation language. Shortly thereafter, Richard
Greenblatt began work on a different hardware and instruction set design at MIT. Although the
Alto was not a total success as a Lisp machine, a dialect of Interlisp known as Interlisp-D became
available on the D-series machines manufactured by Xerox-the Dorado, Dandelion, Dandetiger,
and Dove (or Daybreak). An upward-compatible extension of MacLisp called Lisp Machine Lisp

Introduction l-l

ANSI X3.226-1994 Programming Languag*Common Lisp

became available on the early MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp
Machines (LMI), and Symbol& were on the market by 1981. For further information about Lisp
Machine Lisp, see Lisp Machine Manual.

During the late 1970’s, Lisp Machine Lisp began to expand towards a much fuller language.
Sophisticated lambda lists, setf, multiple values, and structures like those in Common Lisp are
the results of early experimentation with programming styles by the Lisp Machine group. Jon1
White and others migrated these features to MacLisp. Around 1980, Scott Fahlman and others at
CMU began work on a Lisp to run on the Scientific Personal Integrated Computing Environment
(SPICE) workstation. One of the goals of the project was to design a simpler dialect than Lisp
Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New Implemen-
tation of Lisp (NIL) for the VAX, which was headed by White. One of the stated goals of the
NIL project was to fix many of the historic, but annoying, problems with Lisp while retaining
significant compatibility with MacLisp. At about the same time, a research group at Stanford
University and Lawrence Livermore National Laboratory headed by Richard P. Gabriel began
the design of a Lisp to run on the Sl Mark IIA supercomputer. $1 Lisp, never completely
functional, was the test bed for adapting advanced compiler techniques to Lisp implementation.
Eventually the S-l and NIL groups collaborated. For further information about the NIL project,
see “NIL-A Perspective.”

The first effort towards Lisp standardization was made in 1969, when Anthony Hearn and
Martin Griss at the University of Utah defined Standard Lisp-a subset of Lisp 1.5 and other
dialects-to transport REDUCE, a symbolic algebra system. During the 1970’s, the Utah group
implemented first a retargetable optimizing compiler for Standard Lisp, and then an extended
implementation known as Portable Standard Lisp (PSL). By the mid 1980’s, PSL ran on about
a dozen kinds of computers. For further information about Standard Lisp, see “Standard LISP
Report.”

PSL and Franz Lisp-a MacLisp-like dialect for Unix machines-were the first examples of widely
available Lisp dialects on multiple hardware platforms.

One of the most important developments in Lisp occurred during the second half of the 1970’s:
Scheme. Scheme, designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple dialect of Lisp
whose design brought to Lisp some of the ideas from programming language semantics developed
in the 1960’s. Sussman was one of the prime innovators behind many other advances in Lisp
technology from the late 1960’s through the 1970’s. The major contributions of Scheme were
lexical scoping, lexical closures, first-class continuations, and simplified syntax (no separation of
value cells and function cells). Some of these contributions made a large impact on the design
of Common Lisp. For further information about Scheme, see IEEE Slandard for the Scheme
Programming Language or “Revised3 Report on the Algorithmic Language Scheme.”

.

In the late 1970’s object-oriented programming concepts started to make a strong impact on
Lisp. At MIT, certain ideas from Smalltalk made their way into several widely used program-
ming systems. Flavors, an object-oriented programming system with multiple inheritance, was
developed at MIT for the Lisp machine community by Howard Cannon and others. At Xerox, the
experience with Smalltalk and Knowledge Representation Language (KRL) led to the develop-
ment of Lisp Object Oriented Programming System (LOOPS) and later Common LOOPS. For
further information on Smalltalk, see Smalltalk-80: The Language and its Implemeniaiion. For
further information on Flavors, see Flavors: A Non-Hierarchical Approach to Object-Orienied
Programming.

These systems influenced the design of the Common Lisp Object System (CLOS). CLOS was
developed specifically for this standardization effort, and was separately written up in “Common
Lisp Object System Specification.” However, minor details of its design have changed slightly
since that publication, and that paper should not be taken as an authoritative reference to the
semantics of the object system as described in this document.

l-2 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware implementation
groups were developing NIL, Franz Lisp, and PSL; Xerox was developing Interlisp; and the SPICE
project at CMU was developing a MacLisp-like dialect of Lisp called SpiceLisp.

In April 1981, after a DARPA-sponsored meeting concerning the splintered Lisp community,
Symbol&, the SPICE project, the NIL project, and the Sl Lisp project joined together to de-
fine Common Lisp. Initially spearheaded by White and Gabriel, the driving force behind this
grassroots effort was provided by Fahlman, Daniel Weinreb, David Moon, Steele, and Gabriel.
Common Lisp was designed as a description of a family of languages. The primary influences
on Common Lisp were Lisp Machine Lisp, MacLisp, NIL, S-l Lisp, Spice Lisp, and Scheme.
Common Lisp: The Language is a description of that design. Its semantics were intentionally un-
derspecified in places where it was felt that a tight specification would overly constrain Common
Lisp research and use.

In 1986 X3J13 was formed as a technical working group to produce a draft for an ANSI Common
Lisp standard. Because of the acceptance of Common Lisp, the goals of this group differed from
those of the original designers. These new goals included stricter standardization for portability,
an object-oriented programming system, a condition system, iteration facilities, and a way to
handle large character sets. To accommodate those goals, a new language specification, this
document, was developed.

Introduction l-3

._. _ __^^ _ _.. - .

ANSI X3.226-1994 Programming Language-Common Lisp

1.2 Organization of the Document
This is a reference document, not a tutorial document. Where possible and convenient, the order
of presentation has been chosen so that the more primitive topics precede those that build upon
them; however, linear readability has not been a priority.

This document is divided into chapters by topic. Any given chapter might contain conceptual
material, dictionary entries, or both.

Defined names within the dictionary portion of a chapter are grouped in a way that brings re-
lated topics into physical proximity. Many such groupings were possible, and no deep significance
should be inferred from the particular grouping that was chosen. To 8ee dejined names grouped
alphabetically, consult the index. For a complete list of defined names, see Section 1.9 (Symbols
in the COMMON-LISP Package).

In order to compensate for the sometimee-unordered portions of this document, a glossary has
been provided; see Chapter 26 (Glossary). The glossary provides connectivity by providing easy
access to definitions of terms, and in some cares by providing examples or cross references to
additional conceptual material.

For information about notational conventions used in this document, see Section 1.4 (Definitions).

For information about conformance, see Section 1.5 (Conformance).

For information about extensions and subsets, see Section 1.6 (Language Extensions) and Section
1.7 (Language Subsets).

For information about how programs in the language are parsed by the Lisp reader, see Chapter 2
(Syntax).

For information about how programs in the language are compiled and ezecuted, see Chapter 3
(Evaluation and Compilation).

For information about data types, see Chapter 4 (Types and Classes). Not all types and classes
are defined in this chapter; many 8re defined in chapter corresponding to their topic-for example,
the numeric types are defined in Chapter 12 (Numbers). For a complete list of standanlized types,
see Figure 4-2.

For information about generai purpose control and data flow, see Chapter 5 (Data and Control
Flow) or Chapter 6 (Iteration).

14 Introduction

Programming LanguageCommon Lisp ANSI X3.226-1994

1.3 Referenced Publications

.

.

l

l

l

l

l

l

.

l

.

.

l

.

.

l

.

l

The Anatomy of Lisp, John Allen, McGraw-Hill, Inc., 1978.

The Art of Computer Programming, Volume 3, Donald E. Knuth, Addison-Wesley Company
(Reading, MA), 1973.

The Art of the Metaobject Protocol, Kiczales et al., MIT Press (Cambridge, MA), 1991.

“Common Lisp Object System Specification,” D. Bobrow, L. DiMichiel, R.P. Gabriel, S.
Keene, G. Kiczales, D. Moon, SIGPLAN Notices V23, September, 1988.

Common Lisp: The Language, Guy L. Steele Jr., Digital Press (Burlington, MA), 1984.

Common Lisp: The Language, Second Edition, Guy L. Steele Jr., Digital Press (Bedford,
MA), 1990.

Ezceptional Situations in Lisp, Kent M. Pitman, Proceedings of the First European Confer-
ence on the Practical Application of LISP (EUROPAL ‘go), Churchill College, Cambridge,
England, March 27-29, 1990.

Flavors: A Non-Hierarchical Approach to Object-Oriented Programming, Howard 1. Cannon,
1982.

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 7541985, Institute of
Electrical and Electronics Engineers, Inc. (New York), 1985.

IEEE Standard for the Scheme Programming Language, IEEE Std 11781990, Institute of
Electrical and Electronic Engineers, Inc. (New York), 1991.

Interlisp Reference Manual, Third Revision, Teitelman, Warren, et al, Xerox Palo Alto
Research Center (Palo Alto, CA), 1978.

IS0 693712, Information processing-Coded character sets for ted communication-Part %:
Latin alphabetic and non-alphabetic graphic characters, ISO, 1983.

Lisp 1.5 Programmer’s Manual, John McCarthy, MIT Press (Cambridge, MA), August, 1962.

Lisp Machine Manual, D.L. Weinreb and D.A. Moon, Artificial Intelligence Laboratory, MIT
(Cambridge, MA), July, 1981. d

Maclisp Reference Manual, Revision 0, David A. Moon, Project MAC (Laboratory for
Computer Science), MIT (Cambridge, MA), March, 1974.

“NIL-A Perspective,” JonL White, Macsyma User’s Conference, 1979.

Performance and Evaluation of Lisp Programs, Richard P. Gabriel, MIT Press (Cambridge,
MA), 1985.

“Principal Values and Branch Cuts in Complex APL,” Paul Penfield Jr., APL 81 Conference
Proceedings, ACM SIGAPL (San Francisco, September 1981), 248256. Proceedings published
as APL Quote Quad I,??, 1 (September 1981).

Introduction l-5

ANSI X3.226-1994 Programming Language-Common Lisp

The Revised Maclisp Manual, Kent M. Pitman, Technical Report 295, Laboratory for Com-
puter Science, MIT (Cambridge, MA), May 1983.

“Revised3 Report on the Algorithmic Language Scheme,” Jonathan Rees and William Clinger
(editors), SIGPLAN Notices V21, #12, December, 1986.

“S-1 Common Lisp Implementation,” R.A. Brooks, R.P. Gabriel, and G.L. Steele, Conference
Record of the 1982 ACM Symposium on Lisp and Functional Programming, 108-113, 1982.

Smalltalk-$0. The Language and its Implementation, A. Goldberg and D. Robson, Addison-
Wesley, 1983.

“Standard LISP Report,” J.B. Marti, A.C. Hearn, M.L. Griss, and C. Griss, SIGPLAN
Notices V14, #LO, October, 1979.

Webster’s Third New International Dictionary the English Language, Unabridged, Merriam
Webster (Springfield, MA), 1986.

SP: A Common. Lisp Pretty Printing System, R.C. Waters, Memo 1102a, Artificial Intelli-
gence Laboratory, MIT (Cambridge, MA), September 1989.

l-6 Introduction

Programming Language--Common Lisp ANSI X3.226-1994

1.4 Definitions
This section contains notational conventions and definitions of terms used in this manual.

1.4.1 Notational Conventions
The following notational conventions are used throughout this document

1.4.1.1 Font Key

Fonts are used in this document to convey information.

name

Denotes a formal term whose meaning is defined in the Glossary. When this font is used,
the Glossary definition takes precedence over normal English usage.

Sometimes a glossary term appears subscripted, as in “whitespace~ ” Such a notation
selects one particular Glossary definition out of several, in this case the second. The
subscript notation for Glossary terms is generally used where the context might be
insufficient to disambiguate among the available definitions.

Denotes the introduction of a formal term locally to the current text. There is still a
corresponding glossary entry, and is formally equivalent to a use of “nume,” hut the hope
is that making such uses conspicuous will save the reader a trip to the glossary in some
cases.

name

Denotes a symbol in the COHMON-LISP package. For information about case conventions,
see Section 1.4.1.4.1 (Case in Symbols).

name

Denotes a sample name or piece of code that a programmer might write in Common Lisp.

This font is also used for certain standardized names that are not names of eziernal sym-
bols of the COHHON-LISP package, such as keywordsl, package names, and loop keywords.

name

Denotes the name of a parameter or value.

In some situations the notation “((name))” (i.e., the same font, but with surrounding
“angle brackets”) is used instead in order to provide better visual separation from sur-
rounding characters. These “angle brackets” are metasyntactic, and never actually appear
in program input or output.

1.4.1.2 Modified BNF Syntax

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of Com-
mon Lisp macro forms and special forms. This section discusses the syntax of BNF expressions.

1.4.1.2.1 Splicing in Modified BNF Syntax

The primary extension used is the following:

Introduction l-7

ANSI X3.226-1994 Programming Language-Common Lisp

An expression of this form appears whenever a lit of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol 0 represents a description of the
syntax of some number of syntactic elements to be spliced; that description must be of the form

01 I . . . I 01

where each Oi can be of the form S or of the form St or of the form S’. The expression [0]
means that a list of the form

(Oil . . . Oij) 1 li

is spliced into the enclosing expression, such that if n # m and 1 5 n, m 5 j, then either
Oi, # Oi, or Oi, = Oi, = Qs, where for some 1 5 k 5 n, 06 is of the form Qr*. Furthermore,
for each Oi. that is of the form f&l, that element is required to appear somewhere in the list to
be spliced.

For example, the expression

(x [A I B* I C] y)

means that at most one A, any number of B’S, and at most one c can occur in any order. It is a
description of any of these:

(x y)
(x B A C y)
(xABBBBBCy)
(x C B A B B B y)

but not any of these:

(xBBAACCy)
(x C B C y)

In the first case, both A and C appear too often, and in the second case C appears too often.

The notation [01 1 02 1 . . .I+ adds the additional restriction that at least one item from among
the possible choices must be used. For example:

(x [A I B* I C]+ y)

means that at most one A, any number of B’s, and at most one C can occur in any order, but that
in any case at least one of these options must be selected. It is a description of any of these:

(x B y)
(x B A C J)
(xABBBBBC~)
CxCBABBBy)

but not any of these:

(x y)
(xBBAACC~Y)
(x C B C y)

In the first case, no item was used; in the second case, both A and c appear too often; and in the
third case c appears too often.

Also, the expression:

(x [A’ I B’ I C] y)

l-8 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

can generate exactly these and no others:

(x A B c y)
(x A c B y)
(x A B y)
(I B A C y)
(x B C A y)
(I B A J)
(x C A B y)
(x C B A y)

1.4.1.2.2 Indirection in Modified BNF Syntax

An indirection extension is introduced in order to make this new syntax more readable:

10

If 0 is a non-terminal symbol, the right-hand side of its definition is substituted for the entire
expression 10. For example, the following BNF is equivalent to the BNF in the previous example:

(x [lOI Y)

o::=A 1 B* 1 C

1.4.1.2.3 Additional Uses for Indirect Definitions in Modified BNF Syntax

In some cases, an auxiliary definition in the BNF might appear to be unused within the BNF, but
might still be useful elsewhere. For example, consider the following defioitions:

case keyform { Jnormal-clause}* [lothefbvisc-clause] + {result}*

cease keyplace {~normaCc/ause}* + {result}*

ecase keyform { 1 normal-clause} * + { resdt} *

normal-clause::=(keys {form}*)

otherwistc/ause::=({otherwise 1 t} {form}*)

clause::=normal-clause 1 otherwise-clause

Here the term “dause” might appear to be “dead” in that it is not used in the BNF. However,
the purpose of the BNF is not just to guide parsing, but also to define useful terms for reference
in the descriptive text which follows. As such, the term “dause” might appear in text that
follows. as shorthand for “normal-clause or otherwise-clause.”

1.4.1.3 Special Symbols

The special symbols described here are used as a notational convenience within this document,
and are part of neither the Common Lisp language nor its environment.

+

This indicates evaluation. For example:

(+ 4 5) * 9

This means that the result of evaluating the form (+ 4 5) is 9.

Introduction l-9

ANSI X3.226-1994 Programming Language-Common Lisp

If a form returns multiple values, those values might be shown separated by spaces, line
breaks, or commas. For example:

(trnacate 7 5)
+12

(truncate 7 5)
-1

2
(truncate 7 5)

-) 1. 2

Each of the above three examples is equivalent, and specifies that (truncate 7 5) returns
two values, which are 1 and 2.

Some conforming implementations actually type an arrow (or some other indicator)
before showing return values, while others do not.

The notation “2 is used to denote one of several possible alternate results. The example

(char-name #\a)
-+ NIL
Z "LOWERCASE-a"
% "Small-l"
4 "~01"

indicates that nil, "LOWERCASE-a", "Small-A", T.AOI~~ are among the possible results of
(char-naae #\a)-each with equal preference. Unless explicitly specified otherwise, it
should not be assumed that the set of possible results shown is exhaustive. Formally, the
above example is equivalent to

(char-n-e *\a) -+ implementation-dependent

but it is intended to provide additional information to illustrate some of the ways in
which it is permitted for implementations to diverge.

The notation “rdn is used to denote a result which is not possible. This might be used,
for example, in order to emphasize a situation where some anticipated misconception
might lead the reader to falsely believe that the result might be possible. For example,

(function-lambda-expression
(funcall *'(lambda (x1 *'b&da 0 x)) nil))

+ NIL, true, NIL
s (LAMBDA 0 X1, true, NIL .
"2 UIL. fake. NIL
22 (MDA 0 x) , false, NIL

This indicates code equivalence. For example:

(gcd x (gcd y 2)) I (gcd (gcd x y) z)

This means that the results and observable side-effects of evaluating the form
(gcd x (gcd y z)) are always the same as the results and observable side-effects of
(gcd (gcd x y) z) for any x, y, and z.

l-10 Introduction

Programming Language--Common Lisp ANSI X3.226-1994

D

Common Lisp specifies input and output with respect to a non-interactive stream model.
The specific details of how interactive input and output are mapped onto that non-
interactive model are implemenfa2ion-defined.

For example, conforming implemenlations are permitted to differ in issues of how inter-
active input is terminated. For example, the function read terminates when the final
delimiter is typed on a non-interactive stream. In some implemenla2ions, an interactive
call to read returns as soon as the final delimiter is typed, even if that delimiter is not a
newline. In other implemen2ations, a final newline is always required. In still other im-
plemen2a2ions, there might be a command which “activates” a buffer full of input without
the command itself being visible on the program’s input stream.

In the examples in this document, the notation “0” precedes lines where interactive input
and output occurs. Within such a scenario, “this notation” notates user input.

For example, the notation

(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))
DU

07

+8

shows an interaction in which “(+ 1 (print (+ (sqrt (read) 1 (sqrt (read) 1) 1)” is a
form to be evaluated, “9 16 ” is interactive input, “7" is interactive output, and "8" is
the value yielded from the evaluaiion.

The use of this notation is intended to disguise small differences in interactive input and
output behavior between implementa2ions.

Sometimes, the non-interactive stream model calls for a newline. How that newline
character is interactively entered is an implementa2iowdefined detail of the user interface,
but in that case, either the notation “(Newline)” or “4” might be used.

(progn (format t "-Who? "1 (read-line))
D Who? Fred, nary, and Sally@
-+ "Fred, Hary. and Sally", fake

1.4.1.4 Objects with Multiple Notations

Some objects in Common Lisp can be notated in more than one way. In such situations, the
choice of which notation to use is technically arbitrary, but conventions may exist which convey a
“point of view” or “sense of intent.”

1.4.1.4.1 Case in Symbols

While case is significant in the process of interning a symbol, the Lisp reader, by default, at-
tempts to canonicalize the case of a symbol prior to interning; gee Section 23.1.2 (Effect of
Readtable Case on the Lisp Reader). As such, case in symbols is not, by default, significant.
Throughout this document, except as explicitly noted otherwise, the case in which a symbol ap-
pears is not significant; that is, HELLO, Hello, hElLo, and hello are all equivalent ways to denote a
symbol whose name is YiELLO".

The characters backslash and verlical-bar are used to explicitly quote the case and other parsing-
related aspects of characters. As such, the notations lhellol and \h\e\l\l\o are equivalent ways
to refer to a symbol whose name is “hello”, and which is distinct from any symbol whose name is
“HELLO”.

The symbols that correspond to Common Lisp defined names have uppercase names even though

Introduction l-11

ANSI X3.226-1994 Programming Language-Common Lisp

their names generally appear in lowercase in this document.

1.4.1.4.2 Numbers

Although Common Lisp provides a variety of ways for programs to manipulate the input and
output radix for rational numbers, all numbers in this document are in decimal notation unless
explicitly noted otherwise.

1.4.1.4.3 Use of the Dot Character

The dot appearing by itself in an ezpression such as

(iteml item2 . tail)

means that tail represents a list of objecis at the end of a list. For example,

(ABC. CD E F))

is notationally equivalent to:

(A B C D E F)

Although dot is a valid constituent character in a symbol, no standardized symbols contain the
character dot, so a period that follows a reference to a symbol at the end of a sentence in this
document should always be interpreted as a period and never as part of the symbol’s name. For
example, within this document, a sentence such as “This sample sentence refers to the symbol
car.” refers to a symbol whose name is YXW (with three letters), and never to a four-letter
symbol VAR.)I

1.4.1.4.4 NIL

nil has a variety of meanings. It is a symbol in the COHHOU-LISP package with the name “EIL”, it is
boolean (and generalized boolean) fake, it is the empty list, and it is the name of the empty type
(a subtype of all types).

Within Common Lisp, nil can be notated interchangeably as either IIL or 0. By convention, the
choice of notation offers a hint as to which of its many roles it is playing.

For Evaluation?
YeS
YeS
YE-S
No
No

Figure l-l. Notations for NIL

Notation
nil
‘nil
‘0

nil
0

Typically Implied Role
use as a boolean.
use as a symbol.
use as an empiy lisi
use as a symbol or boolean.
use as an empty list.

Within this document only, nil is also sometimes notated as false to emphasize its role as a
boolean.

For example:

(print 0 1
(defun three nil 3)
‘(nil nil) ‘
‘(0 0)
(defun three 0 3)
(append ‘0 ‘0) + 0
(not nil) -, irse

; avoided
; avoided
;list of tvo symbols
:list of empty lists
;Emphasize empty parameter list.
;Emphasize use of empty lists
:Emphasize use as Boolean false

l-12 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

(get ‘nil ‘color) ;kphasize use as a spbol

A juncfion is sometimes said to “be false” or “be true” in some circumstance. Since no junction
object can be the same as nil and all jundion objects represent true when viewed as booleans, it
would be meaningless to say that the junction was literally false and uninteresting to say that it
was literally true. Instead, these phrases are just traditional alternative ways of saying that the
junction ?eturns jarsen or “returns Irue,” respectively.

1.4.1.5 Designators
A designator is an object that denotes another object.

Where a parameter of an operator is described as a designaior, the description of the operator
is written in a way that assumes that the value of the pammeter is the denoted objeci; that is,
that the pammeier is already of the denoted type. (The specific nature of the object denoted
by a “((fype)) designator” or a “designaror for a ((fype))” can be found in the Glossary entry for
“((type)) designafor.“)

For example, “nil” and “the value of *standard-output*” are operationally indistinguishable as
stream designators. Similarly, the symbol foo and the siring VOO" are operationally indistinguish-
able as siring designators.

Except as otherwise noted, in a situation where the denoted object might be used multiple times,
it is implementation-depended whether the object is coerced only once or whether the coercion
occurs each time the objeci must be used.

For example, mapcar receives a juncfion designator as an argument, and its description is written
as if this were simply a function. In fact, it is implementation-dependent whether the junction
designator is coerced right away or whether it is carried around internally in the form that it was
given as an argument and m-coerced each time it is needed. In most cases, conforming programs
cannot detect the distinction, but there are some pathological situations (particularly those
involving self-redefining or mutually-redefining functions) which do conform and which can detect
this difference. The following program is a conforming program, but might or might not have
portably correct results, depending on whether its correctness depends on one or the other of the
results:

(defun add-eore (x)
(defun add-some (x) (+ x 2))
(+ x 1)) + ADD-SOHE

(rapcar ‘add-sole ‘(1 2 3 4))
+ (2 3 4 5)
s (2 4 5 6)

In a few rare situations, there may be a need in a dictionary entry to refer to the objeci that was
the original designator for a pammeter. Since naming the pammeier would refer to the denoted
objecf, the phrase “the ((parameter-name)) designafor” can be used to refer to the designator
which was the aryumenf from which the value of ((parameter-uame)) was computed.

1.4.1.6 Nonsense Words

When a word having no pre-attached semantics is required (e.g., in an example), it is common in
the Lisp community to use one of the words “foe,” Kbar,n “bar,” and ‘cquux.n For example, in

(defun foo (x) (+ x 1))

the use of the name foo is just a shorthand way of saying “please substitute your favorite name
here.”

Introduction l-13

ANSI X3.226-1994 Programming Language-Common Lisp

These nonsense words have gained such prevalance of usage, that it is commonplace for new-
comers to the community to begin to wonder if there is an attached semantics which they are
overlooking-there is not.

1.4.2 Error Terminology
Situations in which errors might, should, or must be signaled are described in the standard. The
wording used to describe such situations is intended to have precise meaning. The following list is
a glossary of those meanings.

Safe code

This is code processed with the safety optimization at its highest setting (3). safety is
a lexical property of code. The phrase “the function F should signal an error” means
that if F is invoked from code processed with the highest safety optimization, an error is
signaled. It is implementation-dependent whether F or the calling code signals the error.

Unsafe code

This is code processed with lower safety levels.

Unsafe code might do error checking. Implementations are permitted to treat all code as
safe code all the time.

An error is signaled

This means that an error is signaled in both safe and unsafe code. Conforming code
may rely on the fact that the error is signaled in both safe and unsafe code. Every
implementation is required to detect the error in both safe and unsafe code. For example,
“an error is signaled if unexport is given a symbol not accessible in the current package.”

If an explicit error type is not specified, the default is error.

An error should be signaled

This means that an error is signaled in safe code, and an error might be signaled in
unsafe code. Conforming code may rely on the fact that the error is signaled in safe code.
Every implementation is required to detect the error at least in safe code. When the error
is not signaled, the “consequences are undefined” (see below). For example, “+ should
signal an error of lype type-error if any argument is not of type number.”

Should be prepared to sigml an error

This is similar to “should be signaled” except that it does not imply that ‘extra effort’
has to be taken on the part of an operator to discover an erroneous situation if the
normal action of that operator can be performed successfully with only ‘lazy’ checking.
An implcmentafion is always permitted to signal an error, but even in safe code, it is only
required to signal the error when failing to signal it might lead to incorrect results. In
unsafe code, the consequences are undefined.

For example, defining that “find should be prepared to signal an error of type type-error
if its second argument is not a proper list” does not imply that an error is always sig-
naled. The form

(find ‘a ‘(a b . c))

must either signal an error of type type-error in safe code, else return A. In unsafe code,
the consequences are undefined. By contrast,

l-14 Introduction

Programming Language--Common Lisp ANSI X3.226-1994

(find ‘d ‘(a b . cl)

must signal an error of type type-error in safe code. In unsafe code, the consequences are
undefined. Also,

(find ‘d ‘#l=(a b . #l#!))

in safe code might return nil (as an implementation-defined extension), might never
return, or might signal an error of iype type-error. In unsafe code, the consequences are
undefined.

Typically, the “should be prepared to signal” terminology is used in type checking
situations where there are efficiency considerations that make it impractical to detect
errors that are not relevant to the correct operation of the operalor.

The consequences are unspecified

This means that the consequences are unpredictable but harmless. Implementations are
permitted to specify the consequences of this situation. No conforming code may depend
on the results or effects of this situation, and all conforming code is required to treat the
results and effects of this situation as unpredictable but harmless. For example, “if the
second argument to shared-initialize specifies a name that does not correspond to any
slots accessible in the object, the results are unspecified.”

The consequences are undefined

This means that the consequences are unpredictable. The consequences may range from
harmless to fatal. No conforming code may depend on the results or effects. Conforming
code must treat the consequences as unpredictable. In places where the words “must,”
“must not,” or “may not” are used, then “the consequences are undefined” if the stated
requirement is not met and no specific consequence is explicitly stated. An implementa-
tion is permitted to signal an error in this case.

For example: “Once a name has been declared by defconstant to be constant, any
further assignment or binding of that variable has undefined consequences.”

An error might be signaled

This means that the situation has undefined consequences; however, if an error is sig-
naled, it, is of the specified type. For example, “open might signal an error of type
Ale-error.”

The return values are unspecified

This means that only the number and nature of the return values of a fonts are not
specified. However, the issue of whether or not any side-effects or transfer of control
occurs is still well-specified.

A program can be well-specified even if it uses a function whose returns values are
unspecified. For example, even if the return values of some function F are unspecified, an
expression such as (length (list (F))) is still well-specified because it does not rely on
any particular aspect of the value or values returned by F.

Implementations may be extended to cover this situation

This means that the situation has undefined consequences; however, a conforming imple-
mentation is free to treat the situation in a more specific way. For example, an implemen-
tation might define that an error is signaled, or that an error should be signaled, or even
that a certain well-defined non-error behavior occurs.

Introduction 1-15

ANSI X3.226-1994 Programming Language--Common Lisp

No conforming code may depend on the consequences of such a situalion; all conforming
code must treat the consequences of the situation as undefined. Implementations are
required to document how the situation is treated.

For example, “implementations may be extended to define other type specifiers to have a
corresponding class.”

Implementations are free to extend the syntax

This means that in this situation implementations are permitted to define unambiguous
extensions to the syntax of the form being described. No conforming code may depend
on this extension. Implementations are required to document each such extension. All
conforming code is required to treat the syntax as meaningless. The standard might
disallow certain extensions while allowing others. For example, “no implementation is free
to extend the syntax of defclass.”

A warning might be issued

This means that implementations are encouraged to issue a warning if the context
is appropriate (e.g., when compiling). However, a conforming implementation is not
required to issue a warning.

1.4.3 Sections Not Formally Part Of This Standard
Front matter and back matter, such as the “Table of Contents,” “Index,” “Figures,” “Credits,”
and “Appendix” are not considered formally part of this standard, so that we retain the flexibility
needed to update these sections even at the last minute without fear of needing a formal vote to
change those parts of the document These items are quite short and very useful, however, and it
is not recommended that they be removed even in an abridged version of this document.

Within the concept sections, subsections whose names begin with the words “Note” or “Notes” or
“Example” or “Examples” are provided for illustration purposes only, and are not considered part
of the standard.

An attempt has been made to place these sections last in their parent section, so that they could
be removed without disturbing the contiguous numbering of the surrounding sections in order to
produce a document of smaller size.

Likewise, the “Examples” and “Notes” sections in a dictionary entry are not considered part of
the standard and could be removed if necessary.

Nevertheless, the examples provide important clarifications and consistency checks for the rest of
the material, and such abridging is not recommended unless absolutely unavoidable.

1.4.4 Interpreting Dictionary Entries
The dictionary entry for each defined name is partitioned into sections. Except as explicitly indi-
cated otherwise below, each section is introduced by a label identifying that section. The omission
of a section implies that the section is either not applicable, or would provide no interesting
information.

This section defines the significance of each potential section in a dictionary entry.

1.4.4.1 The “Affected By” Section of a Dictionary Entry

For an operator, anything that can affect the side effects of or values returned by the operator.

For a variable, anything that can affect the value of the variable including functions that bind or
assign it.

1-16 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

. . 1.4.4.2 The “Arguments” Section of a Dictionary Entry

This information describes the syntax information of entries such as those for declarations and
special expressions which are never evaluated as forms, and so do not return values.

1.4.4.3 The “Arguments and Values” Section of a Dictionary Entry

An English language description of what arguments the operator accepts and what values it
returns, including information about defaults for parameters corresponding to omittable argu-
ments (such as optional parameters and keyword parameters). For special operators and macros,
their arguments are not evaluated unless it is explicitly stated in their descriptions that they are
evaluated.

Except as explicitly specified otherwise, the consequences are undefined if these type restrictions
are violated.

1.4.4.4 The “Binding Types Affected” Section of a Dictionary Entry

This information alerts the reader to the kinds of bindings that might potentially be affected by
a declaration. Whether in fact any particular such binding is actually affected is dependent on
additional factors as well. See the “Description” section of the declaration in question for details.

1.4.4.5 The “Class Precedence List” Section of a Dictionary Entry

This appears in the dictionary entry for a class, and contains an ordered list of the classes defined
by Common Lisp that must be in the class precedence list of this class.

It is permissible for other (implementation-defined) classes to appear in the implementation’s
class precedence list for the class.

It is permissible for either standard-object or structure-object to appear in the implementa-
tion’s class precedence list; for details, see Section 4.2.2 (Type Relationships).

Except as explicitly indicated otherwise somewhere in this specification, no additional standard-
i:ed classes may appear in the implementation’s class precedence list.

By definition of the relationship between classes and types, the classes listed in this section are
also supertypes of the type denoted by the class.

1.4.4.6 Dictionary Entries for Type Specifiers
The atomic type specifiers are those defined names listed in Figure 4-2. Such dictionary entries
are of kind “Class,” “Condition Type,” “System Class,” or “Type.” A description of how to
interpret a symbol naming one of these types or classes as an atomic type specifier is found in the
“Description” section of such dictionary entries.

The compound type specifiers are those dejined names listed in Figure 4-3. Such dictionary
entries are of kind “Class,” “System Class,” “Type,” or “Type Specifier.” A description of
how to interpret, as a compound type specifier a list whose car is such a symbol is found in the
“Compound Type Specifier Kind,” “Compound Type Specifier Syntax,” “Compound Type
Specifier Arguments,” and “Compound Type Specifier Description” sections of such dictionary
entries.

1.4.4.6.1 The “Compound Type Specifier Kind” Section of a Dictionary Entry

An “abbreviating” type specifier is one that describes a subtype for which it is in principle possi-
ble to enumerate the elements, but for which in practice it is impractical to do so.

Introduction 1-17

ANSI X3.226-1994 Programming Language-Common Lisp

A “specializing” type specifier is one that describes a subiype by restricting the fype of one or
more components of the type, such as element type or complet part fype.

A “predicating” type specifier is one that describes a subtype containing only those objecls that
satisfy a given predicaie.

A “combining” type specifier is one that describes a subfype in a compositional way, using com-
bining operations (such as “and,” “or,” and “not”) on other types.

1.4.4.6.2 The “Compound Type Specifier Syntax” Section of a Dictionary Entry

This information about a type describes the syntax of a compound fype specifier for that type.

Whether or not the type is acceptable as an atomic type specifier is not represented here; see
Section 1.4.4.6 (Dictionary Entries for Type Specifiers).

1.4.4.6.3 The “Compound Type Specifier Arguments” Section of a Dictionary Entry

This information describes type information for the structures defined in the “Compound Type
Specifier Syntax” section.

1.4.4.6.4 The “Compound Type Specifier Description” Section of a Dictionary Entry

This information describes the meaning of the structures defined in the ‘Compound Type Speci-
fier Syntax” section.

1.4.4.7 The “Constant Value” Section of a Dictionary Entry

This information describes the unchanging type and value of a constant variable.

1.4.4.8 The “Description” Section of a Dictionary Entry

A summary of the operator and all intended aspects of the operafor, but does not necessarily
include all the fields referenced below it (“Side Effects,” “Exceptional Situations,” etc.)

1.4.4.9 The “Examples” Section of a Dictionary Entry
Examples of use of the operator. These examples are not considered part of the standard; see
Section 1.4.3 (Sections Not Formally Part Of This Standard).

1.4.4.10 The “Exceptional Situations” Section of a Dictionary Entry

Three kinds of information may appear here:

l Situations that are detected by the fun&ion and formally signaled.
l Situations that are handled by the function.

l Situations that may be detected by the function.

This field does not include conditions that could be signaled by funciions passed to and called
by this operafor as arguments or through dynamic variables, nor by executing subforms of this
operator if it is a macro or special operator.

1.4.4.11 The “Initial Value” Section of a Dictionary Entry

This information describes the initial value of a dynamic variable. Since this variable might
change, see type restrictions in the “Value Type” section.

1-18 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

1.4.4.12 The “Argument Precedence Order ” Section of a Dictionary Entry

This information describes the argument precedence order. If it is omitted, the argument prece-
dence order is the default (left to right).

1.4.4.13 The “Method Signature” Section of a Dictionary Entry

The description of a generic function includes descriptions of the methods that are defined on
that generic function by the standard. A method signature is used to describe the parameters
and parameter specialirers for each method. Methods defined for the generic function must be of
the form described by the method signature.

F (x c/ass) (y t) &optional z tkey k

This signature indicates that this method on the generic function F has two required parameters:
x, which must be a generalized instance of the class class; and y, which can be any object (i.e., a
generalized instance of the class t). In addition, there is an optional parameter z and a keyword
parameter k. This signature also indicates that this method on F is a primary method and has no
qualifiers.

For each parameter, the argument supplied must be in the intersection of the type specified in
the description of the corresponding generic function and the type given in the signature of some
method (including not only those methods defined in this specification, but also implementation-
defined or user-defined methods in situations where the definition of such methods is permitted).

1.4.4.14 The “Name” Section of a Dictionary Entry

This section introduces the dictionary entry. It is not explicitly labeled. It appears preceded and
followed by a horizontal bar.

In large print at left, the defined name appears; if more than one defined name is to be described
by the entry, all such names are shown separated by commas.

In somewhat smaller italic print at right is an indication of what kind of dictionary entry this is.
Possible values are:

This is an accessor function.

Class

This is a class.

Condition Type

This is a subtype of type condition.

Constant Variable

This is a constant variable.

Declaration

This is a declaration identifier.

Function

This is a function.

Introduction 1-19

ANSI X3.226-1994 Programming Language-Common Lisp

Local Fun&on

This is a-function that is defined only lexically within the scope of some other macro
jOl7lL

Local Macro

This is a macro that is defined only lexically within the scope of some other macro form.

Macro

This is a macro.

Restart

This is a rcsrarr.

Special Operator

This is a special operator.

Standard Generic Function

This is a standard generic junction.

Symbol

This is a symbol that is specially recognized in some particular situation, such as the
syntax of a macro.

Sysiem Class

This is like class, but it identifies a class that is potentially a built-in class. (No class ie
actually required to be a built-in class.)

This is an atomic type specifier, and depending on information for each particular entry,
may subject to form other type specifiers.

Type Specifier

This is a defined name that is not an atomic type specifier, but that can be used in
constructing valid fype specifiers.

Variable

This is a dynamic variable.

1.4.4.15 The “Notes” Section of a Dictionary Entry
Information not found elsewhere in this description which pertains to this operator. Among
other things, this might include cross reference information, code equivalences, stylistic hints,
implementation hints, typical uses. This information is not considered part of the standard; any
conforming implementation or conforming program is permitted to ignore the presence of this
information.

l-20 introduction

Programming Language-Common Lisp ANSI X3.226-1994

1.4.4.16 The “Pronunciation” Section of a Dictionary Entry

This offers a suggested pronunciation for defined names so that people not in verbal communi-
cation with the original designers can figure out how to pronounce words that are not in normal
English usage. This information is advisory only, and is not considered part of the standard. For
brevity, it is only provided for entries with names that are specific to Common Lisp and would
not be found in Webster’s Third New International Dictionary the English Language, Unabridged.

1.4.4.17 The “See Also” Section of a Dictionary Entry

List of references to other parts of this standard that offer information relevant to this operator.
This list is not part of the standard.

1.4.4.18 The “Side Effects” Section of a Dictionary Entry

Anything that is changed as a result of the evaluation of the form containing this operator.

1.4.4.19 The “Supertypes” Section of a Dictionary Entry

This appears in the dictionary entry for a type, and contains a list of the standardized types that
must be supertypes of this type.

In implementations where there is a corresponding class, the order of the classes in the class
precedence list is consistent with the order presented in this section.

1.4.4.20 The “Syntax” Section of a Dictionary Entry
This section describes how to use the defined name in code. The “Syntax” description for a
generic function describes the lambda list of the generic function itself, while the “Method
Signatures” describe the lambda lists of the defined methods. The “Syntax” description for an
ordinary function, a macro, or a special operator describes its parameters.

For example, an operator description might say:

F x y &optional I &key k

This description indicates that the function F has two required parameters, x and y. In addition,
there is an optional parameter I and a keyword parameter k.

For macros and special operators, syntax is given in modified BNF notation; see Section 1.4.1.2
(Modified BNF Synt,ax). For functions a lambda list is given. In both cases, however, the outer-
most parentheses are omitted, and default value information is omitted.

1.4.4.20.1 Special “Syntax” Notations for Overloaded Operators

If two descriptions exist for the same operation but with different numbers of arguments, then the
extra arguments are to be treated as optional. For example, this pair of lines:

file-position stream + position

Ale-position stream position-spec + success-p

is operationally equivalent to this line:

Ale-position stream &opt ional position-spec + result

and differs only in that it provides on opportunity to introduce different names for parameter and
ualues for each case. The separated (multi-line) notation is used when an operator is overloaded
in such a way that the parameters are used in different ways depending on how many arguments
are supplied (e.g., for the function /) or the return values are different in the two cases (e.g., for
the function flbposition).

Introduction 1-21

ANSI X3.226-1994 Programming Language-Common Lisp

1.4.4.20.2 Naming Conventions for Rest Parameters

Within this specification, if the name of a rest parameter is chosen to be a plural noun, use of
that name in parameter font refers to the lid to which the rest parameter is bound. Use of the
singular form of that name in parameter font refers to an elemeni of that lisi.

For example, given a syntax description such as:

F &rest arguments

it is’ appropriate to refer either to the rest parameter named arguments by name, or to one of its
elements by speaking of “an argument,” “some argument,” “each argument” etc.

1.4.4.20.3 Requiring Non-Null Rest Parameters in the “Syntax” Section

In some cases it is useful to refer to all arguments equally as a single aggregation using a rest
parameter while at the same time requiring at least one argument. A variety of imperative and
declarative means are available in code for expressing such a restriction, however they generally
do not manifest themselves in a lambda list. For descriptive purposes within this specification,

F &rest arguments+

means the same as

F &rest arguments

but introduces the additional requirement that there be at least one argument.

1.4.4.20.4 Return values in the “Syntax” Section

An evaluation arrow “+” precedes a list of values to be returned. For example:

Fabc --rx

indicates that F is an operator that has three required parameters (i.e., a, 6, and c) and that
returns one value (i.e., x). If more than one value is returned by an operator, the names of the
values are separated by commas, as in:

Fabc - x y. if

1.4.4.20.4.1 No Arguments or Values in the ‘Syntax” Section

If no arguments are permitted, or no values are returned, a special notation is used to make this
more visually apparent. For example,

F (no arguments) + (no values)

indicates that F is an operator that accepts no arguments and returns no values.

1.4.4.20.4.2 Unconditional Transfer of Control in the “Syntax” Section

Some operators perform an unconditional transfer of control, and so never have any return values.
Such operators are notated using a notation such as the following:

Fabc -1

1.4.4.21 The “Valid Context” Section of a Dictionary Entry
This information is used by dictionary entries such as “Declarations” in order to restrict the
context in which the declaration may appear.

A given “Declaration” might appear in a declarafion (i.e., a declare ezpression), a proclamation
(i.e., a declaim or proclaim form), or both.

l-22 introduction

Programming Language-Common Lisp ANSI X3.226-1994

1.4.4.22 The “Value Type” Section of a Dictionary Entry

This information describes any type restrictions on a dynamic variable.

Except as explicitly specified otherwise, the consequences are undefined if this type restriction is
violated.

Introduction l-23

ANSI X3.226-1994 Programming Language--Common Lisp

1.5 Conformance
This standard presents the syntax and semantics to be implemented by a conforming implemenia-
iion (and its accompanying documentation). In addition, it imposes requirements on conforming
progmms.

1.5.1 Conforming Implementations
A conforming impJementation shall adhere to the requirements outlined in this section.

1.5.1.1 Required Language Features

A conforming implementation shall accept all features (including deprecated features) of the
language specified in this standard, with the meanings defined in this standard.

A conforming implementafion shall not require the inclusion of substitute or additional lan-
guage elements in code in order to accomplish a feature of the language that is specified in this
standard.

1.5.1.2 Documentation of Implementation-Dependent Features

A conforming implementaiiou shall be accompanied by a document that provides a definition of
all implementation-defined aspects of the language defined by this specification.

In addition, a conforming implementation is encouraged (but not required) to document items
in this standard that are identified as implementation-dependent, although in some cases such
documentation might simply identify the item’as “undefined.”

1.5.1.3 Documizntation of Extensions

A conforming implementation shall be accompanied by a document that separately describes any
features accepted by the implementation that are not specified in this standard, but that do not
cause any ambiguity or contradiction when added to the language standard. Such extensions shall
be described as being “extensions to Common Lisp as specified by ANSI ((standard number)).”

-

1.5.1.4 Treatment of Exceptional Situations
A conforming implementation shall treat exceptional situations in a manner consistent with this
specification.

1.5.1.4.1 Resolution of Apparent Conflicts in Exceptional Situations

If more than one passage in this specification appears to apply to the same situation but in
conflicting ways, the passage that appears to describe the situation in the most specific way
(not necessarily the passage that provides the most constrained kind of error detection) takes
precedence.

1.5.1.4.1.1 Examples of Resolution of Apparent Conflicts in Exceptional Situations

Suppose that function foo is a member of a set S of funciions that operate on numbers. Suppose
that one passage states that an error must be signaled if any function in S is ever given an
argument of 17. Suppose that an apparently conflicting passage states that the consequences are
undefined if foe receives an argument of II. Then the second passage (the one specifically about
foe) would dominate because the description of the situational context is the most specific, and it
would not be required that foo signal an error on an argument of 17 even though other functions
in the set S would be required to do so.

l-24 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

1.5.1.5 Conformance Statement

A conforming implemenfaiion shall produce a conformance statement as a consequence of using
the implementation, or that statement shall be included in the accompanying documentation. If
the implementation conforms in all respects with this standard, the conformance statement shall
be

“((implementation)) conforms with the requirements of ANSI ((sfandard number))”

If the implementation conforms with some but not all of the requirements of this standard, then
the conformance statement shall be

“((Implementation)) conforms with the requirements of ANSI ((standard number)) with the
following exceptions: ((reference lo or compleie list of the requirements of fhe standard with
which the implementation does not conform)).”

1.5.2 Conforming Programs
Code conforming with the requirements of this standard shall adhere to the following:

1. Conforming code shall use only those features of the language syntax and semantics that
are either specified in this standard or defined using the extension mechanisms specified
in the standard.

2. Conforming code may use implementation-dependent features and values, but shall not
rely upon any particular interpretation of these features and values other than those that
are discovered by the execution of code.

3. Conforming code shall not depend on the consequences of undefined or unspecified
situations.

4. Conforming code does not use any constructions that are prohibited by the standard.

5. Conforming code does not depend on extensions included in an implementation.

1.5.2.1 Use of Implementation-Defined Language Features

Note that conforming code may rely on particular implementation-defined values or features.
Also note that the requirements for conforming code and conforming implementations do not
require that the results produced by conforming code always be the same when processed by a
conforming implementation. The results may be the same, or they may differ.

Conforming code may run in all conforming implementations, but might have allowable
implementalion-defined behavior that makes it non-portable code. For example, the following
are examples of forms that are conforming, but that might return different values in different
implementations:

(evenp most-positive-fixrum) 4 implementation-dependent
(random) + implementation-dependent
(> lambda-parameters-lirit 93) -) implementaiion-dependent
(char-naae #\A) + implementation-dependent

1.5.2.1.1 Use of Read-Time Conditionals

Use of X+ and t- does not automatically disqualify a program from being conforming. A program
which uses t+ and #- is considered conforming if there is no set of feafures in which the program

Introduction l-25

ANSI X3.226-1994 Programming Language-Common Lisp

would not be conforming. Of course, conforming programs are not necessarily working programs.
The following program is conforming:

(defun foo 0
#+ACHE (aue:initielize-something)
(print ‘hello-there))

However, this program might or might not work, depending on whether the presence of the
feature ACHE really implies that a function named ac=e:initialise-something is present in the en-
vironment. In effect, using t+ or t- in a conforming program means that the variable *features*
becomes just one more piece of input data to that program. Like any other data coming into a
program, the programmer is responsible for assuring that the program does not make unwar-
ranted assumptions on the basis of input data.

1.5.2.2 Character Set for Portable Code

Portable code is written using only standard characters.

l-26 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

1.6 Language Extensions
A language extension is any documented implementation-defined behavior of a defined name
in this standard that varies from the behavior described in this standard, or a documented
consequence of a situation that the standard specifies as undefined, unspecified, or extendable
by the implementation. For example, if this standard says that “the results are unspecified,” an
extension would be to specify the results.

If the correct behavior of a program depends on the results provided by an extension, only
implementations with the same extension will execute the program correctly. Note that such a
program might be non-conforming. Also, if this standard says that “an implementation may be
extended,” a conforming, but possibly non-portable, program can be written using an extension.

An implementation can have extensions, provided they do not alter the behavior of conforming
code and provided they are not explic.itly prohibited by this standard.

The term “extension” refers only to extensions available upon startup. An implementation is free
to allow or prohibit redefinition of an extension.

The following list contains specific guidance to implementations concerning certain types of
extensions.

Extra return values

An implementation must return exactly the number of return values specified by this
standard unless the standard specifically indicates otherwise.

Unsolicited messages

No output can be produced by a function other than that specified in the standard or due
to the signaling of conditions detected by the function.

Unsolicited output, such as garbage collection notifications and autoload heralds, should
not go directly to the stream that is the value of a stream variable defined in this stan-
dard, but can go indirectly to terminal I/O by using a synonym stream to *terminal-io*.

Progress reports from such functions as load and compile are considered solicited, and
are not covered by this prohibition.

Implementation of macros and special forms

Macros and special operators defined in this standard must not be functions.

Introduction l-27

ANSI X3.226-1994 Programming Language-Common Lisp

1.7 Language Subsets
The language described in this standard contains no subsets, though subsets are not forbidden.

For a language to be considered a subset, it must have the property that any valid program in
that language has equivalent semantics and will run directly (with no extralingual pre-processing,
and no special compatibility packages) in any conforming implemeniafion of the full language.

A language that conforms to this requirement shall be described as being a “subset of Common
Lisp as specified by ANSI ((siandard number)).”

1-28 Introduction

Programming Language--Common Lisp ANSI X3.226-1994

1.8 Deprecated Language Features
Deprecated language features are not expected to appear in future Common Lisp standards, but
are required to be implemented for conformance with this standard; see Section 1.5.1.1 (Required
Language Features).

Conforming programs can use deprecated features; however, it is considered good programming
style to avoid them. It is permissible for the compiler to produce style warnings about the use of
such features at compile time, but there should be no such warnings at program execution time.

1.8.1 Deprecated Functions
The functions in Figure l-2 are deprecated.

assoc-if-not nsubst-if-not
count-if-not nsubstitute-if-not
delete-if-not position-if-not
And-if-not provide
gentemp rassoc-if-not
member-if-not remove-if-not

Figure l-2. Deprecated Functions

require
set
subst-if-not
substitute-if-not

1.8.2 Deprecated Argument Convent ions
The ability to pass a numeric argument to gensym has been deprecated.

The :test-not argument to the functions in Figure l-3 are deprecated.

1.8.3 Deprecated Variables

adjoin
assoc
count
delete
delete-duplicates
And
intersection
member
mismatch
nintersection

nset-difference
nset-exclusive-or
nsublis
nsubst
nsubstitute
mmion
position
raseoc
remove
remove-dunlicates

search
set-difference
set-exclusive-or
sublis
subsetp
subst
substitute
tree-equal
union

Figure l-3. Functions with Deprecated :TEST-NOT Arguments

The use of the situation names compile, load, and eval in eval-when is deprecated.

The variable *modules* is deprecated.

1.8.4 Deprecated Reader Syntax
The xs reader macro forces keyword names into the KEYYORD package; see Section 2.4.8.13 (Sharp
sign S). This feature is deprecated; in the future, keyword names will be taken in the package
they are read in, so symbols that are actually in the KEYWORD package should be used if that is
what is desired.

Introduction l-29

ANSI X3.226-1994 Programming Language-Common Lisp

1.9 Symbols in the COMMON-LISP Package
The figures on the next twelve pages contain a complete enumeration of the 978 eziernal symbols
in the COIMON-LISP package.

&allow-other-keys
&aux
&body
&environment
&key
&optional
&rest
&whole
*
**

break-on-signals
compile-Ale-pathname
compile-Ale-truename
compile-print
compile-verbose
debug-io
debugger-hook
default-pathname-defaults
error-output
features
gensym-counter
load-pathname
load-print
load-truename
load-verbose
macroexpand-hook
modules
package
print-array
print-base
print-case
print-circle
print-escape
print-gensym
print-length
print-level
print-lines

print-miser-width
print-pprint-dispatch
print-pretty
print-radix
print-readably
print-right-margin
query-io
random-state
read-base
read-default-float-format
read-eval
read-suppress
readtable
standard-input
standard-output
terminal-io
trace-output
+
++
+++

;

::/
/=
1+
l-
<
<=
=
>
>=
abort
abs
acons
aces
acosh
add-method

Figure l-4. Symbols in the COMMON-LISP package (part one of twelve).

l-30 Introduction

Programming Language-Common Lisp ANSI X3.226- 1994

adjoin
adjust-array
adjustable-array-p
allocate-instance
alpha-char-p
alphanumericp
and
append
apply
apropos
apropos-list
aref
arithmetic-error
arithmetic-error-operands
arithmetic-error-operation
array
array-dimension
array-dimension-limit
array-dimensions
array-displacement
array-element-type
array-ha&W-pointer-p
array-in-bounds-p
array-rank
array-rank-limit
array-row-major-index
array-total-size
array-total-size-limit
arrayp
ash
asin
asinh
assert
assoc
assoc-if
assoc-if-not
atan
atanh

atom
base-char
base-string
bignum
bit
bit-and
bit-audcl
bit-andc2
bit-eqv
bit-ior
bit-nand
bit-nor
bit-not
bit-orcl
bit-orc2
bit-vector
bit-vector-p
bit-xor
block
boole
booie-1
boole-2
boole-and
boole-andcl
boole-andc2
boole-cl
boole-ct
boole-clr
boole-eqv
boole-ior
boole-nand
boole-nor
boole-orcl
boole-orc2
boole-set
boole-xor
boolean
both-case-p

boundp
break
broadcast-stream
broadcast-stream-streams
built-in-class
butlast
byte
byte-position
byte-size
CtiWiCW

caaadr
CUiU

caadar
caaddr
caadr
CW

cadaar
cadadr
cadar
caddar
cadddr
caddr
cadr
call-arguments-limit
call-method
call-next-method
CIU

case
catch
cease
cdaaar
cdaadr
cdaar
cdadar
cdaddr
cdadr
cdar
cddaar

Figure l-5. Symbols in the COMMON-LISP package (part two of twelve).

Introduction 1-31

ANSI X3.226-1994 Programming Language-Common Lisp

cddadr
cddar
cdddar
cddddr
cdddr
cddr
Cdr

ceiling
ceil-error
ceil-error-name
terror

change-class
char
char-code
char-code-limit
char-downcase
char-equal

char-greaterp
char-i&
char-lessp
char-name
char-not-equal
char-not-greaterp
char-not-lessp
char-upcase
C&U/=
t&&W<
char<=
char=
char>
char>=
character
characterp
check-type
CiS

class
clase-name
class-of

clear-input
clear-output
close
&hash
code-char
coerce
compilation-speed
compile
compilc&le
compileAle-pathname
compiled-function
compiled-function-p
compiler-macro
compiler-macro-function
complement
complex
complexp
compute-applicable-methods
compute-restarts
concatenate
concatenated-stream
concatenated-stream-streams
cond
condition
conjugate
cons
consp
constantly
constantp
continue
control-error
copy-alist
copy-list
copy-pprint-dispatch
copy-readtable
COPY-W
copy-structure
copy-symbol

copy-tree
COB

cash
count
count-if
count-if-not
ctypecase
debug
decf
declaim
declaration
declare
decodefloat
decode-universal-time
defclass
defconstant
defgeneric
define-compiler-macro
define-condition
define-method-combination
define-modify-macro
define-setf-expander
define-symbol-macro
defmacro
defmethod
defpackage
defparameter
defsetf
defstruct
defiype
defim
defvar
delete
delete-duplicates
delete-ffle
delete-if
delete-if-not
delete-package

Figure 1-6. Symbols in the COMMONLLIgP package (part three of twelve).

l-32 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

denominator
deposit-field
describe
describe-object
destructuring-bind
digit-char
digit-char-p
directory
directory-namestring
disassemble
division-by-zero
do
do*
do-all-symbols
do-external-symbols
do-symbols
documentation
dolist
dotimes
double-float
double-float-epsilon
double-float-negative-epsilon
dpb
dribble
dynamic-extent
ecase
echo-stream
echo-stream-input-stream
echo-stream-output-stream
ed
eighth
elt
encode-universal-time
end-of- file
endp
enough-name&ring
ensure-directories-exist
ensure-generic-function

eq
eql
--Pal
esualp
error
etypecase
eval
eval-when
evenp
every
exp
export
expt
extended-char
fboundp
fceiling
fdeflnition
%loor
fifth
file-author
Ale-error
f&-error-pathname
Ale-length
fl~namestring
Ale-position
Ale-stream
Ale-string-length
Ale-write-date
flu
IIll-pointer
And
And-all-symbols
And-class
And-if
find-if-not
Rnd-method
And-package
And-restart

Figure l-7. Symbols in the COMMON-LISP package (part four of twelve).

Introduction l-33

ANSI X3.226-1994 Programming LanguageCommon Lisp

And-symbol
finish-output
first
fhmm
fiet
float
float-digits
float-precision
float-radix
float-sign
floating-point-inexact
floating-point-invalid-operation
floating-point-overflow
floating-point-underflow
floatp
floor
fmakunbound
force-output
format
formatter
fourth
fresh-line
fround
ftruncate
ft me
funcall
function
function-keywords
function-lambda-expression
functionp
gcd
geueric-function
g-m
gentemp
get
get-decoded-time
get-dispatch-macro-character
get-internal-real-time

get-internal-run-time
get-macro-character
get-output-stream-string
get-properties
get-setf-expansion
get-universal-time
getf
gethash
go
graphic-char-p
handler-bind
handler-case
hash-table
hash-table-count
hash-table-p
hash-table-rehash-size
hash-table-rehash-threshold
hash-table-size
hash-table-test
host-name&ring
identity
if
ignorable
ignore
ignore-errors
imagpart
import
in-package
incf
initialize-instance
inline
input-stream-p
inspect
integer
integer-decode-float
integer-length
integerp
interactive-stream-p

Figure 1-8. Symbols in the COMMON-LISP package (part Ave of twelve).

l-34 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

intern
internal-time-units-per-second
intersection
invalid-method-error
invoke-debugger
invoke-restart
invoke-restart-interactively
isqrt
keyword
keywordp
labels
lambda
lambda-list-keywords
lambda-parameters-limit
la&
lcm
ldb
ldb-test
ldiff
least-negative-double-float
least-negative-long-float
least-negative-normalized-double-fleet
least-negative-normalized-long-float
least-negative-normalized-short-float
least-negative-normalized-single-float
least-negativeshort-float
least-negative-single-float
least-positive-double-float
least-positive-long-float
least-positive-normalized-double-float
least-positive-normalized-long-float
least-positive-normallzed-short-float
least-positive-normalized-single-float
least-positive-short-float
least-positive-single-float
length
let
let*

lispimplementation-type
lispimplementation-version
list
list*
list-all-packages
list-length
listen
listp
load
load-logical-pathname-translations
load-time-value
locally
1%
logand
logandcl
logandca
logbitp
logcount
1~lwIv
logical-pathname
logical-pathname-translations
logior
lognand
lognor
lognot
logorcl
logorc2
logtest
logxor
long-float
long-float-epsilon
long-float-negative-epsilon
long-site-name
loop
loopflnish
lower-case-p
machine-instance
machine-type

Figure 1-9. Symbols in the COMMON-LISP package (part six of twelve).

Introduction l-35

ANSI X3.226-1994 Programming Language-Common Lisp

machine-version
macrc&mction
macroexpand
macroexpand-l
macrolet
rtlalearray
make-broadcast-stream
make-concatenated-stream
make-condition
malce-dispatch-macro-character
malce-e&-stream
make-hash-table
mahe-instance
mah+instancef+obsolete
make-list
make-load-form
make-load-form-saving-slots
make-method
make-package
makepathname
make-random-state
make-sequence
make-string
make-string-input-stream
mahe-string-output-stream
make-symbol
make-synonym-stream
make-two-way-stream
makunbound
n=P
map-into
-PC
mapcan
n=Pcar
mapcon
maphash
-pl
maplist

mask-field
Iuax
member
member-if
member-if-not
merge
merge-pathnames
method
method-combination
method-combination-error
method-qualifiers
mln
mimlsp
mismatch
mod
most-negative-double-float
most-negative-flxnum
most-negative-long-float
most-negative-short-float
most-negative-singh+float
most-positive-double-float
most-positive-flxnum
most-positive-long-float
most-positive-short-float
most-positive-single-float
mufB*warning
multiple-value-bind
multiple-value-call
multiple-value-list
multiple9value-progl
multiple-value-setq
multiple-values&nit
Mule-char
namestring
nbutlast
nconc
next-method-p
nil

Figure l-10. Symbols in the COMMON-LISP package (part seven of twelve).

l-36 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

nintersection
ninth
no-applicable-method
no-next-method
not
notany
notevery
notinline
nreconc
nreverse
nset-difference
nset-exclusive-or
n&ring-capitalize
n&ring-downcase
n&ring-upcase
nsublis
nsubst
nsubst-if
nsubst-if-not
nsubstitute
nsubstitute-if
nsubstitute-if-not
nth
nth-value
nthcdr
null
number
numberp
numerator
nunion
oddp
open
open-stream-p
optimize
or
otherwise
output-stream-p
package

paclrags+error
package-error-package
package-name
pdUkgCt4llcknames
package-shadowing-symbols
package-use-list
package-used-by-list
~ackageP
palrlls
parse-error
parse-integer
parse-namestring
pathname
pathmum+device
pathname-directory
pathname-host
pathname-match-p
pathnam*name
pathname-type
pathname-version
pathnamep
peek-char
phase
Pi
PlusP
POP
position
position-if
position-if-not
pprint
pprint-dispatch
pprint-exit-if-list-exhausted
pprint-fill
pprint-indent
pprint-liuear
pprint-logical-block
pprint-newline
pprint-pop

Figure l-11. Symbols in the COMMON-LISP package (part eight of twelve).

Introduction l-37

ANSI X3.226-1994 Programming Language-Common Lisp

pprint-tab
pprint-tabular
prinl
prinl-t*string
print
print-to-string
print
print-not-readable
print-not-readable-object
print-object
print-unreadable-object
probe-file
proclaim
Prog
prw*
wool
pro@
Prots
program-error
progv
provide
psetf
P=tq
p-h
pushnew
quote
random
random-state
random-state-p
rassoc
rassoc-if
rassoc-if-not
ratio
rational
rationalize
rationalp
read
read-byte

read-char
read-char-no-hang
read-delimited-list
read-from-string
read-line
read-preserving-whitespace
read-sequence
reader-error
readtable
readtable-case
readtablep
real
realp
realpart
reduce
reinitialize-instance
rem
remf
remhash
remove
remove-duplicates
remove-if
remove-if-not
remove-method
remprop
rename-flle
renamepackage
replace
require
rest
restart
restart-bind
restart-case
restart-name
return
return-from
revappend
reverse

Figure 1-12. Symbols in the COMMON-LISP package (part nine of twelve).

l-38 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

L

room
rotatef
round
row-major-aref
rplaca
rplacd
safety
satisfles
sbit
scale-float
schar
search
second
sequence
serious-condition
set
set-difference
set-dispatch-macro-character
set-exclusive-or
set-macro-character
set-pprint-dispatch
set-syntax-from-char
setf
setq
seventh
shadow
shadowing-import
shared-initialize
shiftf
short-float
short-float-epsilon
short-float-negative-epsilon
short-site-name
signal
signed-byte
Signum
simple-array
simple-base-string

simple-bit-vector
simple-bit-vector-p
simple-condition
simple-condition-format-arguments
simple-condition-format-control
simple-error
simple-string
simple-string-p
simple-type-error
simple-vector
simple-vector-p
simple-warning
sin
single-float
single-float-epsilon
single-float-negative-epsilon
sinh
sixth
sleep
slot-boundp
slot-existf+p
slot-makunbound
slot-missing
slot-unbound
slot-value
software-type
software-version
some
sort
space
special
special-operator-p
speed
sqrt
stable-sort
standard
standard-char
standard-char-p

Figure 1-13. Symbols in the COMMON-LISP package (part ten of twelve).

Introduction l-39

ANSI X3.226-1994 Programming Language-Common Lisp

standard-class
standard-generic-function
standard-method
standard-object
step
storage-condition
store-value
stream
stream-element-type
stream-error
stream-error-stream
stream-external-format
streamp
string
string-capitalize
string-downcase
string-equal
string-greaterp
string-left-trim
string-lessp
string-not-equal
string-not-greaterp
string-not-lessp
string-right-trim
string-stream
string-trim
string-upcase
string/=
string<
string<=
string=
string>
string>=
stringp
structure
structure-class
structure-object
style-warning

sublis
SUbseq
sub&p
subst
sub&-if
sub&-if-not
substitute
substitute-if
subetitute-if-not
subtypep
svref
sxhash
symbol
symbol-function
symbol-macrolet
symbol-name
symbol-package
symbol-plist
symbol-value
symbolp
synonym-stream
synonym-stream-symbol
t
tagbody
tailp
tan
tauh
tenth
terpri
the
third
throw
time
trace
translate-logical-pathname
translate-pathname
tree-equal
truename

Figure 1-14. Symbols in the COMMON-LISP package (part eleven of twelve).

l-40 Introduction

Programming Language-Common Lisp ANSI X3.226-1994

truncate
two-way-stream
two-way-stream-input-stream
two-way-stream-output-stream
trpe
type-error
type-error-datum
type-error-expected-type
type-of
typecase
trpep
unbound-slot
unbound-slot-instance
unbound-variable
undefined-function
unexport
unintern
union
unless
unread-char
unsigned-byte
untrace
unuse-package
unwind-protect
update-instance-for-different-class
update-instance-for-redefined-class
upgraded-array-element-type
upgraded-complex-part-type
upper-case-p
use-package
use-value
user-homedir-pathname
values

values-list
variable
vector
vector-pop
vector-push
vector-push-extend
vectorp
W&Ull

warning
when
wild-pathname-p
with-accessors
with-compilation-unit
with-condition-restarts
with-hash-table-iterator
with-input-from-string
with-open-flle
with-open-stream
with-output-to-string
with-package-iterator
with-simple-restart
with-slots
with-standard-i&syntax
write
write-byte
write-char
write-line
write-sequence
write-string
write-to-string
y-or-n-p
yes-or-no-p
zerop

Figure 1-15. Symbols in the COMMON-LISP package (part twelve of twelve).

Introduction 141

ANSI X3.226-1994 Programming Language-Common Lisp

l-42 Introduction

ANSI X3.226-1994

Programming Language-Common Lisp

2. Syntax

ANSI X3.226-1994 Programming Language-Common Lisp

ii Syntax

Programming Language-Common Lisp ANSI X3.226-1994

2.1 Character Syntax
The Lisp reader takes choructers from a stream, interprets them as a printed representation of an
object, constructs that object, and returns it.

The syntax described by this chapter is called the standard syntax. Operations are provided by
Common Lisp so that various aspects of the syntax information represented by a readtable can be
modified under program control; see Chapter 23 (Reader). Except as explicitly stated otherwise,
the syntax used throughout this document is standard syntaz.

2.1.1 Readtables
Syntax information for use by the Lisp reader is embodied in an object called a readtable.
Among other things, the readtable contains the association between characters and syntaz types.

Figure 2-l lists some defined names that are applicable to readtables.

readtable
copy-readtable
get-dispatch-macro-character
get-macro-character
make-dispatch-macro-character

readtable-case
readtablep
set-dispatch-macro-character
set-macrc+cbaracter
set-syntax-from-char

Figure 2-l. Readtable deflned names

2.1.1.1 The Current Readtable

Several readtables describing different syntaxes can exist, but at any given time only one, called
the current readtable, affects the way in which ezprcssionsr are parsed into objects by the Lisp
reader. The current readtable in a given dynamic environment is the value of *readtable* in that
environment. To make a different readtable become the current readtable, *readtable* can be
assigned or bound.

2.1.1.2 The Standard Readtable
The standard readtable conforms to standard syntaz. The consequences are undefined if
an attempt is made to modify the standard readtable. To achieve the effect of altering or ex-
tending standard syntaz, a copy of the standard readtable can be created; see the function
copy-readtable.

The readtable case of the standard readtable is :upcase.

2.1.1.3 The Initial Readtable
The initial readtable is the readtable that is the current readtable at the time when the Lisp
image starts. At that time, it conforms to standard syntax. The initial readtable is distinct from
the standard readtable. It is permissible for a conforming program to modify the initial reodtable.

Syntax 2-l

ANSI X3.226-1994 Programming Language-Common Lisp

2.1.2 Variables that affect the Lisp Reader
The Lisp reader is influenced not only by the curreni readiable, but also by various dynamic
variables. Figure 2-2 lists the variables that influence the behavior of the Lisp reader.

package *read-default-float-format*
read-base *read-suppress*

Figure 2-2. Variables that influence the Lisp reader.

readtable

2.1.3 Standard Characters
All implementations must support a character repertoire called standard-char; characters that
are members of that repertoire are called standard characters.

The standard-char repertoire consists of the non-graphic character newline, the graphic charac-
ter space, and the following additional ninety-four graphic characiers or their equivalents:

Graphic ID Glyph
LAO1 a
LAO2 A
LB01 b
LB02 B
LCOl C

LCO2 C
LDOl d
LD02 D
LEO1

; LEO2
LFOl f
LF02 F
LGOl g
LG02 G
LHOl h
LH02 H
LIOl

; LIO2
LJOl j
LJ02 J
LKOl k
LK02 K
LLOl 1
LLO2 L
LMOl m
LM02 n

Description Graphic ID Glyph
small a LNOl n
capital A LN02 N
small b LOO1 0
capital B LOO2 0
small c LPOl P
capital C LPO2 P
small d LQOl P
capital D LQ02 9
small e LROl r
capital E LR02 R
small f LSOl s
capital F LSO2 S
small g LTOl t
capital G LT02 T
small h LUOl U

capital H LUO2 U
small i LVOl V

capital I LVO2 v
small j LWOl P
capital J LWO2 Y
small k LX01 X

capital K LX02 X
small 1 LYOl Y
capital L LYO2 Y
small m LZOl z
capital M LZO2 Z

Description
small n
capital N
small 0
capital 0
small p
capital P
small q
capital Q
small r
capital R
small 8
capital S
small t
capital T
small u
capital U
small v
capital V
small w
capital W
small x
capital X
small y
capital Y
small 2
capital Z

Figure 2-3. Standard Character Subrepertoire (Part 1 of 3: Latin Characters)

2-2 Syntax

Programming LanguageCommon Lisp ANSI X3.226-1994

I Graphic ID Glyph Description Graphic ID Glyph Description
ND01 1 digit 1 ND06 6 digit 6
ND02 2 digit 2 ND07 7 digit 7
ND03 3 digit 3 ND08 8 digit 8
ND04 4 digit 4 ND09 9 digit 9
ND05 5 digit 5 ND10 0 digit 0

Figure 2-4. Standard Character Subrepertoire (Part 2 of 3: Numeric Characters)

Graphic ID
SPO2
SC03
SPO4
SPO5
SPO6
SPO7
SP08
SPO9
SPlO
SPll
SP12
SP13
SP14
SP15
SAOl
SA03
SA04
SA05
SMOl
SM02
SM03
SM04
SM05
SM06
SM07
SM08
SMll
SM13
SM14
SD13
SD15
SD19

Glyph
!
%
I,
,
(
1
.

;

:
?
+
<
=
>

r.
0
+
a
C

:
I
I
)
‘
A

Description
exclamation mark
dollar sign
quotation mark, or double quote
apostrophe, or [single] quote
left parenthesis, or open parenthesis
right parenthesis, or close parenthesis
comma
low line, or underscore
hyphen, or minus [sign]
full stop, period, or dot
solidus, or slash
colon
semicolon
question mark
plus [sign]
less-than [sign]
equals [sign]
greater-than [sign]
number sign, or sharp[sign]
percent [sign]
ampersand
asterisk, or star
commercial at, or at-sign
left [square] bracket
reverse solidus, or backslash
right [square] bracket
left curly bracket, or left brace
vertical bar
right curly bracket, or right brace
grave accent, or backquote
circumflex accent
tilde

Figure 2-5. Standard Character Subrepertoire (Part 3 of 2~ Special Characters)

The graphic IDS are not used within Common Lisp, but are provided for cross reference purposes
with IS0 6937/2. Note that the first letter of the graphic ID categorizes the character as follows:
L-Latin, N-Numeric, S-Special.

2.1.4 Character Syntax Types
The Lisp reader constructs an object from the input text by interpreting each character according
to its synlaz type. The Lisp reader cannot accept as input everything that the Lisp printer

Syntax 2-3

ANSI X3.226-1994 Programming Language-Common Lisp

produces, and the Lisp reader has features that are not used by the Lisp printer. The Lisp reader
can be used as a lexical analyzer for a more general user-written parser.

When the Lisp reader is invoked, it reads a single character from the input stream and dispatches
according to the syntax type of that character. Every character that can appear in the input
stream is of one of the syniaz types shown in Figure 2-6.

consiituenl macro character
invalid muliiple escape

Figure 2-6. Poaaible Character Syntex Types

single escape
whilespace

The synlaz iype of a chamcler in a readfable determines how that character is interpreted by the
Lisp reader while that readtable is the curnni readtable. At any given time, every character has
exactly one syntat type.

Figure 2-7 lists the synlaz iype of each character in standard syniaz.

character syntax type
Backspace consMueni
Tab whitespacep
Newline whitespaces
Linefeed whitespace
Page whitespace
Return whitespacez
Space whitespace
! consiiiuenP

;&
terminating macro char
non-terminating macro char

% cons2iluent
% condi2uenl
8 constituent

;
terminating macro char
terminating macro char

) terminating macro char

:
constituent
constituent
terminating macro char
constituent
constituent
constituent

character syntax type
o-9 consti2uen2

con.Muent
I terminating macro char
C constiluent
= cons2ituent
> consli2uent
? constiiuent *

consti2ueni
i-Z consMuent
c consMuenl*

single escape
: constituent*
A constiiuent

constituent
‘ terminating macro char
a-z consiiiuen2
< constituent*

:
multiple escape
constituent*
constiiuent

Rubout condituent

Figure 2-7. Character Syntex Types in Standard Syntax

The characters marked with an asterisk (*) are initially consliiuents, but they are not used in any
standard Common Lisp notations. These characters are explicitly reserved to the programmer. -
is not used in Common Lisp, and reserved to implementors. 3 and X are alphabetic2 chanac2ers,
but are not used in the names of any standard Common Lisp defined names.

Whitespace characters serve as separators but are otherwise ignored. Consiituent and escape
characters are accumulated to make a token, which is then interpreted as a number or symbol.
Macro characters trigger the invocation of functions (possibly user-supplied) that can perform
arbitrary parsing actions. Macro characters are divided into two kinds, terminating and non-
terminating, depending on whether or not they terminate a token. The following are descriptions
of each kind of syntaz type.

2-4 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

2.1.4.1 Constituent Characters

Constituent characters are used in tokens. A token is a representation of a number or a symbol.
Examples of constituent characters are letters and digits.

Letters in symbol names are sometimes converted to letters in the opposite case when the name
is read; see Section 23.1.2 (Effect of Readtable Case on the Lisp Reader). Case conversion can be
suppressed by the use of single escape or multiple escape characters.

2.1.4.2 Constituent Traits

Every character has one or more constituent traits that define how the character is to be inter-
preted by the Lisp reader when the character is a constituent character. These constituent traits
are alphabeticz, digit, package marker, plus sign, minus sign, dot, decimal point, ratio marker,
ezponent marker, and invalid. Figure 2-8 shows the constituent traits of the standard chamcters
and of certain semi-standard characters; no mechanism is provided for changing the constituent
trait of a character. Any character with the alphadigit constituent trait in that figure is a digit
if the current input base is greater than that character’s digit value, otherwise the character is
alphabetics. Any character quoted by a single escape is treated as an alphabetic2 constituent,
regardless of its normal syntax.

Syntax 2-5

ANSI X3.226-1994 Programming Language-Common Lisp

constituent traits
character
Backspace invalid
Tab invalid*
Newline invalid*
Linefeed invalid*
Page invalid*
Return invalid*
Space invalid*
! alphabeticz

;&
alphabetics*
alphabeticz*

$ alphabet&
% alphabetic2
& alphabetic2

I

alphabetics*
alphabeticz*
alphabeticz*

l alphabetic2

b-9
alphabetic2*
alphadigit
package marker

I alphabeticz*
< alphabeticz
= alphabeticz
> alphabetic2
? alphabetic2
a alphabetic2
C alphabetic2

:
alphabeticz*
alphabetic2

h alphabetic2
alphabetic2

‘ alphabetics*
I alphabeticz*

alphabet&

constituent traits
character

alphabetic2
: alphabeticz
+ alphabeticz, plus sign

alphabetics, minus sign

i
alphabeticz, dot, decimal point
alphabeticz, ratio marker
alphadigit

it:: alphadigit
c, c alphadigit
D, d alphadigit, double-float exponent marker
E, e alphadigit, float ezponent marker
F, f alphadigit, single-float exponent marker
Gv g alphadigit
H, h alphadigit
I, i alphadigit
J,j alphadigit
Ii, k alphadigit
L, 1 alphadigit, long-float exponent marker
M, m alphadigit
N, n alphadigit
0, 0 alphadigit

alphadigit
alphadigit gl
alphadigit

s,‘s alphadigit, short-float ezponent marker
‘I’, t alphadigit
u, u alphadigit
v, ” alphadigit
w, w alphadigit
x, x alphadigit
y, Y alphadigit
z, 2 alphadigit
Rubout invalid

Figure 2-8. Constituent Traits of Standard Characters and Semi-Standard Characters

The interpretations in this table apply only to characters whose syntax type is constituent.
Entries marked with an asterisk (*) are normally shadowed2 because the indicated characters are
of syntaz type whitespacez, macro character, single escape, or multiple escape; these constituent
traits apply to them only if their syntax types are changed to constituent.

2.1.4.3 Invalid Characters

Characters with the constituent trait invalid cannot ever appear in a token except under the
control of a single escape character. If an invalid character is encountered while an object is
being read, an error of type reader-error is signaled. If an invalid character is preceded by a
single escape character, it is treated as an alphabetic2 constituent instead.

2-6 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

2.1.4.4 Macro Characters

When the Lisp reader encounters a macro character on an input stream, special parsing of
subsequent characters on the input stream is performed.

A macro character has an associated function called a reader macro function that imple-
ments its specialized parsing behavior. An association of this kind can be established or mod-
ified under control of a conforming program by using the functions set-macro-character and
set-dispatch-macrc+character.

Upon encountering a macro character, the Lisp reader calls its reader macro function, which
parses one specially formatted object from the input stream. The function either returns the
parsed object, or else it returns no values to indicate that the characters scanned by the function
are being ignored (e.g., in the case of a comment). Examples of macro characters are backquote,
single-quote, lefl-parenthesis, and right-parenthesis.

A macro character is either terminating or non-terminating. The difference between temainating
and non-terminating macro characters lies in what happens when such characters occur in the
middle of a token. If a non-terminating macro character occurs in the middle of a token,
the function associated with the non-terminating macro character is not called, and the non-
terminating macro character does not terminate the token’s name; it becomes part of the name
as if the macro character were really a constituent character. A termhating macro character
terminates any token, and its associated reader macro function is called no matter where the
character appears. The only non-terminating macro character in standard syntax is sharpsign.

If a character is a dispatching macro character Cl, its reader macro function is a function sup
plied by the implementation. This function reads decimal digit characters until a non-digit Cz is
read. If any digits were read, they are converted into a corresponding integer infix parameter P;
otherwise, the infix parameter P is nil. The terminating non-digit Cz is a character (sometimes
called a “sub-character” to emphasize its subordinate role in the dispatching) that is looked up
in the dispatch table associated with the dispatching macro character Cl. The reader macro
function associated with the sub-character CT, is invoked with three arguments: the stream, the
sub-character Cz, and the infix parameter P. For more information about dispatch characters, see
the function set-dispatch-macro-character.

For information about the macro characters that are available in standard syntax, see Section 2.4
(Standard Macro Characters).

2.1.4.5 Multiple Escape Characters
A pair of multiple escape characters is used to indicate that an enclosed sequence of characters,
including possible macro characters and whitespacez characters, are to be treated as alphabetic2
characters with case preserved. Any single escape and multiple escape characters that are to
appear in the sequence must be preceded by a single escape character.

Vertical-bar is a multiple escape character in standard syntax.

2.1.4.5.1 Examples of Multiple Escape Characters

;; The following examples assume the readtable case of *readtable*
; : and *print-case* are both :upcase.
(eq ‘abc ‘ABC) + true
(eq ‘abc ‘IABCI) -+ true
(eq ‘abc ‘alBlc) + true
(eq ‘abc ’ iabc I) --) fake

Syntax 2-7

ANSI X3.226-1994 Programming Language-Common Lisp

2.1.4.6 Single Escape Character

A single escape is used to indicate that the next character ia to be treated as an alphabetic2
character with its case preserved, no matter what the characfer is or which constituenf trails it
has.

Backslash is a single escape character in standard syntaz.

2.1.4.6.1 Examples of Single Escape Characters

:; The following examples assume the readtable case oi *readtable*
:; and sprint-case+ are both :upcase.
(eq 'abc ‘\A\B\C) --) irue
(eq 'abc 'a\Bc) + true
(eq 'abc '\ABC) + irue
(eq 'abc '\abc) + false

2.1.4.7 Whitespace Characters
Whitespacez characters are used to separate iokens.

Space and newline are whitespace characiers in siandard sydaz.

2.1.4.7.1 Examples of Whitespace Characters

(length '(this-that)) + 1
(length '(this - that)) + 3
(length '(a

b)) - 2
(+ 34) + 34
(+ 3 4) * 7

2-8 Syntax

Programming Languag~Common Lisp ANSI X3.226-1994

2.2 Reader Algorithm
This section describes the algorithm used by the Lisp reader to parse objects from an input
character stream, including how the Lisp reader processes macro characters.

When dealing with tokens, the reader’s basic function is to distinguish representations of symbols
from those of numbers. When a token is accumulated, it is assumed to represent a number if
it satisfies the syntax for numbers listed in Figure 2-9. If it does not represent a number, it is
then assumed to be a potential number if it satisfies the rules governing the syntax for a potential
number. If a valid token is neither a representation of a number nor a potential number, it
represents a symbol.

The algorithm performed by the Lisp reader is as follows:

1. If at end of file, end-of-file processing is performed as specified in read. Otherwise, one
character, x, is read from the input stream, and dispatched according to the syntaz type of x
to one of steps 2 to 7.

2. If x is an invalid character, an error of type reader-error is signaled.

3. If x is a whitespace character, then it is discarded and step 1 is reentered.

4. If x is a terminating or non-terminating macro character then its associated reader macro
function is called with two arguments, the input stream and x.

The reader macro function may read characters from the input stream; if it does, it will see
those characters following the macro character. The Lisp reader may be invoked recursively
from the reader macro function.

The reader macro function must not have any side effects other than on the input stream;
because of backtracking and restarting of the read operation, front ends to the Lisp reader
(e.g., “editors” and “rubout handlers”) may cause the wader macro function to be called
repeatedly during the reading of a single expression in which x only appears once.

The reader macro function may return zero values or one value. If one value is returned, then
that value is returned as the result of the read operation; the algorithm is done. If zero values
are returned, then step 1 is m-entered.

5. If x is a single escape character then the next character, y, is read, or an error of type
end-of-flle is signaled if at the end of file. y is treated as if it is a constituent whose only
constituent trait is alphabetics. y is used to begin a token, and step 8 is entered.

6. If x is a multiple escape character then a token (initially containing no characters) is begun
and step 9 is entered.

7. If x is a constituent Character, then it begins a token. After the token is read in, it will be
interpreted either as a Lisp object or as being of invalid syntax. If the token represents an
object, that object is returned as the result of the read operation. If the token is of invalid
syntax, an error is signaled. If x is a character with case, it might be replaced with the
corresponding character of the opposite case, depending on the readtable case of the current
readtable, as outlined in Section 23.1.2 (Effect of Readtable Case on the Lisp Reader). X is
used to begin a token, and step 8 is entered.

8. At this point a token is being accumulated, and an even number of multiple escape characters
have been encountered. If at end of file, step 10 is entered. Otherwise, a character, y, is read,
and one of the following actions is performed according to its syntaz type:

-- .--
Syntax 2-9

ANSI X3.226-1994 Programming Language-Common Lisp
c

. If y is a constituent or non-terminating macro character:

- If y is a characfer with case, it might be replaced with the corresponding
character of the opposite case, depending on the readtable case of the current
readfable, as outlined in Section 23.1.2 (Effect of Readtable Case on the Lisp
Reader).

- Y is appended to the token being built.
- Step 8 is repeated.

l If y is a single escape character, then the next character, I, is read, or an error of
type end-of-file is signaled if at end of file. Z is treated as if it is a consiitueni whose
only consliluent trait is alphabetics. Z is appended to the foken being built, and step
8 is repeated.

a If y is a multiple escape character, then step 9 is entered.

l If y is an invalid character, an error of type reader-error is signaled.

a If y is a terminating macro character, then it terminates the token. First the charac-
ier y is unread (see unread-char), and then step 10 is entered.

l If y is a whitespocez characier, then it terminates the token. First the character y is
unread if appropriate (see read-preserving-wbitespace), and then step 10 is entered.

9. At this point a token is being accumulated, and an odd number of multiple escape characters
have been encountered. If at end of file, an error of type end-of-file is signaled. Otherwise,
a character, y, is read, and one of the following actions is performed according to its syntat
type:

l If y is a constitueni, macro, or whiiespacez character, y is treated as a constituent
whose only constituent trait is alphabeticz. Y is appended to the token being built,
and step 9 is repeated.

l If y is a single escape character, then the next character, I, is read, or an error of
type end-of-ffle is signaled if at end of file. Z is treated as a constituent whose only
constituent trait is alphabeticz. Z is appended to the token being built, and step 9 is
repeated.

l If y is a multiple escape characier, then step 8 is entered.

l If y is an invalid character, an error of type reader-error is signaled.

10. An entire token has been accumulated. The object represented by the token is returned as the
result of the read operation, or an error of type reader-error is signaled if the token is not of
valid syntax.

T-iii syntax

Programming Language-Common Lisp ANSI X3.226-1994

2.3 Interpretation of Tokens

2.3.1 Numbers as Tokens
When a token is read, it is interpreted us a number or symbol. The token is interpreted as a
number if it satisfies the syntax for numbers specified in Figure 2-9.

I
numeric-token ::= linteger 1 lratio 1 lfloat
integer ::= [sign] {decimal-digit}+ decimal-point 1 Csignl {digit}+
ratio ::= [sign] {digit}+ slash {digit}+
float ::= [sign] {decimal-digit}* decimal-point {d&ma/-digit}+ [J exponent1

1 [sign] {decimal-digit}+ [decimal-point {decimaLdigit}*] 1 exponent
exponent ::= exponent-marker [sign] {digit}+ e

sign-a sign.
slash-a slash
decimal-point-a dot.
exponent-marker-an ezponent marker.
decimal-digit-a digit in radiz 10.
digit-a digit in the current input radiz.

Figure Z-9. Syntax for Numeric Tokens

2.3.1.1 Potential Numbers as Tokens

To allow implementors and future Common Lisp standards to extend the syntax of numbers, a
syntax for potential numbers is defined that is more general than the syntax for numbers. A token
is a potential number if it satisfies all of the following requirements:

1. The token consists entirely of digits, signs, ratio markers, decimal points (.), extension
characters (A or J, and number markers. A number marker is a letter. Whether a letter may
be treated as a number marker depends on context, but no letter that is adjacent to another
letter may ever be treated as a number marker. Ezponent markers are number markers.

2. The token contains at least one digit. Letters may be considered to be digits, depending on
the current input base, but only in tokens containing no decimal points.

3. The token begins with a digit, sign, decimal point, or extension character, but not a package
marker. The syntax involving a leading package marker followed by a potential number is not
well-defined. The consequences of the use of notation such as : I, : l/2, and :2A3 in a position
where an expression appropriate for reed is expected are unspecified.

4. The token does not end with a sign.

If a potential number has number syntax, a number of the appropriate type is constructed and re-
turned, if the number is representable in an implementation. A number will not be representable
in an implementation if it is outside the boundaries set by the implementation-dependent con-
stants for numbers. For example, specifying too large or too small an exponent for a float may
make the number impossible to represent in the implementation. A ratio with denominator zero
(such as -3~000) is not represented in any implementation. When a token with the syntax of a

Syntax 2-11

ANSI X3.228-1994 Programming Language-Common Lisp

number cannot be converted to an internal number, an error of type reader-error is signaled. An
error must not be signaled for specifying too many significant digits for a float; a truncated or
rounded value should be produced.

If there is an ambiguity as to whether a letter should be treated as a digit or as a number marker,
the letter is treated as a digit.

2.3.1.1.1 Escape Characters and Potential Numbers

A potential number cannot contain any escape characters. An escape character robs the following
character of all syntactic qualities, forcing it to be strictly alphabetic2 and therefore unsuitable
for we in a potential number. For example, all of the following representations are interpreted as
symbols, not numbers:

\256 25\64 1 .O\E6 IlOOl 3\.14159 l3/41 3\/4 511

In each case, removing the escape chamcter (or characters) would cause the token to be a poten-
tial number.

2.3.1.1.2 Examples of Potential Numbers
As examples, the tokens in Figure 2-10 are potential numbers, but they are not actually numbers,
and so are reserved tokens; a conforming implementation is permitted, but not required, to define
their meaning.

Figure 2-10. Examples of reserved tokens

The tokens in Figure 2-11 are not potential numbers; they are always treated as symbols:

I / /5 + 1+
foo+ ab.cd P. I

Figure 2-11. Examples of symbols

The tokens in Figure 2-12 are potential numbers if the current input base is 16, but they are
always treated us symbols if the current input base is 10.

I bad-f ace 25-dec-83 a/b fad-cafe f”
I

Figure 2-12. Examples of symbols or potential numbers

2.3.2 Constructing Numbers from Tokens
A real is constructed directly from a corresponding numeric token; see Figure 2-9.

A complet is notated as a SC (or IC) followed by a list of two reals; see Section 2.4811 (Sharp
sign C).

The reader macros #B, 60, 6X, and TV may also be useful in controlling the input mdiz in which
mtionals are parsed; see Section 2.4.8.7 (Sharpsign B), Section 2.4.8.8 (Sharpsign 0), Section
2.4.8.9 (Sharpsign X), and Section 2.4.8.10 (Sharpsign R).

2-12 Syntax

Programming Language-Common Lisp
,

ANSI X3.226-1994

This section summarizes the full syntax for numbers.

2.3.2.1 Syntax of a Rational

2.3.2.1.1 Syntax of an Integer

Integers can be written as a sequence of digits, optionally preceded by a sign and optionally
followed by a decimal point; see Figure 2-9. When a decimal point is used, the digits are taken
to be in radix 10; when no decimal point is used, the digits are taken to be in radix given by the
current input base.

For information on how integers are printed, see Section 22.1.3.1.1 (Printing Integers).

2.3.2.1.2 Syntax of a Ratio

Ratios can be written as an optional sign followed by two non-empty sequences of digits sepa-
rated by a slash; see Figure 2-9. The second sequence may not consist entirely of zeros. Examples
of ratios are in Figure 2-13.

2/3
4/b
-17/23
-30517578125/32768
10/5
#o-101/75
S3rl20/21
SXbc/ad
#xFADED/FACADE

;This is in canonical form
;A non-canonical form for 2/3
;A ratio preceded by a sign
;This is (-5/2)”
;The canonical form for this is 2
;Octal notation for -65/61
;Ternary notation for 15/7
;Hexadecimal notation for 188/173
;Hexadecimal notation for 1027565/16435934

Figure 2-13. Examples of Ratios

For information on how ratios are printed, see Section 22.1.3.1.2 (Printing Ratios).

2.3.2.2 Syntax of a Float
Floats can be written in either decimal fraction or computerized scientific notation: an optional
sign, then a non-empty sequence of digits with an embedded decimal point, then an optional
decimal exponent specification. If there is no exponent specifier, then the decimal point is re-
quired, and there must be digits after it. The exponent specifier consists of an exponent marker,
an optional sign, and a non-empty sequence of digits. If no exponent specifier is present, or if the
exponent marker e (or E) is used, then the format specified by *read-default-float-format* is
used. See Figure 2-9.

An implementation may provide one or more kinds of float that collectively make up the type
float. The letters s, f, d, and 1 (or their respective uppercase equivalents) explicitly specify the
use of the types short-float, single-float, double-float, and long-float, respectively.

The internal format used for an external representation depends only on the exponent marker,
and not on the number of decimal digits in the external representation.

Figure 2-14 contains examples of notations for floats:

Syntax 2-13

ANSI X3.226-1994 Programming Language-Common Lisp

0.0
OEO

OeO

-. 0

;Floating-point zero in default format
;As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.
;As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.
;As input, this might be a zero or a minus zero,
; depending on whether the implementation supports
; a distinct minus zero.
;As output, 0.0 is zero and -0.0 is minus zero.

0. ;On input, the integer zero-rot a floating-point number!
;Whether this appears as o or O. on output depends
;on the value of *print-radix*.

0.080 ;A floating-point zero in short format
080 ;As input, this is a floating-point zero in short format.

;As output, such a zero would appear as 0.080
; (or as 0.0 if short-float was the default format).

6.02E+23 ;Avogadro’s number, in default format
602E+21 b ;Also Avogadro’s number, in default format

Figure Z-14. Examples of Floating-point numbers

For information on how floats are printed, see Section 22.1.3.1.3 (Printing Floats).

2.3.2.3 Syntax of a Complex
A complex has a Cartesian structure, with a real part and an imaginary part each of which is a
real. The parts of a complex are not necessarily floats but both parts must be of the same type:
either both are rational+ or both are of the same float subtype. When constructing a complex, if
the specified parts are not the same type, the parts are converted to be the same type internally
(i.e., the rational part is converted to a float). An object of type (complex rational) is converted
internally and represented thereafter as a rational if its imaginary part is an ideger whose value
is 0.

For further information, see Section 2.4.8.11 (Sharpsign C) and Section 22.1.3.1.4 (Printing
Complexes).

2.3.3 The Consing Dot
If a token consists solely of dots (with no escape characters), then an error of type reader-error
is signaled, except in one circumstance: if the token is a single dot and appears in a situation
where dotted pair notation permits a dot, then it is accepted as part of such syntax and no error
is signaled. See Section 2.4.1 (Left-Parenthesis).

2.3.4 Symbols as Tokens
Any token that is not a potential number, does not contain a package marker, and does not
wnsist entirely of dots will always be interpreted ss a symbol. Any token that is a potential
number but does not fit the number syntax is a reserved ioken and has an implemeniaiion-
dependent interpretation. In all other cases, the token is construed to be the name of a symbol.

Examples of the printed representation of symbols are in Figure 2-15. For presentational simplic-
ity, these examples assume that the readtable case of the current readtable is :upcaae.

2-14 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

PBOBBOZ
f robboz
f RObBoz
unvind-protect
+$
1+
+1
Pascal-style
file.re1.43
\(
\+1
+\1
\f robboz
3.14159265\80
3.14159265\SO
3.1415926580

The symbol whose name is PROBBOZ.
Another way to notate the same symbol.
Yet another way to notate it.
A symbol with a hyphen in its name.
The symbol named +$.
The symbol named I+.
This is the integer I, not a symbol.
This symbol has an underscore in its name.
This symbol has periods in its name.
The symbol whose name is (.
The symbol whose name is +I.
Also the symbol whose name is +I.
The symbol whose name is fRnBBuZ.
The symbol whose name is 3.14159265sO.
A different symbol, whose name is 3.1415926550.
A possible short j7oat approximation to rr.

Figure 2-15. Examples of the printed representation of symbols (Part 1 of 2)

APL\\360
ap1\\360
\(bA2\)\ -\ 4*a*c

\(\bA2\)\ -\4+\a*\c

I ” I
I (b”2) - 4*a*cl
lfrobbozl
IAPL\36OI
I APL\\360 i
iap1\\36OI
l\l\l I
I W2) - 4*A*CI

I (b"2) - 4*a*cl

The symbol whose name is APL\360.
Also the symbol whose name is APL\360.
The name is (~2) - 4~1~.
Parentheses and two spaces in it.
The name is (bA2) - 4+a*c.
Letters explicitly lowercase.
The same as writing \‘I.
The name is (b&2) - 4*a*c.
The name is frobboz, not PROBBOZ.
The name is APL360.
The name is APL\360.
The name is ap1\360.
Same as \I\1 -the name is I I.
The name is (BA2) - 4*A*C.
Parentheses and two spaces in it.
The name is (b”2) - 4*a+c.

Figure 2-16. Examples of the printed representation of symbols (Part 2 of 2)

In the process of parsing a symbol, it is implementation-dependent which implementation-defined
attributes are removed from the characters forming a token that represents a symbol.

When parsing the syntax for a symbol, the Lisp reader looks up the name of that symbol in the
current package. This lookup may involve looking in other packages whose edema1 symbols are
inherited by the current package. If the name is found, the corresponding symbol is returned. If
the name is not found (that is, there is no symbol of that name accessible in the current package),
a new symbol is created and is placed in the current package as an internal symbol. The current
package becomes the owner (home package) of the symbol, and the symbol becomes interned in
the current package. If the name is later read again while this same package is current, the same
symbol will be found and returned.

Syntax 2-15

ANSI X3.226-1994 Programming Language-Common Lisp

2.3.5 Valid Patterns for Tokens
The valid patterns for f&ens are summarized in Figure 2-17.

nnnnn a number
zxxxx a symbol in the current package
: x2xXx a symbol in the the KEYYORO package
PPPPPZ ==x an external symbol in the ppppp package
ppppp::xxxxx a (possibly internal) symbol in the ppppp package
: nnnnn undefined
ppppp: nnnnn undefhred
ppppp: : nnnnn undefined
: : 00000 undefined
00000: undefined
00000: 00000: 00000 undefined

Figure 2-17. Valid patterns for tokens

Note that nnnnn has number syntax, neither xzxxz nor ppppp has number syntax, and aoaoo has
any syntax.

A summary of rules concerning package markers follows. In each case, examples are offered to
illustrate the case; for presentational simplicity, the examples assume that the readtable case of
the curreni readiable is :upcase.

1. If there is a single package marker, and it occurs at the beginning of the token, then the
token is interpreted as a symbol in the KEYWORD package. It also sets the symbol-value of the
newly-created symbol to that same symbol so that the symbol will self-evaluate.

For example, :bar, when read, interns BAR as an external symbol in the KEYWORD package.

2. If there is a single package marker not at the beginning or end of the token, then it divides
the token into two parts. The first part specifies a package; the second part is the name of an
external symbol available in that package.

For example, foo:bar, when read, looks up BAR among the external symbols of the package
named FOO.

3. If there are two adjacent package markers not at the beginning or end of the token, then
they divide the token into two parts. The first part specifies a package; the second part is the
name of a symbol within that package (possibly an internal symbol).

For example, foo: :bar, when read, interns BAB in the pockoge named FOO.

4. If the token contains no package markers, and does not have potential number syntax, then
the entire token is the name of the symbol. The symbol is looked up in the current package.

For example, bar, when read, interns BAR in the current package.

5. The consequences are unspecified if any other pattern of package markers in a token is used.
All other usea of package markers within names of symbols are not defined by this standard
but are reserved for implementation-dependent we.

For example, assuming the readtable case of the current readioble is :upcae.e, editor:buffer refers
to the external symbol named BUFFER present in the package named editor, regardless of whether
there is a symbol named BUFFER in the curreni package. If there is no package named editor, or
if no symbol named BUFFER is present in editor, or if BUFFER is not exported by editor, the reader

2-16 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

signals a correctable error. If editor.. **buffer is seen, the effect is exactly the same as reading
buffer with the EDITOR package being the current package.

2.3.6 Package System Consistency Rules
The following rules apply to the package system as long as the value of *pa-e* is not changed:

Read-read consistency

Reading the same symbol name always results in the same symbol.

Print-read consistency

An interned symbol always prints as a sequence of characters that, when read back in,
yields the same symbol.

For information about how the Lisp printer treats symbols, see Section 22.1.3.3 (Printing
Symbols).

Print-print consistency

If two interned symbols are not the same, then their printed representations will be
different sequences of characters.

These rules are true regardless of any implicit interning. As long aa the current package is not
changed, results are reproducible regardless of the order of loading files or the exact history of
what symbols were typed in when. If the value of *package* is changed and then changed back
to the previous value, consistency is maintained. The rules can be violated by changing the value
of *pa&age*, forcing a change to symbols or to packages or to both by continuing from an error,
or calling one of the follotiing functions: turintern, unexport, shadow, shadowing-import, or
urmse-package.

An inconsistency only applies if one of the restrictions is violated between two of the named
symbols. shadow, unexport, unintern, and shadowing-import can only affect the consistency of
symbols with the same names (under string=) as the ones supplied as arguments.

Syntax 2-17

ANSI X3.226-1994 Programming Language-Common Lisp

2.4 Standard Macro Characters
If the reader encounters a macro character, then its associated reader macro funciion is invoked
and may produce an object to be returned. This function may read the characters following the
macro character in the stream in any syntax and return the object represented by that syntax.

Any character can be made to be a macro character. The macro characters defined initially in a
conforming implementation include the following:

2.4.1 Left-Parenthesis
The left-porenlhesis initiates reading of a list. read is called recursively to read successive objects
until a right parenthesis is found in the input stream. A list of the objects read is returned. Thus

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not imme-
diately follow the printed representation of the last object; whitespace characters and comments
may precede it.

If no objects precede the right parenthesis, it reads as a list of zero objects (the empty list).

If a token that is just a dot not immediately preceded by an escape character is read after some
object then exactly one more object must follow the dot, possibly preceded or followed by whites-
pace2 or a comment, followed by the right parenthesis:

(a b c . d)

This means that the cdr of the last cons in the list is not nil, but rather the object whose repre-
sentation followed the dot. The above example might have been the result of evaluating

(cons ‘a (cons ‘b (cons ‘c ‘a)))

Similarly,

(cons ‘this-one ‘that-one) + (this-one . that-one)

It is permissible for the object following the dot to be a list:

(abed. (ef. (g))) E (a b c d a f g)

For information on how the Lisp printer prints lists and conses, see Section 22.1.3.5 (Printing
Lists and Conses).

2.4.2 Right-Parenthesis
The right-parenthesis is invalid except when used in conjunction with the left parenthesis charac-
ter. For more information, see Section 2.2 (Reader Algorithm).

2.4.3 Single-Quote
syntax: ’ ((exp))

A single-quote introduces an expression to be “quoted.” Single-quote followed by an expression
exp is treated by the Lisp reader as an abbreviation for and is parsed identically to the ezpression
(quote exp). See the special operator quote.

2.4.3.1 Examples of Single-Quote

‘foo + PO0

2-18 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

“foe - (QUOTE FOO)
(car "fO0) -) QUOTE

2.4.4 Semicolon
syntax: ; ((text})

A semicolon introduces characters that are to be ignored, such as comments. The semicolon and
all characters up to and including the next newline or end of file are ignored.

2.4.4.1 Examples of Semicolon

(+ 3 : three
4)

--r-r

2.4.4.2 Notes about Style for Semicolon
Some text editors make assumptions about desired indentation based on the number of semi-
colons that begin a comment. The following style conventions are common, although not by any
means universal.

2.4.4.2.1 Use of Single Semicolon

Comments that begin with a single semicolon are all aligned to the same column at the right
(sometimes called the “comment column”). The text of such a comment generally applies only to
the line on which it appears. Occ.asionally two or three contain a single sentence together; this is
sometimes indicated by indenting all but the first with an additional space (after the semicolon).

2.4.4.2.2 Use of Double Semicolon

Comments that begin with a double semicolon are all aligned to the same level of indentation as
a form would be at that same position in the code. The text of such a comment usually describes
the state of the program at the point where the comment occurs, the code which follows the
comment, or both.

2.4.4.2.3 Use of Triple Semicolon

Comments that begin with a triple semicolon are all aligned to the left margin. Usually they are
used prior to a definition or set of definitions, rather than within a definition.

2.4.4.2.4 Use of Quadruple Semicolon
Comments that begin with a quadruple semicolon are all aligned to the left margin, and generally
contain only a short piece of text that serve as a title for the code which follows, and might be
used in the header or footer of a program that prepares code for presentation as a hardcopy
document.

Syntax 2-19

ANSI X3.226-1994 Programming Language--Common Lisp

2.4.4.2.5 Examples of Style for Semicolon

;;:; Hath Utilities

a FIB computes the the Fibonacci function in the traditional ***
;:: recursive way.

(defun fib (n)
(check-type n integer)
;; At this point se're sure ve have an integer argument.
;; Rev se can get doen to sose serious computation.
(cond ((< n 0)

;; Aey, this is just supposed to be a simple example.
;; Did you really expect me to handle the general case?
(error "FIB got 'D as au argument." n))

(CC n 2) n) ;fibCOl=O and fibCl]=l
;; The cheap cases didn't work.
;; gothing more to do but recurse.
(t (+ (fib (- n 1)) ;The traditional formula

(fib (- n 2)))))) ; is fibEn-l]+fib[n-21.

2.4.5 Double-Quote
Syntax: ,I((text))”

The double-quote is used to begin and end a string. When a double-quote is encountered, charac-
ters are read from the input stream and accumulated until another double-quote is encountered.
If a single escape character is seen, the single escape character is discarded, the next character is
accumulated, and accumulation continues. The accumulated characters up to but not including
the matching double-quote are made into a simple string and returned. It is implementation-
dependent which attributes of the accumulated characters are removed in this process.

Examples of the use of the double-quote character are in Figure 2-18.

"Foe"
I, II
"\"APL\\360?\" he cried "
“lx1 = I-xl”

.

;A string with three characters in it
;An empty string
;A string with twenty characters
;A ten-character string

Figure 2-18. Examples of the use of double-quote

Note that to place a single escape character or a double-quote into a string, such a character must
be preceded by a single escape character. Note, too, that a multiple escape character need not be
quoted by a single escape character within a string.

For information on how the Lisp printer prints strings, see Section 22.1.3.4 (Printing Strings).

2.4.6 Backquote
The backquote introduces a template of a data structure to be built. For example, writing

'(cond ((numberp ,x1 ,Oy) (t (print .x) ,Oy))

is roughly equivalent to writing

(list 'cond
(cons (list 'numberp x) y)

2-20 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

(list* ‘t (list ‘print x) y))

Where a comma occurs in the template, the ezpression following the comma is to be evaluated
to produce an objeci to be inserted at that point. Assume b has the value 3, for example, then
evaluating the form denoted by ‘ (a b ,b , (+ b 1) b) produces the result (a b 3 4 b).

If a comma is immediately followed by an at-sign, then the form following the at-sign is evaluated
to produce a list of objects. These objects are then “spliced” into place in the template. For
example, if x has the value (a b c), then

‘(x ,x ,0x foo ,(cadr x) bar .(cdr x1 baz ,Q(cdr x))
+ (x (a b c) a b c foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows.

. ‘basic is the same as ‘basic, that is, (quote basic), for any ezpression basic that is not a
I& or a general vector.

l ‘, form is the same as form, for any form, provided that the representation of form does
not begin with ai-sign or dot. (A similar caveat holds for all occurrences of a form after a
comma.)

. (*@form has undefined consequences.

l ‘(xl x2 x3 . . . xn * atom) may be interpreted to mean

(append [xl] [x2] [x3] . . . [XII] (quote atom))

where the brackets are used to indicate a transformation of an xj as follows:

- [form3 is interpreted as (list ‘ form), which contains a backquoted form that
must then be further interpreted.

- [,form] is interpreted as (list form).

- [,aforml is interpreted as form.

. ‘(xl x2 x3 . . . xrt) may be interpreted to mean the same as the backquoted form
‘(xl x2 x3 . . . xn . nil), thereby reducing it to the previous case.

l ‘(xl x2 x3 . . . xn . ,form) may be interpreted to mean

(append [xl] [x2] [x3] . . . [xn] form)

where the brackets indicate a transformation of an xj as described above.

. ‘(xl x2 x3 . . . xn . ,MOIB) has undefined consequences.

l ‘#(xl x2 x3 . . . xn) may be interpreted to mean (apply t’vector ‘(xl x2 x3 . . . ml).

Anywhere U, 3’ may be used, the syntax “, .” may be used instead to indicate that it is permit+
sible to operate desiructively on the list struclure produced by the form following the U, .” (in
effect, to use nconc instead of append).

If the backquote syntax is nested, the innermost backquoted form should be expanded first.
This means that if several commas occur in a row, the leftmost one belongs to the innermost
backquote.

An implementation is free to interpret a backquoted form Fl as any form F2 that, when eval-
uated, will produce a result that is the same under equal as the result implied by the above

Syntax 2-21

ANSI X3.226-1994 Programming Language-Common Lisp

definition, provided that the side-effect behavior of the substitute form Fs is also consistent with
I the description given above. The constructed copy of the template might or might not share fist

structure with the template itself. As an example, the above definition implies that

‘((.a b) ,c .Od)

will be interpreted as if it were

(append (list (append (list a) (list ‘b) ‘nil)) (list c) d ‘nil)

but it could also be legitimately interpreted to mean any of the following:

(append (list (append (list a) (list ‘b))) (list c) d)
(append (list (append (list a) ‘(b))) (list c) d)
(list* (cons a ‘(b)) c d)
(list* (cons a (list *b)) c d)
(append (list (cons a ‘(b))) (list c) d)
(list* (cons a ‘(b)) c (copy-list d))

2.4.6.1 Notes about Backquote

Since the exact manner in which the Lisp reader will parse an ezpression involving the back-
quote reader macro is not specified, an implementation is free to choose any representation that
preserves the semantics described.

Often an implementation will choose a representation that facilitates pretty printing of the
expression, so that (pprint ‘(a ,b)) will d isp ay 1 ‘(a ,b) and not, for example, (list ‘a b).
However, this is not a requirement.

Implementors who have no particular reason to make one choice or another might wish to refer
to IEEE Standard for the Scheme Programming Language, which identifies a popular choice of
representation for such expressions that might provide useful to be useful compatibility for some
user communities. There is no requirement, however, that any conforming implementation use
this particular representation. This information is provided merely for cross-reference purposes.

2.4.7 Comma
The comma is part of the backquote syntax; see Section 2.4.6 (Backquote). Comma is invalid if
used other than inside the body of a backquote expression as described above.

2.4.8 Sharpsign
Sharpsign is a non-terminating dispatching macro character. It reads an optional sequence of
digits and then one more character, and uses that character to select a function to run as a reader
macro function.

The standard syntax includes constructs introduced by the t character. The syntax of these
constructs is as follows: a character that identifies the type of construct is followed by arguments
in some‘form. If the character is a letter, its case is not important; SO and xo are considered to be
equivalent, for example.

Certain # constructs allow an unsigned decimal number to appear between the x and the charac-
ter.

The reader macros associated with the dispatching macro character it are described later in this
section and summarized in Figure 2-19.

2-22 Syntax

Programming LanguageCommon Lisp ANSI X3.226-1994

dispatch char purpose
Backspace signals error
Tab signals error
Newline signals error
Linefeed signals error
Page signals error
Return signals error
Space signals error
! undefined*

;;c
undefined
reference to = label

to
undefined
undefined

& undefined
function abbreviation

1
simple vector
signals error

* bit vector
t undefined

uninterned symbol
9 undefined
< signals error
P labels following object
> undefined
7
ii

undefined*
undefined

[
undefined*
character object

!
undefined*
undefined
undefined

‘ undefined
I balanced comment

undefined

dispatch char purpose
< undefined*
1 undefined*
+ read-time conditional

read-time conditional
read-time evaluation

!,
undefined

B: b
array
binary rational

c, c complex number
D, d undefined
E, e undefined

:;
undefined
undefined

H;h undefined
I, i undefined
J,j undefined
K k undefined
J-9 1 undefined
M, m undefined
N, n undefined
070 octal rational

pathname
undefined ;gl
radix-n rational

s, s structure
T, t undefined
u, u undefined
v, v undefined
w, w undefined
K x hexadecimal rational
y, Y undefined
z, 2 undefined
Rubout undefined

Figure 2-19. Standard # Dispatching Macro Character Syntax

The combinations marked by an asterisk (*) are explicitly reserved to the user. No conforming
implementation defines them.

Note also that digits do not appear in the preceding table. This is because the notations SO,
Sl, . ..) #9 are reserved for another purpose which occupies the same syntactic space. When a
digit follows a sharpsign, it is not treated as a dispatch character. Instead, an unsigned integer
argument is accumulated and passed as an argument to the reader macro for the character that
follows the digits. For example, #L~A((I 2) (3 4)) is a use of #!A with an argument of 2.

2.4.8.1 Sharpsign Backslash

syntax: x\((x))

When the token x is a single character long, this parses as the literal character char. Uppercase
and lowercase letters are distinguished after x\; #\A and #\a denote different character objects.
Any single character works after s\, even those that are normally special to read, such as lefl-
parenthesis and right-parenthesis.

Syntax 2-23

ANSI X3.226-1994 Programming Language-Common Lisp

In the single character case, the x must be followed by a non-constituent character. After or\ is
read, the reader backs up over the slash and then reads a token, treating the initial slash as a
single escape character (whether it really is or not in the current readtable).

When the token x is more than one character long, the x must have the syntax of a symbol
with no embedded package markers. In this case, the sharpsign backslash notation parses as the
choructer whose name is (string-upcase x); see Section 13.1.7 (Character Names).

For information about how the Lisp printer prints character objects, see Section 22.1.3.2 (Print-
ing Characters).

2.4.8.2 Sharpsign Single-Quote

Any expression preceded by s ’ (sharpsign followed by single-quote), as in t ’ expression, is
treated by the Lisp reader as an abbreviation for and parsed identically to the ezpression
(function expression). See function. For example,

(apply #‘+ 1) 3 (apply (function +) 1)

2.4.8.3 Sharpsign Left-Parenthesis

#(and) are used to notate a simple vector.

If an unsigned decimal integer appears between the e and (, it specifies explicitly the length of
the vector. The consequences are undefined if the number of objects specified before the closing
) exceeds the unsigned decimal integer. If the number of objects supplied before the closing)I
is less than the unsigned decimal integer but greater than zero, the last object is used to fill all
remaining elements of the vector. The consequences are undefined if the unsigned decimal integer
is non-zero and number of objects supplied before the closing) is zero. For example,

#(a b c c c c)
#6(a b c c c c)
86(a b c)
S6(a b c c)

all mean the same thing: a vector of length 6 with elements a, b, and four occurrences of c. Other
examples follow:

*(a b c) ;A vector of length 3
X(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50
*o ;&I empty vector

The notation t0 denotes an empty vector, as does XO().

For information on how the Lisp printer prints vectors, see Section 22.1.3.4 (Printing Strings),
Section 22.1.3.6 (Printing Bit Vectors), or Section 22.1.3.7 (Printing Other Vectors).

2.4.8.4 Sharpsign Asterisk

Syntax: #*((bits))

A simple bit vector is constructed containing the indicated bits (O’s and l’s), where the leftmost
bit has index zero and the subsequent bits have increasing indices.

Syntax: t((n))*((bits))

With an argument n, the vector to be created is of length n. If the number of bits is less than n
but greater than zero, the last bit is used to fill all remaining bits of the bit vector.

2-24 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

The notations #* and SO* each denote an empty bit vector.

Regardless of whether the optional numeric argument n is provided, the token that follows the
asterisk is delimited by a normal token delimiter. However, (unless the value of *read-suppress*
is true) an error of type reader-error is signaled if that token is not composed entirely of O’s and
i’s, or if n was supplied and the token is composed of more than n bits, or if n is greater than
one, but no bits were specified. Neither a single escape nor a multiple escape is permitted in this
token.

For information on how the Lisp printer prints bit vectors, see Section 22.1.3.6 (Printing Bit
Vectors).

2.4.8.4.1 Examples of Sharpsign Asterisk

For example, t*101111
X6*101111
#6*101
#6*1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1, and 1.

For example:

#* ;An empty bit-vector

2.4.8.5 Sharpsign Colon

Syntax: t: ((symbol-name))

it: introduces an unintemed symbol whose name is symbol-name. Every time this syntax is
encountered, a distinct uninterned symbol is created. The symbol-name must have the syntax of a
symbol with no package prefiz.

’ For information on how the Lisp reader prints uninterued symbols, see Section 22.1.3.3 (Printing
Symbols).

2.4.8.6 Sharpsign Dot

#. foo is read as the object resulting from the evaluation of the object represented by foo. The
evaluation is done during the read process, when the s. notation is encountered. The #. syntax
therefore performs a read-time evaluation of foo.

The normal effect of X. is inhibited when the value of *read-eval* is false. In that situation, an
error of type reader-error is signaled.

For an object that does not have a convenient printed representation, a form that computes the
object can be given using the O. notation.

2.4.8.7 Sharpsign B

*Brations/ reads rational in binary (radix 2). For example,

#BllOl 5 13 :11012
#blOl/ll I S/3

The consequences are undefined if the token immediately following the 4IB does not have the
syntax of a binary (i.e., radix 2) rational.

Syntax 2-25

ANSI X3.226-1994 Programming Language-Common Lisp

2.4.8.8 Sharpsign 0

*Orationa/ reads rational in octal (radix 8). For example,

to37/15 E 31/13
to777 s 511
So105 E 69 ;1058

The consequences are undefined if the token immediately following the SO does not have the
syntax of an octal (i.e., radix 8) raiional.

2.4.8.9 Sharpsign X

sxrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F
(the lowercase letters a through f are also acceptable). For example,

#xFOO E 3840
*X105 E 261 ;10516

The consequences are undefined if the token immediately following the XX does not have the
syntax of a hexadecimal (i.e., radix 16) roGonal.

2.4.8.10 Sharpsign R
*nil

tradixRrationa/ reads rational in radix radix. radix must consist of only digits that are interpreted
as an integer in decimal radix; its value must be between 2 and 36 (inclusive). Only valid digits
for the specified radix may be used.

For example, #&-lo2 is another way of writing ii (decimal), and #llR32 is another way of writing
35 (decimal). For radices larger than 10, letters of the alphabet are used in order for the digits
after 9. No alternate x notation exists for the decimal radix since a decimal point suffices.

Figure 2-20 contains examples of the use of SE, SO, SX, and SR.

*2r11010101
tb11010101
:b+11010101
#0325
+xD5
#16r+D5
#o-300
t3r-21010
#25R-7H
XxACCEDED

;Another way of writing 213 decimal
;Ditto
;Ditto
;Ditto, in octal radix
;Ditto, in hexadecimal radix
;Ditto
;Decimal -192, written in base 8
;Same thing in base 3
;Same thing in base 25
;181202413,in hexadecimal radix

Figure 2-20. Radix Indicator Example

The consequences are undefined if the token immediately following the #no does not have the
syntax of a rational in radix n.

2-26 Syntax

Programming Languag*Common Lisp ANSI X3.226-1994

2.4.8.11 Sharpsign C

SC reads a following object, which must be a lid of length two whose elements are both reals.
These reals denote, respectively, the real and imaginary parts of a complex number. If the two
parts as notated are not of the same data type, then they are converted according to the rules of
floating-point contagion described in Section 12.1.1.2 (Contagion in Numeric Operations).

#c(rea/ imag) is equivalent to t. (couplax (quote real) (quote imag)), except that SC is not
affected by *read-evil*. See the function complex.

Figure 2-21 contains examples of the use of SC.

;A complex with small float parts.
;A “Gaussian integer”
;WiIl be converted internally to tC(1.66666 7.0)
;The imaginary unit; that is, i.

Figure Z-21. Complex Number Example

For further information, see Section 22.1.3.1.4 (Printing Complexes) and Section 2.3.2.3 (Syntax
of a Complex).

2.4.8.12 Sharpsign A

StnAobject construc.ts an n-dimensional array, using object as the value of the :initial-contents
argument to make-array.

For example, S2A((O 1 5) (foe 2 (hot dog))) represents a 2-by-3 matrix:

0 1 5
foo 2 (hot dog)

In contrast, #lA((O 1 5) (foe 2 (hot dog) 1) represents a vector of length 2 whose elements are
lists:

(0 1 5) (foe 2 (hot dog))

#OA((O 1 5) (foe 2 (hot dog))) represents a zero-dimensional array whose sole element is a list:

((0 1 5) (foe 2 (hot dog)))

#OA foo represents a zero-dimensional array whose sole element is the symbol foo. The notation
#IA foo is not valid because foo is not a sequence.

If some dimension of the array whose representation is being parsed is found to be 0, all dimen-
sions to the right (i.e., the higher numbered dimensions) are also considered to be 0.

For information on how the Lisp printer prints orruys, see Section 22.1.3.4 (Printing Strings),
Section 22.1.3.6 (Printing Bit Vectors), Section 22.1.3.7 (Printing Other Vectors), or Section
22.1.3.8 (Printing Other Arrays).

2.4.8.13 Sharpsign S

Ss(nane slot1 value1 slot2 value2 . . .) denotes a structure. Thii is valid only if name ia the
name of a structure type already defined by defstruct and if the structure type has a standard
constructor function. Let cm stand for the name of this constructor function; then this syntax is
equivalent to

Syntax 2-27

ANSI X3.226-1994 Programming Language-Common Lisp

t.(cm keyword1 ‘value1 keyword2 ‘value2 . ..)

where each keywordj is the result of computing

(intern (string slotj) (find-package ‘keyword))

The net effect is that the constructor function is called with the specified slots having the spec-
ified values. (This coercion feature is deprecated; in the future, keyword names will be taken in
the package they are read in, so symbols that are actually in the KEYWORD package should be used
if that is what is desired.)

Whatever object the constructor function returns is returned by the #S syntax.

For information on how the Lisp printer prints siructures, see Section 22.1.3.12 (Printing Struc-
tures).

2.4.8.14 Sharpsign P

SP reads a following object, which must be a string.

SP((expression)} is equivalent to t . (parse-narastring ’ ((sxpression))) , except that tP is not affected
by *read-eval*.

For information on how the Lisp printer prints pathnames, see Section 22.1.3.11 (Printing Path-
names).

2.4.8.15 Sharpsign Equal-Sign

#n=object reads as whatever object has object as its printed representation. However, that object
is labeled by n, a required unsigned decimal integer, for possible reference by the syntax #n#.
The scope of the label is the ezpression being read by the outermost call to read; within this
expression, the same label may not appear twice.

2.4.8.16 Sharpsign Sharpsign
tn#

+n#, where n is a required unsigned decimal integer, provides a reference to some objeci labeled
by +n=; that is, #n# represents a pointer to the same (eq) object labeled by tw. For example, a
structure created in the variable y by this code:

(setq x (list ‘p ‘q))
(setq y (list (list ‘a ‘b) x ‘foo x))
(rplacd (last y) (cdr y))

could be represented in this way:

((a b) . rrl=(rrZ=(p q) foo #2X . tit))

Without this notation, but with *print-length+ set to 10 and *print-circle* set to nil, the
structure would print in this way:

((a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) . . .)

A reference #n# may only occur after a label #II=; forward references are not permitted. The
reference may not appear as the labeled object itself (that is, #n=#nx) may not be written because
the object labeled by XII= is not well defined in this case.

2-28 Syntax

Programming Languag*Common Lisp ANSI X3.226-1994

2.4.8.17 Sharpsign Plus
s+ provides a read-time conditionalization facility; the syntax is #+test expression. If the feaiure
expression test succeeds, then this textual notation represents an object whose printed represen-
tation is expression. If the feature czpression test fails, then this textual notation is treated as
whifespacea; that is, it is as if the %+ test expression” did not appear and only a space appeared
in its place.

For a detailed description of succem and failure in feature ezpressions, see Section 24.1.2.1 (Fea-
ture Expressions).

X+ operates by first reading the feature ezpression and then skipping over the form if the feature
ezpression fails. While reading the test, the current package is the KEYWORD package. Skipping over
the form is accomplished by binding *read-suppress* to true and then calling read.

For examples, see Section 24.1.2.1.1 (Examples of Feature Expressions).

2.4.8.18 Sharpsign M inus

t- is like *+ except that it skips the expression if the test succeeds; that is,

X-test expression S #+(not test) expression

For examples, see Section 24.1.2.1 .l (Examples of Feature Expressions).

2.4.8.19 Sharpsign Vertical-Bar

*I . . . lr: is treated as a comment by the reader. It must be balanced with respect to other occur-
rences of *I and I*, but otherwise may contain any characters whatsoever.

2.4.8.19.1 Examples of Sharpsign Vertical-Bar

The following are some examples that exploit the #I . . . I8 notation:

;;; In this example, some debugging code is commented out vith #l...lX
;;; Note that this kind of comment can occur in the middle of a line
:;; (because a delimiter marks vhere the end of the comment occurs)
;;; vhere a semicolon comment can only occur at the end of a line
::: (because it comments out the rest of the line).

(defun add3 (n) Sl(format t “-&Adding 3 to -D.” n)l# (+ n 3))

; ; ; The examples that follov shov issues related to #I . . . I# nesting.

;;; In this first example, St and IX alvays occur properly paired,
;;; so nesting vorks naturally,

(defun mention-fun-fact-la 0
(format t “CL uses : and XI . . . I# in comments.“))

+ IIENTION-FUN-FACT-1A
(mention-fun-fact-la)

D CL uses ; and Xl.. . I# in coanents.
+ NIL

#I (defun mention-fun-fact-lb (1
(format t ‘CL uses : and WI.. . Irt in comments.“)) IX

(fboundp ‘mention-fun-fact-lb) + NIL

Syntax 2-29

- .- ---------~----.-- _.,_. =._ ̂ _. ..- _-~-.,- - -. - _ ._ -

ANSI X3.226-1994 Programming Language-Common Lisp

;;: In this exauple, vertical-bar followed by sharpsign needed to appear
;;; in a string oithout any matching sharpsign folloved by vertical-bar
;;; having preceded this. To conpensate. the programmer has included a
;;: slash separating the tvo characters. In case 2a. the slash is
;;; unnecessary but harmless, but in case 2b, the slash is critical to
;:; allovingthe outer tl . . . It pair match. If the slash vere not present,
;;; the outer comment vould terminate prematurely.

(defun mention-fun-fact-2a 0
(format t "Don't use I\t unmatched or you'll get in trouble!"))

--) HlWTIOU-FWf-FACT-2A
(mention-fun-fact-2a)

D Don't use I# un8atched or you'll get in trouble!
+ PIL

#I (defun mention-fun-fact-lb 0
(format t "Don't use I\# unmatched or you'll get in trouble!") I#

(fboundp 'mention-fun-fact-2b) - IIIL

:;; In this example, the programmer attacks the mismatch problem in a
;;; different uay. The sharpsign vertical bar in the couent is not needed
a for the correct parsing of the program normally (as in case 3a). but ..I
;;; becomes important to avoid premature termination of a comment vhen such
;;; a program is commented out (as in case 3b).

(defun mention-fun-fact-3a 0 ; Xl
(format t "Don't use I# unmatched or you'll get in trouble!"))

+ IElJTIOg-FDD-FACT-3A
(mention-fun-fact-3a)

D Don't use IX unmatched or you'll get in trouble!
+ HIL

*!I
(defun mention-fun-fact-3b 0 ; #I

(format t "Don't use I# unmatched or you'll get in trouble!"))
Ir:
(fboundp 'mention-fun-fact-3b) -P ML

2.4.8.19.2 Notes about Style for Sharpsign Vertical-Bar

Some text editors that purport to understand Lisp syntax treat any I., . I as balanced pairs
that cannot nest (as if they were just balanced pairs of the multiple escapes used in notat-
ing certain symbols). To compensate for this deficiency, some programmers use the notation
*II . ..rrlI...llt... I Isinstead of #I . . .#I.. . It.. . I#. Note that this alternate usage is not a
different reader macro; it merely exploits the fact that the additional vertical-bars occur within
the comment in a way that tricks certain text editor into better supporting nested comments. As
such, one might sometimes see code like:

*II (+ #II 3 Ilr! 4 5) IIX

Such code is equivalent to:

Sl (+ rrl 3 Irr 4 5) Irr

2.4.8.20 Sharpsign Less-Than-Sign

XC is not valid reader syntax. The Lisp reader will signal an error of type reader-error on encoun-
tering W. This syntax is typically used in the printed representation of objects that cannot be
read back in.

2-30 Syntax

Programming Language-Common Lisp ANSI X3.226-1994

2.4.8.21 Sharpsign Whitespace
followed immediately by whitespacel is not valid reader syntax. The Lisp reader will signal an
error of fype reader-error if it encounters the reader macro notation #(Newline) or #(Space).

2.4.8.22 Sharpsign Right-Parenthesis
This is not valid reader syntax.

The Lisp reader will signal an error of type reader-error upon encountering X).

2.4.9 Re-Reading Abbreviated Expressions
Note that the Lisp reader will generally signal an error of type reader-error when reading an
ezpression, that has been abbreviated because of length or level limits (see *print-level*,
print-length, and *print-lines*) due to restrictions on “. .“, “. . .‘I, “t” followed by Ares-
pacer, and “#t)“.

Syntax 2-31

ANSI X3.226-1994 Programming Language-Common Lisp

2-32 Syntax

ANSI X3.226-1994

Programming Language---Common Lisp

3. Evaluation and Compilation

ANSI X3.226-1994 Programming Language-Common Lisp

ii Evaluation and Compilation

Programming LanguageCommon Lisp ANSI X3.226-1994

3.1 Evaluation
Eve&ion of code can be accomplished by a variety of means ranging from direct interpretation of
a form representing a program to invocation of compiled code produced by a compiler.

Evaluation is the process by which a program is ezecuted in Common Lisp. The mechanism of
evaluation is manifested both implicitly through the effect of the Lisp read-eval-print loop, and
explicitly through the presence of the functions eval, compile, compile-file, and load. Any of
these facilities might share the same execution strategy, or each might use a different one.

The behavior of a conforming program processed by eval and by compile-file might differ; see
Section 3.2.2.3 (Semantic Constraints).

Evaluation can be understood in terms of a model in which an interpreter recursively traverses
a form performing each step of the computation as it goes. This model, which describes the
semantics of Common Lisp progmms, is described in Section 3.1.2 (The Evaluation Model).

3.1.1 Introduction to Environments
A binding is an association between a name and that which the name denotes. Bindings are
established in a lexical environment or a dynamic environment by particular special operators.

An environment is a set of bindings and other information used during evaluation (e.g., to
associate meanings with names).

Bindings in an environment are partitioned into namespaces. A single name can simultaneously
have more than one associated binding per environment, but can have only one associated binding
per namespace.

3.1.1.1 The Global Environment

The global environment is that part of an environment that contains bindings with both
indefinite scope and indefinite eztent. The global environment contains, among other things, the
following:

l bindings of dynamic variables and constant variables.

l bindings of functions, macros, and special operators.

l bindings of compiler macros.

l bindings of type and class names

. information about proclamations.

3.1.1.2 Dynamic Environments

A dynamic environment for evaluation is that part of an environment that contains bindings
whose duration is bounded by points of establishment and disestablishment within the execution
of the form that established the binding. A dynamic environment contains, among other thongs,
the following:

l bindings for dynamic variables.

. information about active catch tags.

. information about exit points established by unwind-protect.

Evaluation and Compilation 3-l

ANSI X3.226-1994 Programming Language-Common Lisp

. information -bout aciive handlers and r&arts.

The dynamic environment that is active at any given point in the execution of a program is
referred to by definite reference as “the current dynamic environment,” or sometimes as just “the
dynamic environment .”

Within a given namespace, a name is said to be bound in a dynamic environment if there is
a binding associated with its name in the dynamic environment or, if not, there is a binding
associated with its name in the global environment.

3.1.1.3 Lexical Environments

A lexical environment for evaluation at some position in a program is that part of the environ-
ment that contains information having lezical scope within the forms containing that position. A
lezical environment contains, among other things, the following:

l bindings of lezical variables and symbol maces.

l bindings of functions and mactw. (Implicit in this is information about those compiler
macros that are locally disabled.)

l bindings of block tags.
l bindings of go tags.

. information about declarations.

The lezical environment that is active at any given position in a program being semantically
processed is referred to by definite reference as “the current lezical environment,” or sometimes as
just “the lea&al environment .”

Within a given namespace, a name is said to be bound in a lea&al environment if there is a bind-
ing associated with ita name in the lezical environment or, if not, there is a binding associated
with its name in the global environment.

3.1.1.3.1 The Null Lexical Environment

The null lexkal environment is equivalent to the global environment.

Although in general the representation of an environment object is implementation-dependent, nil
can be used in any situation where an environment object is called for in order to denote the null
lezical environment.

3.1.1.4 Environment Objects

Some operators make use of an object, called an environment object, that represents the set
of lezical bindings needed to perform semantic analysis on a form in a given lezical environment.
The set, of bindings in an environment object may be a subset of the bindings that would be
needed to actually perform an evaluation; for example, values associated with variable names and
function names in the corresponding lezical environment might not be available in an environ-
ment object.

The type and nature of an environment object is implementation-dependent. The values of
environment parameters to macro functions are examples of environment objects.

The object nil when used as an environment object denotes the null lezical environment; see
Section 3.1.1.3.1 (The Null Lexical Environment).

3-2 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

3.1.2 The Evaluation Model
A Common Lisp system evaluates forms with respect to lexical, dynamic, and global environ-
merits. The following sections describe the components of the Common Lisp evaluation model.

3A.2.1 Form Evaluation

Forms fall into three categories: symbols, conses, and self-evaluating objects. The following
sections explain these categories.

3.1.2.1.1 Symbols as Forms

If a form is a symbol, then it is either a symbol macn, or a variable.

The symbol names a symbol maen, if there is a binding of the symbol as a symbol macro in the
current Iezical environment (see define-symbol-macro and symbol-macrolet). If the symbol is
a symbol macro, its expansion function is obtained. The expansion function is a function of two
arguments, and is invoked by calling the macroezpand hook with the expansion function ss its
first argument, the symbol ss its second argument, and an environment object (corresponding
to the current lezical environment) as its third argument. The macroezpand hook, in turn, calls
the expansion function with the form as its first argument and the environment aa its second
argument. The value of the expansion function, which is passed through by the macroezpand
hook, is a form. This resulting form is processed in place of the original symbol.

If a form is a symbol that is not a symbol macro, then it ia the name of a variable, and the
value of that variable is returned. There are three kinds of variables: lezical variables, dynamic
variables, and constant variables. A variable can store one object. The main operations on a
variable are to read1 and to writer its value.

An error of type unbound-variable should be signaled if an unbound variable is referenced.

Non-constant variables can be assigned by using setq or bounds by using let. Figure 3-l lists
some defined names that are applicable to assigning, binding, and defining variables.

boundp
defconstant
defparameter
defvar
lambda

let
let*
makunbound
multiple-value-bind
multiple-value-setq

P-w
peetq
set
=tq
symbol-value

Figure 3-l. Some Defined Names Applicable to Variables

The following is a description of each kind of variable.

3.1.2.1.1.1 Lexical Variables

A lezical variable is a variable that can be referenced only within the letical scope of the form
that establishes that variable; lezical variables have lezical scope. Each time a form creates a
lezical binding of a variable, a fresh binding is established.

Within the scope of a binding for a lezical variable name, uses of that name as a variable are
considered to be references to that binding except where the variable is shadowed2 by a form that
establishes a fresh binding for that variable name, or by a form that locally declares the name
special.

A letical variable always has a value. There is no operator that introduces a binding for a k&al
variable without giving it an initial value, nor is there any operator that can make a lezical
van’able be unbound.

Evaluation and Compilation 3-3

ANSI X3.226-1994 Programming Language-Common Lisp

Bindings of lerical variables are found in the lezical environment.

3.1.2.1.1.2 Dynamic Variables

A variable is a dynamic variable if one of the following conditions hold:

l It is locally declared or globally proclaimed special.

. It occurs textually within a form that creates a dynamic binding for a variable of the same
name, and the binding is not shadowed2 by a form that creates a lezical binding of the same
variable name.

A dynamic variable can be referenced at any time in any program; there is no textual limitation
on references to dynamic variables. At any given time, all dynamic variables with a given name
refer to exactly one binding, either in the dynamic environment or in the global environment.

The value part of the binding for a dynamic variable might be empty; in this case, the dynamic
variable is said to have no value, or to be unbound. A dynamic variable can be made unbound by
usingmakunbound.

The effect of binding a dynamic variable is to create a new binding to which all references to that
dynamic variable in any program refer for the duration of the evaluation of the form that creates
the dynamic binding.

A dynamic variable can be referenced outside the dynamic eztent of a form that binds it. Such
a variable is sometimes called a “global variable” but is still in all respects just a dynamic uari-
able whose binding happens to exist in the global environment rather than in some dynamic
environment.

A dynamic variable is unbound unless and until explicitly assigned a value, except for those
variables whose initial value is defined in this specification or by an implementation.

3.1.2.1.1.3 Constant Variables

Certain variables, called constant variables, are reserved as “named constants.” The consequences
are undefined if an attempt is made to assign a value to, or create a binding for a constant
variable, except that a ‘compatible’ redefinition of a constant variable using defconstant is
permitted; see the macro defconstant.

Keywords, symbols defined by Common Lisp or the implementation as constant (such as nil, t,
and pi), and symbols declared as constant using defconstant are constant variables.

3.1.2.1.1.4 Symbols Naming Both Lexical and Dynamic Variables

The same symbol can name both a lezical uariable and a dynamic variable, but never in the same
lezical environment.

In the following example, the symbol x is used, at different times, as the name of a leakal variable
and as the name of a dynamic variable.

(let ((x 1)) :Binds a special variable X
(declare (special x1)
(let ((x 2)) :Binds a lexical variable X

(+ x ;Beads a lexical variable X
(locally (declare (special 11)

XI)))) ;Reads a special variable X
+3

3-4 Evaluation and Compilation

Programming Language--Common Lisp ANSI X3.226-1994

3.1.2.1.2 Conses as Forms

A cons that is used us a form is called a compound form.

if the car of that compound form is a symbol, that symbol is the name of an operator, and the
form is either a special form, a macro form, or a function form, depending on the function
binding of the operator in the current lexical environment. If the operator is neither a special
operator nor a macro name, it is assumed to be a function name (even if there is no definition for
such a function).

If the car of the compound form is not a symbol, then that car must be a lambda expression, in
which case the compound form is a lambda form.

How a compound form is processed depends on whether it is dassified as a special form, a macro
form, a function form, or a lambda form.

3.1.2.1.2.1 Special Forms

A special form is a form with special syntax, special evaluation rules, or both, possibly manip-
ulating the evaluation environment, control flow, or both. A special operator has access to the
current lexical environment and the current dynamic enm‘ronment. Each special operator defines
the manner in which its subezpressions are treated-which are forms, which are special syntax,
etc.

Some special operators create new lexical or dynamic environments for use during the evaluation
of subforms of the special form. For example, block creates a new lexical environment that is
the same as the one in force at the point of evaluation of the block form with the addition of a
binding of the block name to an exit point from the block.

The set of special operator names is lixed in Common Lisp; no way is provided for the user to
define a special operator. Figure 3-2 lists all of the Common Lisp symbols that have definitions as
special operators.

block
catch
eval-when
flet
function
go
if
labels
let

let*
load-time-value
locally
macrolet
multiple-value-call
multiple-value-progl
Progn
prow
quote

return-from
=tq
symbol-macrolet
tagbody
the
throw
unwind-protect

Figure 3-2. Common Lisp Special Operators

3.1.2.1.2.2 Macro Forms

If the operator names a macro, its associated macro function is applied to the entire form and
the result of that application is used in place of the original form.

Specifically, a symbol names a macro in a given lexical environment if macro-function is true
of the symbol and that environment. The function returned by macro-function is a function of
two arguments, called the expansion function. The expansion function is invoked by calling the
macroexpand hook with the expansion function as its first argument, the entire macro form as its
second argument, and an environment object (corresponding to the current lexical environment)
as its third argument. The macroexpand hook, in turn, calls the expansion function with the form
as its first argument and the environment as its second argument. The value of the expansion

Evaluation and Compilation 3-5

ANSI X3.226-1994 Programming Language-Common Lisp

function, which is passed through by the macroezpand hook, is a form. The returned form is
evaluated in place of the original form.

The consequences are undefined if a macro function destructively modifies any part of its form
argument.

A macro name is not a function designator, and cannot be used as the function argument to
functions such as apply, tics& or map.

An implementation is free to implement a Common Lisp special operator as a macro. An imple-
mentation is free to implement any macw operator as a special operator, but only if an equivalent
definition of the macro is also provided.

Figure 3-3 lists some defined names that are applicable to macros.

macroexpand-hook macro-function macroexpand-l
defmacro macroexpand macrolet

Figure 3-3. DeAned names applicable to macros

3.1.2.1.2.3 Function Forms

If the operator is a symbol naming a junciion, the form represents a function form, and the cdr
of the list contains the forms which when evaluated will supply the arguments passed to the
function.

When a function name is not defined, an error of type undefined-function should be signaled at
run time; see Section 3.2.2.3 (Semantic Constraints).

A function form is evaluated as follows:

The subforms in the cdr of the original form are evaluated in left-to-right order in the current
lexical and dynamic environments. The primary value of each such evaluation becomes an
argument to the named function; any additional values returned by the subforms are discarded.

The functional value of the operator is retrieved from the leztial environment, and that function
is invoked with the indicated arguments.

Although the order of evaluation of the argument subforms themselves is strictly left-to-right, it
is not specified whether the definition of the operator in a function form is looked up before the
evaluation of the argument subforms, after the evaluation of the argument subforms, or between
the evaluation of any two argument subforms if there is more than one such argument subform.
For example, the following might return 23 or 24.

(defun foo (x) (+ x 3))
(defun bar 0 Ceetf (sybol-function 'foe) #'(llabda (11) (+ x 4))))
(foe (progn (bar) 20))

A binding for a function name can be established in one of several ways. A binding for a
function name in the global environment can be established by defun, s&f of fdeiinition,
setf of symbol-function, ensure-generic-function, definethod (implicitly, due to
ensure-generic-function), or defgeneric. A binding for a function name in the lezical envi-
ronment can be established by flet or labels.

Figure 3-4 lists some defined names that are applicable to functions.

3-6 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

apply fdefinition map-
call-arguments&nit flet mapcar
complement fmakunbound mapcon
constantly fimcall map1
defgeneric function map&t
defmethod functionp multiple-value-call
defun labela reduce
fboundp maP symbol-function

A-

Figure 34. Some function-related deflned names

3.1.2.1.2.4 Lambda Forms

A lambda form is similar to a function form, except that the function name is replaced by a
lambda expression.

A lambda form is equivalent to using funcall of a lexical closure of the lambda ezpression on
the given arguments. (In practice, some compilers are more likely to produce inline code for a
lambda form than for an arbitrary named function that has been declared iniine; however, such a
difference is not semantic.)

For further information, see Section 3.1.3 (Lambda Expressions).

3.1.2.1.3 Self-Evaluating Objects

A form that is neither a symbol nor a cons is defined to be a self-evaluating object. Evaluating
such an object yields the same object as a result.

Certain specific symbols and conses might also happen to be “self-evaluating” but only as a
special case of a more general set of rules for the evaluation of symbols and conses; such objects
are not considered to be self-evaluating objects.

The consequences are undefined if literal objects (including self-evaluating objects) are destruc-
tively modified.

3.1.2.1.3.1 Examples of Self-Evaluating Objects

Numbers, pathnames, and arrays are examples of self-evaluating objects.

3+3
&(2/3 5/S) -* XC(2/3 5/S)
#p'S:CBILLJOTHELLO.TXT" + tP"S:[BILLJOTHELLO.TXT"
#(a b c) -+ #(A B C)
"fred smith" -+ "fred smith"

3.1.3 Lambda Expressions
In a lambda expression, the body is evaluated in a lexical environment that is formed by adding
the binding of each parameter in the lambda list with the corresponding value from the arguments
to the current lexical environment.

For further discussion of how bindings are established based on the lambda list, see Section 3.4
(Lambda Lists).

The body of a lambda expression is an implicit progn; the values it returns are returned by the
lambda expression.

Evaluation and Compilation 3-7

ANSI X3.226-1994 Programming Language-Conimon Lisp

Closures and Lexical Binding
A lcfical closun is a funcfion that can refer to and alter the values of lezical bindings established
by binding forms that textually include the function definition.

Consider this code, where x is not declared special:

(defun two-funs (X1
(list (function (lrubda 0 XI))

(function (lambda (y) (setq x y)))))
(setq funs (tvo-funs 6))
(funcall(carfunP.)) + 6
(funcall (cadr funs) 43) -+ 43
(funcall (car funs)) * 43

The function special form coerces a lambda ezprcssion into a closure in which the lezical environ-
ment in effect when the special form is evaluated is captured along with the lambda ezpression.

The function tvo-funs returns a list of two functions, each of which refers to the binding of the
variable x created on entry to the function tvo-funa when it was called. This variable has the
value 6 initially, but setq can alter this binding. The lezical closure created for the first lambda
ezprcssion does not “snapshot” the value 6 for x when the closure is created; rather it captures
the binding of x. The second function can be used to alter the value in the same (captured)
binding (to 43, in the example), and this altered variable binding then affects the value returned
by the first junction.

In situations where a closure of a lambda eqwession over the same set of bindings may be pro-
duced more than once, the various resulting closures may or may not be identical, at the discre-
tion of the implementation. That is, two functions that are behaviorally indistinguishable might
or might not be identical. Two funciions that are behaviorally distinguishable are distinct. For
example:

(let ((x 5) (funs ‘0))
(dotiues (j 10)

(push t'(lasbda (2)
(if bll 2) betq x 0) (+ x 2)))

funs))
funs)

The result of the above form is a list of ten closures. Each requires only the binding of x. It is
the same binding in each case, but the ten closure objects might or might not be identical. On
the other hand, the result of the form

(let ((funs '0))
(dotires Cj 10)

(let ((x 5))
(push (function (lambda (2)

(if (null 2) betq x 0) (+ x 2))))
funs)))

funs)

is ah a list of ten closures. However, in this case no two of the closure objects can be identical
because each closure is closed over a distinct binding of x, and these bindings can be behaviorally
distinguished because of the use of setq.

3-8 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

The result of the form

(let ((funs ‘0))
(dotires (j 10)

(let ((x 5))
(push (function (lambda (2) (+ x 2)))

funs)))
fuus)

is a list of ten closure objects that might or might not he identical. A different binding of x
is involved for each closure, but the bindings cannot be distinguished because their values are
the same and immutable (there being no occurrence of setq on x). A compiler could internally
transform the form to

(let ((funs ‘0))
(dotixes (j 10)

(push (function (lambda (2) (+ 5 2)))
funs) 1

funs)

where the closures may be identical.

It is possible that a closure does not close over any variable bindings. In the code fragment

(mapcar (function (lambda lx.) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside object. In this case, the
same closure might be returned for all evaluations of the function form.

3.1.5 Shadowing
If two forms that establish lezical bindings with the same name N are textually nested, then
references to N within the inner jam refer to the binding established by the inner form; the
inner binding for N shadows the outer binding for N. Outside the inner form but inside the
outer one, references to N refer to the binding established by the outer fem. For example:

(defuu test (x z)
(let ((2 (* x 2)))

(print 2))
2)

The binding of the variable x by let shadows the parameter binding for the function test. The
reference to the variable z in the print form refers to the let binding. The reference to z at the
end of the function test refers to the parameter named x.

Constructs that are lexically scoped act as if new names were generated for each object on each
execution. Therefore, dynamic shadowing cannot occur. For example:

(defun contorted-example (f g xx)
(if (= x 0)

(fuacal.1 f)
(block here

(+ 5 (contorted-example g
#‘(lambda 0 (return-frorhere 4))
(- x 1))))))

Consider the call (contorted-exaxple nil nil 2). This produces 4. During the course of execu-
tion, there are three calls to contorted-example, interleaved with two blocks:

Evaluation and Compilation 3-9

ANSI X3.226-1994 Programming Language-Common Lisp

(contorted-exaaple nil nil 2)
(block here1 . ..)

(contorted-example nil *‘(lambda 0 (return-from here1 4)) 1)
(block here2 . ..)

(contorted-example *‘(lambda 0 (return-from herei 4))
#,&&da 0 (return-from here2 4))
0)

(funcall f)
vhere f -+ *‘(lambda 0 (return-from here1 4))

(return-from here1 4)

At the time the functil is executed there are two block exit points outstanding, each apparently
named here. The return-from form executed as a result of the funcall operation refers to
the outer outstanding exit point (herel), not the inner one (here). It refers to that exit point
textually visible at the point of execution of function (here abbreviated by the sJ syntax) that
resulted in creation of the function object actually invoked by funcall.

If, in this example, one were to change the (funcall f) to (funcall g), then the value of the
call (contorted-example nil nil 2) would be 9. The value would change because funcall
would cause the execution of (return-fro= here2 4), thereby causing a return from the inner
exit point (heres). When that occurs, the value 4 is returned from the middle invocation of
contorted-example, 5 is added to that to get 9, and that value is returned from the outer block
and the outermost call to contorted-example. The point is that the choice of exit point returned
from has nothing to do with its being innermost or outermost; rather, it depends on the lexical
environment that is packaged up with a lambda expression when function is executed.

3.1.6 Extent
Contorted-example works only because the function named by f is invoked during the extent of
the exit point. Once the flow of execution has left the block, the exit point is disestablished. For
example:

(defun invalid-example 0
(let ((y (block here #, (lambda (z) (return-from here z) 1)))

(if (number-p y) y (funcall y 5))))

One might expect the call (invalid-example) to produce 5 by the following incorrect reasoning:
let binds y to the value of block; this value is a function resulting from the lambda expression.
Because y is not a number, it is invoked on the value 5. The return-from should then return this
value from the exit point named here, thereby exiting from the block again and giving y the value
5 which, being a number, is then returned as the value of the call to invalid-example.

The argument fails only because exit points have dynamic extent. The argument is correct up
to the execution of return-from. The execution of return-from should signal an error of type
control-error, however, not because it cannot refer to the exit point, but because it does correctly
refer to an exit point and that exit point has been disestablished.

A reference by name to a dynamic exit point binding such as a catch tag refers to the most
recently established binding of that name that has not been disestablished. For example:

(defun fun1 (x)
(catch ‘trap (+ 3 (fun2 I))))

(defun fun2 (y)
(catch ‘trap (* 5 (fun3 y))))

(defun fun3 (2)
(throw ‘trap z)>

Consider the call (fun1 7). The result is 10. At the time the throw is executed, there are two
outstanding catchers with the name trap: one established within procedure funi, and the other

3-10 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

within procedure funs. The latter is the more recent, and so the value 7 is returned from catch in
fun2. Viewed from within funa, the catch in fun:! shadows the one in funi. Had fun2 been defined
as

(defun fun2 (y)
(catch ‘snare (* 5 (fun3 y))))

then the two ezit points would have different names, and therefore the one in funi would not be
shadowed. The result would then have been 7.

3.1.7 Return Values
Ordinarily the result of calling a function is a single object. Sometimes, however, it is convenient
for a function to compute several objects and return them.

In order to receive other than exactly one value from a form, one of several special forms or
macros must be used to request those values. If a form produces multiple values which were not
requested in this way, then the first value is given to the caller and all others are discarded; if the
form produces zero values, then the caller receive-s nil as a value.

Figure 3-5 lists some operators for receiving multiple valuesa. These operators can be used to
specify one or more forms to evaluate and where to put the values returned by those forms.

I multiple-value-bind multiple-value-progl return-from
multiple-value-call multiple-value-setq throw
multiA+value-list return I ’

Figure 3-5. Some operators applicable to receiving multiple values

The function vaIues can produce multiple valuesz. (values) returns zero values; (vahea form)
returns the primary value returned by form; (values form1 form21 returns two valuea, the
primary value of form1 and the primary value of form2; and so on.

See multiple-valueAm% and values-list.

Evaluation and Compilation 3-11

ANSI X3.226-1994 Programming Language-Common Lisp

3.2 Compilation

3.2.1 Compiler Terminology
The following terminology is used in this section.

The compiler is a utility that translates code into an implementation-dependent form that might
be represented or executed efficiently. The term compiler refers to both of the funciions compile
and compile-file

The term compiled code refers to objects representing compiled programs, such as objects
constructed by compile or by load when loading a compiled file.

The term implicit compilation refers to compilaiion performed during evaluation.

The term literal object refers to a quoted object or a self-evaluating object or an object that is a
substructure of such an object. A consfanl variable is not itself a literal object.

The term coalesce is defined as follows. Suppose A and B are two literal conslank in the source
code, and that A’ and B 1 are the corresponding objecis in the compiled code. If A ’ and B ' are eql
but A and B are not eql, then it is said that A and B have been coalesced by the compiler.

The term minimal compilation refers to actions the compiler must take at compile time. These
actions are specified in Section 3.2.2 (Compilation Semantics).

The verb process refers to performing minimal compilation, determining the time of evaluation
for a form, and possibly evaluating that form (if required).

The term further compilation refers to implemedaiion-dependent compilation beyond min-
imal compilation. That is, processing does not imply complete compilation. Block compilation
and generation of machine-specific instructions are examples of further compilation. Further
compilation is permitted to take place at run time.

Four different environmeds relevant to compilation are distinguished: the startup environment,
the compilation environment, the evaluation environment, and the run-time environment.

The startup environment is the environment of the Lisp image from which the compiler was
invoked.

The compilation environment is maintained by the compiler and is used to hold definitions
and declarations to be used internally by the compiler. Only those parts of a definition needed for
correct compilation are saved. The compilaiion environment is used as the environment argument
to macro expanders called by the compiler. It is unspecified whether a definition available in the
compilation environmenl can be used in an evaluation initiated in the startup environment or
evaluaiion environment.

The evaluation environment is a run-lime environmen in which macro expanders and code
specified by eval-when to be evaluated are evaluated. All evaluations initiated by the compiler
take place in the evaluation environment.

The run-time environment is the environmenl in which the program being compiled will be
executed.

The compilation environmen inherits from the evaluation environment, and the compilation
environmenl and evaluahon environment might be ideniical. The evaluation environment inherits
from the startup environment, and the startup environment and evaluation environment might be
identical.

The term compile time refers to the duration of time that the compiler is processing source

3-12 Evaluation and Compilation

Programming Language--Common Lisp ANSI x3.226-1994

code. At compile time, only the compilation environment and the evaluation environment are
available.

The term compile-time definition refers to a definition in the compilation environment. For
example, when compiling a file, the definition of a function might be retained in the compilation
environment if it is declared inline. This definition might not be available in the evaluation
environment.

The term rurr time refers to the duration of time that the loader is loading compiled code or
compiled code is being executed. At run time, only the run-time environment is available.

The term run-time definition refers to a definition in the run-time environment.

The term run-time compiler refers to the function compile or implicit compilation, for which
the compilation and run-time environments are maintained in the same Lisp image. Note that
when the run-time compiler is used, the run-time environment and startup environment are the
same.

3.2.2 Compilation Semantics
Conceptually, compilation is a process that traverses code, performs certain kinds of syntactic and
semantic analyses using information (such ss proclamations and macro definitions) present in the
compilation environment, and produces equivalent, possibly more efficient code.

3.2.2.1 Compiler Macros
A compiler macro can be defined for a name that also names a function or macro. That is, it is
possible for a function name to name both a junction and a compiler macro.

A function name names a compiler macro if compiler-macro-function is true of the function
name in the lexical environment in which it appears. Creating a lexical binding for the function
name not only creates a new local function or macro definition, but also shadows2 the compiler
macro.

The function returned by compiler-macro-function is a function of two arguments, called the
expansion function. To expand a compiler macro, the expansion function is invoked by calling the
macroexpand hook with the expansion function as its first argument, the entire compiler macro
form as its second argument, and the current compilation environment (or with the current
lexical environment, if the form is being processed by something other than compile-file) as its
third argument. The macroexpand hook, in turn, calls the expansion function with the form a8 its
first argument and the environment as its second argument. The return value from the expansion
function, which is passed through by the macroexpand hook, might either be the same form, or
else a form that can, at the discretion of the code doing the expansion, be used in place of the
original form.

I *macroexpand-hook* compiler-macro-function

Figure 3-6. Defined names applicable to compiler macroa

define-compiler-macro
1

3.2.2.1.1 Purpose of Compiler Macros

The purpose of the compiler macro facility is to permit selective source code transformations as
optimization advice to the compiler. When a compound form is being processed (as by the com-
piler), if the operator names a compiler macro then the compiler macro function may be invoked
on the form, and the resulting expansion recursively processed in preference to performing the
usual processing on the original form according to its normal interpretation as a function form or
macro form.

Evaluation and Compilation 3-13

ANSI X3.226-1994 Programming Language-Common Lisp

A compiler macro funciion, like a macrs fun&ion, is a function of two aquments: the entire call
form and the environment. Unlike an ordinary macw function, a compiler macro function can
decline to provide an expansion merely by returning a value that is the same as the original fofin.
The consequences are undefined if a compiler macro function destructively modifies any part of
its form argument.

The form passed to the compiler macro function can either be a list whose car is the function
name, or a list whose car is funeall and whose cadr is a list (function name); note that this af-
fects destructuring of the form argument by the compiler macro function. define-compiler-macro
arranges for destructuring of arguments to be performed correctly for both possible formats.

When compile-file chooses to expand a top level form that is a compiler macro form, the ex-
pansion is also treated as a top level form for the purposes of eval-when processing; see Section
3.2.3.1 (Processing of Top Level Forms).

3.2.2.1.2 Naming of Compiler Macros

Compiler macros may be defined for function names that name macros as well as functions.

Compiler macro definitions are strictly global. There is no provision for defining local compiler
macros in the way that macrolet defines local macros. Lexical bindings of a function name
shadow any compiler macro definition associated with the name as well as its global function or
macro definition.

Note that the presence of a compiler macro definition does not affect the values returned by func-
tions that access function definitions (e.g., fioundp) or macro definitions (e.g., macroexpand).
Compiler macros are global, and the function compiler-macro-function is sufficient to resolve
their interaction with other lexical and global definitions.

3.2.2.1.3 When Compiler Macros Are Used

The presence of a compiler macro definition for a function or macro indicates that it is desirable
for the compiler to use the expansion of the compiler macro instead of the original function form
or macro form. However, no language processor (compiler, evaluator, or other code walker) is ever
required to actually invoke compiler macro finciions, or to make use of the resulting expansion if
it does invoke a compiler macro function.

When the compiler encounters a form during processing that represents a call to a compiler
macro name (that is not declared notinline), the compiler might expand the compiler macro, and
might use the expansion in place of the original form.

When eval encounters a form during processing that represents a call to a compiler macro name
(that is not declared notinline), eval might expand the compiler macro, and might use the
expansion in place of the original form.

There are two situations in which a compiler macro definition must not be applied by any lan-
guage processor:

l The global function name binding associated with the compiler macro is shadowed by a
lexical binding of the function name.

l The function name has been declared or proclaimed notinline and the call form appears
within the scope of the declaration.

It is unspecified whether compiler macros are expanded or used in any other situations.

3.2.2.1.3.1 Notes about the Implementation of Compiler Macros

Although it is technically permissible, as described above, for eval to treat compiler macms in the
same situations as compiler might, this is not necessarily a good idea in interpreted implemenia-
tions.

3-14 Evaluation and Compilation

Programming LanguageCommon Lisp ANSI X3.226-1994

Compiler macws exist for the purpose of trading compile-time speed for run-time speed. Pro-
grammers who write compiler macros tend to assume that the compiler macros can take more
time than normal functions and macros in order to produce code which is especially optimal for
use at run time. Since eval in an inlerpre~ed implementalion might perform semantic analysis of
the same form multiple times, it might be inefficient in general for the implementation to choose
to call compiler macros on every such evalualion.

Nevertheless, the decision about what to do in these situations is left to each implementation.

3.2.2.2 Minimal Compilation
Minimal compilation is defined as follows:

l All compiler macro calls appearing in the source code being compiled are expanded, if at
all, at compile time; they will not be expanded at run time.

l All macro and symbol macro calls appearing in the source code being compiled are
expanded at compile time in such a way that they will not be expanded again at run
time. macrolet and symbol-macrolet are effectively replaced by forms corresponding to
their bodies in which calls to macros are replaced by their expansions.

l The first argument in a load-time-value form in source code processed by compile
is evaluated at compile time; in source code processed by compil*flle, the compiler
arranges for it to be evaluated at load time. In either case, the result of the evaluation is
remembered and used later as the value of the load-timevalue form at ezecution time.

3.2.2.3 Semantic Constraints

All conforming programs must obey the following constraints, which are designed to minimize the
observable differences between compiled and interpreted programs:

l Definitions of any referenced macros must be present in the compilaiion environment.
Any form that is a list beginning with a symbol that does not name a special opemtor or
a macro defined in the compilafion environment is treated by the compiler as a function
call.

l special proclamations for dynamic variables must be made in the compilafion envi-
ronment. Any binding for which there is no special declaration or proclamation in the
compilahon environment is treated by the compiler as a lecical binding.

l The definition of a function that is defined and declared inline in the compilalion envi-
ronment must be the same at run time.

l Within a function named F, the compiler may (but is not required to) assume that
an apparent recursive call to a fun&on named F refers to the same definition of F,
unless that function has been declared notinline. The consequences of redefining such a
recursively defined function F while it is executing are undefined.

l A call within a file to a named function that is defined in the same file refers to that func-
tion, unless that function has been declared notinline. The consequences are unspecified
if functions are redefined individually at run time or multiply defined in the same file.

l The argument syntax and number of return values for all functions whose ftype is
declared at compile time must remain the same at run time.

Evaluation and Compilation 3-15

ANSI X3.226-1994 Programming Language-Common Lisp

. Co&ant variables defined in the compilation environment must have a similar value at
run time. A reference to a constant variabie in source code is equivalent to a reference to
a literal object that is the value of the constant van’able.

l Type definitions made with deftype or defstruct in the compilation environment must
retain the same definition at run time, Clssses defined by defclass in the compilation
environment must be defined at run time to have the same superclasses and same meta-
class.

This implies that subtype/supertype relationships of type specifiers must not change
between compile time and run iime.

l Type declarations present in the compilation environment must accurately describe
the corresponding values at run time; otherwise, the consequences are undefined. It is
permissible for an unknown type to appear in a declaration at compile time, though a
warning might be signaled in such a case.

l Except in the situations explicitly listed above, a func!ion defined in the evaluation
environment is permitted to have a different definition or a different signature at run
time, and the run-time definition prevails.

Conforming programs should not be written using any additional assumptions about consistency
between the run-time environment and the startup, evaluation, and compilation environments.

Except where noted, when a compile-time and a run-time definition are different, one of the
following occurs at run time:

. an error of type error is signaled
l the compile-time definition prevails
. the run-time definition prevails

If the compiler processes a junction form whose operator is not defined at compile time, no error
is signaled at compile time.

-

3.2.3 File Compilation
The junction compile-file performs compilation of forms in a file following the rules specified in
Section 3.2.2 (Compilation Semantics), and produces an output file that can be loaded by using
load.

Normally, the top level forms appearing in a file compiled with compile-file are evaluated only
when the resulting compiled file is loaded, and not when the file is compiled. However, it is typi-
cally the case that some forms in the file need to be evaluated at compile time so the remainder of
the file can be read and compiled correctly.

The eval-when special form can be used to control whether a top level form is evaluated at com-
pile time, load time, or both. It is possible to specify any of three situations with eval-when, de-
noted by the symbols : compile-toplevel, :load-toplevel, and :execute. For top level eval-when
forms, :compile-toplevel specifies that the compiler must evaluate the body at compile time, and
:load-toplevel specifies that the compiler must arrange to evaluate the body at load time. For
non-top level eval-when forms, :execute specifies that the body must be executed in the run-time
environment.

The behavior of this form can be more precisely understood in terms of a model of how
compile-file processes forms in a file to be compiled. There are two processing modes, called
“not-compile-time” and “compile-time-too”.

3-16 Evaluation and Compilation

Programming Language+ommon Lisp ANSI X3.226-1994

Successive forms are read from the file by compile-file and processed in not-compile-time mode;
in this mode, compile-file arranges for forms to be evaluated only at load time and not at com-
pile time. When compile-file is in compile-time-too mode, forms are evaluated both at compile
time and load time.

3.2.3.1 Processing of Top Level Forms
Processing of fop level forms in the file compiler is defined as follows:

1. If the form is a compiler macro form (not disabled by a notinline declaration), the
implementation might or might not choose to compute the compiler macro ezpansion of
the form and, having performed the expansion, might or might not choose to process the
result as a top level form in the same processing mode (compile-time-too or not-compile-
time). If it declines to obtain or use the expansion, it must process the original form.

2. If the form is a macro form, its macro ezpansion is computed and processed aa a iop level
form in the same processing mode (compile-time-too or not-compile-time).

3. If the form is a progn form, each of its body forms is sequentially processed as a top level
form in the same processing mode.

4. If the form is a locally, macrolet, or symbol-macrolet, compile-file establishes the ap-
propriate bindings and processes the body forms as top level forms with those bindings in
effect in the same processing mode. (Note that this implies that the lexical environment
in which top level forms are processed is not necessarily the null lezical environment.)

5. If the form is an eval-when form, it is handled according to Figure 3-7.

CT
Yt?S

LT E Mode
Yes - -

No
No
No
Yt?S
No
No
No

Yes Yes CTT
Yes Yes NCT
Yes No -
No - -
No Yes CTT
No Yes NCT
No No -

Action
Process
Process
Process
Process
Evaluate
Evaluate
Discard
Discard

New Mode
compile-time-too
compiktim~too
not-compile-time
not-compile-time

-
-
-
-

Figure 3-7. EVAL-WHEN processing

Column CT indicates whether :compile-toplevel is specified. Column LT indicates
whether :load-toplevel is specified. Column E indicates whether :execute is specified.
Column Mode indicates the processing mode; a dash (-) indicates that the processing
mode is not relevant.

The Action column specifies one of three actions:

Process: process the body as top level forms in the specified mode.

Evaluate: evaluate the body in the dynamic execution context of the compiler, using
the evaluation environment as the global environment and the lezical environment in
which the eval-when appears.

Evaluation and Compilation 3-17

ANSI X3.226-1994 Programming Language-Common Lisp

Discard: ignore the form.

The New Mode column indicates the new processing mode. A dash (-) indicates the
compiler remains in its current mode.

8. Otherwise, the form is a top level form that is not one of the special casm. In compile-
time-too mode, the compiler first evaluates the form in the evaluation environment and
then minimally compiles it. In not-compile-time mode, the form is simply minimally
compiled. All subforms are treated as non-top-level forms.

Note that top level forms are processed in the order in which they textually appear in
the 8le and that each top level form read by the compiler is processed before the next is
read. However, the order of processing (including macro expansion) of subforms that are
not top level forms and the order of further compilation is unspecified as long as Common
Lisp semantics are preserved.

eval-when forms cause compile-time evaluation only at top level. Both :corpile-toplevel and
:load-toplevel situation specifications are ignored for non-top-level forms. For non-top-level

forms, au eval-when specifying the :execute situation ia treated as an implicit progn including
the forms in the body of the eval-when form; otherwise, the forms in the body are ignored.

3.2.3.1.1 Processing of Defining Macros

Defining macros (such as defbraero or defvar) appearing within a file being processed by
compikffle normally have compile-time side effects which affect how subsequent forms
in the same file are compiled. A convenient model for explaining how these side effects
happen is that the defining macro expands into one or more eval-when forms, and that
the calls which cause the compile&me side effects to happen appear in the body of an
(eval-when (: compile-toplevel) . . .I form.

The compile-time side effects may cause information about the definition to be stored differently
than if the defining macro had been processed in the ‘normal’ way (either interpretively or by
loading the compiled file). .

In particular, the information stored by the defining macros at compile time might or might not
be available to the interpreter (either during or after compilation), or during subsequent calls
to the compiler. For example, the following code is nonportable because it assumes that the
compikr stores the macro definition of foe where it is available to the interpreter:

(defmacro foe (x) ‘(car ,x1)
(eval-when (:execute :corpile-toplevel :load-toplevel)

(print (foe ‘(a b c))))

A portable way to do the same thing would be to include the macro definition inside the
eval-when form, as in:

(eval-ohan (:execute :corpile-toplevel :load-toplevel)
(defaacro too (x) ‘(car ,x)1
(print (foe ‘(a b cl)))

Figure 3-8 lists macros that make definitions available both in the compilation and run-time
environments. It is not specified whether definitions made available in the compilation environ-
ment are available in the evaluation environment, nor is it specified whether they are available in
subsequent compilation units or subsequent invocations of the compiler. As with eval-when, these
compile-time side effects happen only when the defining macros appear at top level.

3-18 Evaluation and Compilation

Programming LanguagtiCommon Lisp ANSI X3.226-1994

declaim define-modify-macro defsetf
defclass define-setf-expander defstruct ’
defconstant defmacro defiype
deflne-compiler-macro defpackage defvar
define-condition defparameter

Figure 3-3. DeAning Macros That Affect the CompileTime Environment

3.2.3.1.2 Constraints on Macros and Compiler Macros

Except where explicitly stated otherwise, no macro defined in the Common Lisp standard pro-
duces an expansion that could cause any of the subforms of the macro form to be treated as top
level forms. If an implementation also provides a special operator definition of a Common Lisp
macro, the special operator definition must be semantically equivalent in this respect.

Compiler macro expansions must also have the same top level evaluation semantics as the form
which they replace. Thii is of concern both to conforming implementations and to conforming
programs.

3.2.4 Literal Objects in Compiled Files
The functions eva.l and compile are required to ensure that literal objects referenced within the
resulting interpreted or compiled code objects are the same as the corresponding objects in the
source code. compile-i&, on the other hand, must produce a compiled file that, when loaded with
load, constructs the objects defined by the source code and produces references to them.

In the case of compile-file, objects constructed by load of the compiled file cannot be spoken of
as being the same as the objects constructed at compile time, because the compiled file may be
loaded into a different Lisp image than the one in which it was compiled. This section defines the
concept of similarity which relates objects in the evaluation environment to the corresponding
objects in the run-time environment.

The constraints on literal objects described in this section apply only to compile-file; eval and
compile do not copy or coalesce constants.

3.2.4.1 Externalizable Objects

The fact that the file compiler represents literal objects externally in a compiled file and must
later reconstruct suitable equivalents of those objects when that file is loaded imposea a need for
constraints on the nature of the objects that, can be used as literal objects in code to be processed
by the file compiler.

An object that can be used as a literal object in code to be processed by the file compiler is called
an externalizable object.

We define that two objects are stiar if they satisfy a twc+place conceptual equivalence predi-
cate (defined below), which is independent of the Lisp image so that the two objects in d&rent
Lisp images can be understood to be equivalent under this predicate. Further, by inspecting the
definition of this conceptual predicate, the programmer can anticipate what aspects of an object
are reliably preserved by file compilation.

The file compiler must cooperate with the loader in order to assure that in each case where an
eztemalizable object is processed as a liteml object, the loader will construct a similar object.

The set of objects that are externalizable objects are those for which the new conceptual term
“similar* is defined, such that when a compiled file is loaded, an object can be constructed which

Evaluation and Compilation 3-19

ANSI X3.226-1994 Programing Language-Common Lisp

can be shown to be similar to the original object which existed at the time the jile compiler was
operating.

3.2.4.2 Similarity of Literal Objects

3.2.4.2.1 Similarity of Aggregate Objects

Of the types over which similarity is defined, some are treated as aggregate objects. For these
types, similarity is defined recursively. We say that an object of these types has certain “basic
qualities” and to satisfy the similarity relationship, the values of the corresponding qualities of
the two objects must also be similar.

3.2.4.2.2 Definition of Similarity

Two objects S (in source code) and C (in compiled code) are defined to be similar if and only if
they are both of one of the types listed here (or defined by the implementation) and they both
satisfy all additional requirements of similarity indicated for that type.

number

Two numbers S and C are similar if they are of the same type and represent the same
mathematical value.

character

Two simple characters S and C are similar if they have similar code attributes.

Implementations providing additional, implementation-defined attributes must define
whether and how non-simple characters can be regarded as similar.

symbol

Two apparently unintemed symbols S and C are similar if their names are similar.

Two interned symbols S and C are similar if their names are similar, and if either S
is accessible in the current package at compile time and C is accessible in the current
package at load time, or C is accessible in the package that is similar to the home
package of S.

(Note that similarity of symbols is dependent on neither the current readtable nor how
the function read would parse the chamcters in the name of the symbol.)

Two packages S and C are similar if their names are similar.

Note that although a package object is an eztemalitable object, the programmer is
responsible for ensuring that the corresponding package is already in existence when code
referencing it aa a liteml object is loaded. The loader finds the corresponding package
object as if by calling And-package with that name as an argument. An error is signaled
by the loader if no package exists at load time.

random-state

Two random states S and C are similar if S would always produce the same sequence of
pseudorandom numbers as a copy5 of C when given as the random-state argument to the
function random, assuming equivalent limit arguments in each case.

(Note that since C has been processed by the file compiler, it cannot be used directly as
an argument to random because random would perform a side effect.)

3-20 Evaluation and Compilation

Programming Langnage--Common Lisp ANSI X3.226-1994

Two conses, S and C, rue similar if the car2 of S is similar to the car2 of C, and the
cdr2 of S is similar to the cdrr of C.

Two one-dimensional arrays, S and C, are similar if the length of S is similar to the
length of C, the actual array element type of S is similar to the actual array element type
of C, and each active element of S is similar to the corresponding element of C.

Two arrays of rank other than one, S and C, are similar if the rank of S is similar to
the rank of C, each dimension1 of S is similar to the corresponding dimension1 of C, the
actual array element type of S is similar to the actual array element type of C, and each
element of S is similar to the corresponding element of C.

In addition, if S is a simple army, then C must also be a simple array. If S is a displaced
array, has a fill pointer, or is actually adjustable, C is permitted to lack any or all of
these qualities.

hash-table

Two hash tables S and C are similar if they meet the following three requirements:

1. They both have the same test (e.g., they are both eql hash tables).

2. There is a unique one-toone correspondence between the keys of the two hash tables,
such that the corresponding keys are similar.

3. For all keys, the values associated with two corresponding keys are similar.

If there is more than one possible one-to-one correspondence between the keys of S and
C, the consequences are unspecified. A conforming program cannot use a table such as S
as an eztemalizable constant.

pathname

Two pathnames S and C are similar if all corresponding pathname components are
similar.

function

Functions are not ertemalizable objects.

structure-object and standard-object

A general-purpose concept of similarity does not exist for structures and standard objects.
However, a conforming program is permitted to define a mak~load-form method for
any class K defined by that program that is a subclass of either structure-object or
standard-object. The effect of such a method is to define that an object S of type K in
source code is similar to an object C of type K in compiled code if C was constructed
from code produced by calling make-load-form on S.

Evaluation and Compilation 3-21

ANSI X3.226-1994 Programming Languag*Common Lisp

3.2.4.3 Extensions to Similarity Rules
Some objects, such ss stnams, readtables, and methods are not ettetnalizable objects under
the definition of similarity given above. That is, such objects may not portably appear as literal
objects in code to be processed by the file compiler.

An implementation is permitted to extend the rules of similarity, so that other kinds of objects
are ezternalizable objects for that implementation.

If for some kind of object, similarity is neither defined by this specification nor by the implemen-
tation, then the file compiler must signal an error upon encountering such an object as a literal
constant.

3.2.4.4 Additional Constraints on Externalizable Objects
If two literal objects appearing in the source code for a single file processed with the file compiler
are the identical, the wrresponding objects in the compiled code must also be the identical. With
the exception of symbols and packages, any two literal objects in code being processed by the file
compiler may be coalesced if and only if they are similar; if they are either both symbols or both
packages, they may only be coalesced if and only if they are identical.

Objects containing circular references can be ezternalizable objects. The file compiler is required
to preserve eqlness of substructures within a file. Preserving eqlness means that subobjects that
are the same in the source code must be the same in the corresponding compiled code.

In addition, the following are constraints on the handling of literal objects by the file compiler:

array: if an amay in the source code is a simple amay, then the corresponding array in the
compiled code will also be a simple array. If an array in the source code is displaced, has
a fill pointer, or is actually adjustable, the corresponding array in the compiled code might
lack any or all of these qualities. If an array in the source code has a fill pointer, then the
corresponding army in the compiled code might be only the size implied by the fill pointer.

packages: The loader is required to find the corresponding package object as if by calling
And-package with the package name ss an argument. An error of type package-error is
signaled if no package of that name exists at load time.

random-state: A constant random state object cannot be used as the state argument to the
function random because random modifies this data structure.

structure, standard-object: Objects of type structure-object and standard-object may
appear in compiled constants if there is an appropriate make-load-form method defined for
that type.

The file compiler calls make-load-form on any object that is referenced as a literal object if
the object is a genemlized instance of standard-object, structure-object, condition, or any
of a (possibly empty) implementation-dependent set of other classes. The file compiler only
calls -load-form once for any given object within a single file.

symbol: In order to guarantee that compiled files can be loaded correctly, users must ensure
that the packages referenced in those jiles are defined consistently at compile time and load
time. Conforming programs must satisfy the following requirements:

1. The current package when a top level form in the file is processed by compile-tlle
must be the same as the current package when the code corresponding to that top
level form in the compiled file is executed by load. In particular:

3-22 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

3.2.5 Exceptional Situations in the Compiler

a. Any fop level form in a fire that alters the cumnt package must change it to
a package of the same name both at compile time and at load time.

b. If the first non-atomic top level fom in the jile is not an in-package form,
then the current package at the time load ia called must be a package with
the same name aa the package that was the cumnt package at the time
compile-file was called.

2. For all symbols appearing ltically within a top level form that were accessible in
the package that was the curnnt package during processing of that top level form
at compile time, but whose home package wua another package, at load time there
must be a symbol with the same name that ia accessible in both the load-time current
package and in the package with the same name as the compile-timelrome package.

3. For all symbols represented in the compiled file that were eztemal symbols in their
home package at compile time, there must be a symbol with the same name that is
an erternal symbol in the package with the same name at losd time.

If sny of these conditions do not hold, the package in which the loader looks for the affected
symbols is unspecified. Implementations are permitted to signal an error or to define this
behavior.

compile and compile-ffle are permitted to signal errors and warnings, including errors due to
compil&me processing of (eval-rrhen (: conpile-toplevel) . . .) forms, macro expansion, snd
conditions signaled by the compiler itself.

Conditions of type error might be signaled by the compiler in situations where the compilation
cannot proceed without intervention.

In addition to situations for which the standard specifies that conditions of type warning must
or might be signaled, warnings might be signaled in situations where the compiler can determine
that the consequences are undefined or that a run-time error will be signaled. Example8 of this
situation are 8s follows: violating type declarations, altering or assigning the value of a constant
defined with defconstaut, calling built-in Lisp functions with a wrong number of arguments or
malformed keyword argument lists, and using unrecognized declaration specifiers.

The compiler is permitted to issue w8mings about matters of programming style 8s conditions
of fype style-warning. Examples of this situation are as follows: redefining a function using
a different argument list, calling a function with a wrong number of arguments, not declaring
ignore of a local variable that is not referenced, and referencing a variable declared ignore.

Both compile and compile-file are permitted (but not required) to establish a handler for
conditions of type error. For example, they might signal a warning, and restart compilation from
some implemenfation-dependent point in order to let the compilation proceed without manual
intervention.

Both compile and compile-ffle return three values, the second two indicating whether the source
code being compiled contained errors and whether style warnings were issued.

Some warnings might be deferred until the end of compilation. Se-e with-compilation-unit.

Ev8hration and Compilation 3-23

ANSI X3.226-1994 Programming Language-Common Lisp

3.3 Declarations
Declarations provide a way of specifying information for use by program processors, such as the
evaluator or the compiler.

Local declarations can be embedded in executable code using declare. Global declarations,
or proclamations, are established by proclaim or declaim.

The the special form provides a shorthand notation for making a Jocal declaraiion about the lype
of the value of a given form.

The consequences are undefined if a program violates a declaraiion or a proclamation.

3.3.1 Minimal Declaration Processing Requirements
In general, an implementation is free to ignore declaration specifiers except for the declaration,
notMine, safety, and special decJam2ion specifiers.

A declaration declaration must suppress warnings about unrecognized deck&ions of the kind
that it declares. If an implementation doea not produce warnings about unrecognized declara-
tions, it may safely ignore this declaration.

A notinline declamtion must be recognised by any implementation that supports inline functions
or compiler maeros in order to disable those facilities. An implementation that does not use inline
functions or compiler macros may safely ignore thii declarstion.

A safety declaration that increasea the current safety level must always be recognized. An imple-
meniaiion that always processes code as if safety were high may safely ignore thii declaration.

A special declaration must be processed by all implementations.

3.3.2 Declaration Specifiers
A declaration specifier is an ezpression that can appear at top level of a declare expression or
a declaim form, or as the argument to proclaim. It is a list whose car is a declaration identifier,
and whose cdr is data interpreted according to rules specific to the declaration identifier.

3.3.3 Declaration Identifiers
Figure 3-9 shows a list of all declaration identifiers defined by this standard.

declaration ignore
dynamic-extent inline
fin= notinline
ignorable optimize

Figure 3-Q. Common Lip Declaration Identifiers

special
We

An implementation is free to support other (implementation-defined) declaration identifiers as
well. A warning might be issued if a declaration identijier is not among those defined above,
is not defined by the implementation, is not a type name, and has not been declared in a
declaration proclamation.

3.3.3.1 Shorthand notation for Type Declarations

A type specifier can be used as a declamiion identifier. (type-specifier {war}*) is taken as short
hand for (type typcspccifier (war)*).

3-24 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

3.3.4 Declaration Scope
Declarations can be divided into two kinds: those that apply to the bindings of variables 01
functions; and those that do not apply to bindings.

A declaration that appears at the head of a binding form and applies to a variable or function
binding made by that form is called a bound declaration; such a declaration affects both the
binding and any references within the scope of the declamtion.

Declarations that are not bound declarations are called free declarations.

A free declaration in a form Fl that applies to a binding for a name N established by some form
F2 of which Fl is a subform affects only references to N within Fl; it does not to apply to other
references to N outside of Fl, nor does it affect the manner in which the binding of N by F2 is
established.

Declamtions that do not apply to bindings can only appear as free declarations.

The scope of a bound declaration is the same as the lezical scope of the binding to which it
applies; for special variables, this means the scope that the binding would have had had it been a
lezical binding.

Unless explicitly stated otherwise, the scope of a free declaration includes only the body subforrns
of the form at whose head it appears, and no other subforms. The scope of free declamtions
specifically does not include initialization forms for bindings established by the form containing
the declarations.

Some iteration forms include step, end-test, or result subforms that are also included in the scope
of declarations that appear in the iteration form. Specifically, the iteration forms and subforms
involved are:

8 do, do*: step-forms, end-test-form, and result-forms.
l dolist, dotimes: result-form
l deall-symbols, do-external-symbols, d+symbolsz result-form

3.3.4.1 Examples of Declaration Scope
Here is an example illustrating the scope of bound declarations.

(let ((I 1)) ; Cl1 let occurrence of x
(declare (special x)) ; [2] 2nd occurrence of x
(let ((x 2)) ; [3] 3rd occurrence of x

(let ((old-x x) : [4I 4th occurrence of x
(x 3)) ; [51 5th occurrence of x

(declare (special x)) ; [6] 6th occurrence of x
(list old-x x1))) ; 171 7th occurrence of x

- (2 3)

The first occurrence of x establishes a dynamic binding of x because of the special declaration for
x in the second line. The third occurrence of x establishes a lezical binding of x (because there is
no special declaration in the corresponding let form). The fourth occurrence of x z is a reference
to the lezical binding of x established in the third line. The fifth occurrence of x establishes a
dynamic binding of z for the body of the let form that begins on that line because of the special
declaration for x in the sixth line. The reference to x in the fourth line is not affected by the
special declaration in the sixth line because that reference is not within the “would-be Iezical
scope” of the variable x in the fifth line. The reference to x in the seventh line is a reference to
the dynamic binding of z established in the fifth line.

Evaluation and Compilation 3-25

ANSI X3.226-1994 Programming Languz&ge-Common Lisp

Here is another example, to illustrate the scope of a free deelo~ion. In the following:

(larbda (&optional (x (foe 1)) 1 ; Cl1
(declare (notinline f oo) 1 ; 123
(foe x0) ; I31

the call to foe in the first line might he compiled inline even though the call to foo in the third
line must not be. This is because the notinllne declaration for foo in the second line applies only
to the body on the third lime. In order to suppress inlining for both calls, one might write:

(locally (declare bothline fool) ; Cl]
(lambda (&optional (x (foe 1))) ; [21

(foe xl)) ; c31

or, alternatively:

(larbda (&optional ; t11
(x (locally (declare (not&line fool) : [21

(foe 1)))) : c31
(declare (notinline f 00)) ; c41
(foe x1) ; IS1

Finally, here is an example that shows the scope of declanatiow in an iteration form.

(let ((x 1)) ; Cl1
(declare (special x1) ; r21

(let ((x 2) 1 : c31
(dot&es (i x XI) ; r41

(declare (special x1)))) ; C5l
+l

In this example, the first reference to x on the fourth line is to the lea&al binding of x established
on the third line. However, the second occurrence of x on the fourth line lies within the scope of
the free declaration on the fifth line (because this is the result-form of the dotimes) and therefore
refers to the dynamic binding of x.

3-26 Evaluation and Compilation

A lambda list is a list that specifies a set of parameters (sometimes called lambda variables) and
a protocol for receiving values for those parameters.

There are several kinds of lambda lists.

Programming Languag~Common Lisp

3.4 Lambda Lists

ANSI X3.226-1994

I lambda-list-keywords lambda-parameters-limit

Figure 3-11. Deflned names applicable to lambda lists

I

cnntuxt. Kind of Lambda List -----_--
defim form
defmacro form
lambda ezpression
flet local function definition
labels local function definition
handler-case clause specification
restart-ease clause specification
macrolet local macro definition
define-method-combination
deAne-method-combination

: argunents option
defstruct :constructor option
defgeneric form
defgeneric method clause
defmethod form
defsetf form
define-setf-expander form
deftype form
destructuring-bind form
detie-eompiler-macro form
define-modify-macro form

__-- __ _~-~ -- ----
ordinary lambda list
macro lambda list
ordinary lambda list
ordinary lambda list
ordinary lambda list
ordinary lambda list
oniinay lambda list
macro lambda list
ordinary lambda list

define-method-combination arguments lambda list
boa lambda list
generic function lambda list
specialized lambda list
specialized lambda list
defsetf lambda list
macro lambda list
defiype lambda list
destructuring lambda list
macro lambda list
define-modify-macro lambda list

3.4.1 Ordinary Lambda Lists
An ordinary lambda list is used to describe how a set of arguments is received by an ordinary
function. The defined names in Figure 3-12 are those which use ordinary lambda lists:

I deAnc+method-combination handler-case restart-case

I defun labels
flet lambda

Figure 3-12. Standardized Operators that use Ordinary Lambda Lists

An ordinary lambda list can contain the lambda list keywords shown in Figure 3-13.

Evaluation and Compilation 3-27

ANSI X3.226-1994 Programming Language-Common Lisp

&allow-other-keys &key krest
kaw &optional

Figure 8-M. Lambda List Keywords used by Ordinary Lambda Lists

Each element of a lambda list is either a parameter specifier or a lambda list keyword. Implemen-
tations are free to provide additional lambda list keywords. For a list of all lambda list keywords
used by the implementation, see lambda-list-keywords.

The syntax for ordinary lambda lists is as follows:

lambda-list::=({ var}*
[toptional { var 1 (var [hit-fmm [supplied-p-parameter]])}*]

C&reat varl
Ctiey { var 1 ({ var 1 (keymxd-name var)} [init-form [supplied-p-parameter]])}*
[&allowother-keya]]

[&au (var 1 (var [hit-form])}*])

A var or supplied-p-parameter must be a symbol that is not the name of a constant variable.

An hit-form can be any form. Whenever any hit-form is evaluated for any parameter specifier,
that form may refer to any parameter variable to the left of the specifier in which the hit-fern
appears, including any supplied-pparameter variables, and may rely on the fact that no other
parameter variable has yet been bound (including its own parameter variable).

A keyword-name can be any symbol, but by convention is normally a keywordI; all standardized
functions follow that convention.

An ordinary lambda list has five pouts, any or all of which may be empty. For information about
the treatment of argument mismatches, see Section 3.5 (Error Checking in Function Calls).

3.4.1.1 Specifiers for the required parameters

These are all the parameter specifiers up to the first lambda list keyword; if there are no lambda
list keywords, then all the specifiers 8re for required parameters. Each required parameter is
specified by a parameter variable var. var is bound as a lexical variable unless it is declared
special.

If there are n required parameters (n may be zero), there must be at least n passed arguments,
and the requirtid parameters are bound to the first n passed arguments; see Section 3.5 (Error
Checking in Function Calls). The other parameters are then processed using any remaining
arguments.

3.4.1.2 Specifiers for optional parameters

If &optional is present, the optional parameter specifiers are those following &optional up to the
next lambda list keyword or the end of the lit. If optional parameters are specified, then each one
is processed as follows. If any unprocessed arguments remain, then the parameter variable var is
bound to the next remaining argument, just as for a required parameter. If no arguments remczin,
however, then hit-form is evaluated, and the parameter variable is bound to the resulting value
(or to nil if no hit-form appears in the parameter specifier). If another variable name supplied-p
parameter appears in the specifier, it is bound to true if an argument had been available, and to
false if no argument remained (and therefore hit-form had to be evaluated). Supplied-ppammeter

3-28 Evaluation and Compilation

Programming LanguageCommon Lisp ANSI X3.226-1994

is bound not to an argument but to a value indicating whether or not an argument had been
supplied for the corresponding var.

3.4.1.3 A specifier for a rest parameter

&rest, if present, must be followed by a single rest parameter specifier, which in turn must be fol-
lowed by another lambda list keyword or the end of the lambda list. After all optional parameter
specifiers have been processed, then there may or may not be a rest parameter. If there is a rest
parameter, it is bound to a list of all as-yet-unprocessed arguments. If no unprocessed arguments
remain, the rest parameter is bound to the empty list. If there is no rest parameter and there are
no keyword parameters, then an error should be signaled if any unprocessed arguments remain;
see Section 3.5 (Error Checking in Function Calls). The value of a rest parameter is permitted,
but not required, to share structure with the last argument to apply.

3.4.1.4 Specifiers for keyword parameters

If &key is present, all specifiers up to the next lambda list keyword or the end of the list are
keyword parameter specifiers. When keyword parameters are processed, the same arguments are
processed that would be made into a lisl for a rest parameter. It is permitted to specify both
&rest and &key. In this case the remaining arguments are used for both purposes; that is, all
remaining arguments are made into a list for the resi pammeter, and are also processed for the
&key parameters. If &key is specified, there must remain an even number of arguments; see
Section 3.5.1.6 (Odd Number of Keyword Arguments). These arguments are considered as pairs,
the first argument in each pair being interpreted as a name and the second as the corresponding
value. The first object of each pair must be a symbol; see Section 3.5.1.5 (Invalid Keyword
Arguments). The keyword parameter specifiers may optionally be followed by the lambda list
keyword &allow-other-keys.

In each keyword parameter specifier must be a name war for the parameter variable. If the
var appears alone or in a (war St-form) combination, the keyword name used when matching
arguments to parameters is a symbol in the KEWORO package whose name is the same (under
string=) as var’s. If the notation ((keyword-name war) hit-form) is used, then the keyword name
used to match arguments to parameters is keyword-name, which may be a symbol in any package.
(Of course, if it is not a symbol in the KEWORD package, it does not necessarily self-evaluate, so
care must be taken when calling the function to make sure that normal evaluation still yields the
keyword name.) Thus

(defun foo (&key radix (type ‘integer)) . ..)

means exactly the same as

(defun foo @key ((:radix radix)) ((:type type) ‘integer)) . ..I

The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left
to right. For each keyword parameter specifier, if there is an argument pair whose name matches
that specifier’s name (that is, the names are eq), then the parameter variable for that specifier is
bound to the second item (the value) of that argument pair. If more than one such argument pair
matches, the leftmost argument pair is used. If no such argument pair exists, then the hit-form
for that specifier is evaluated and the parameter variable is bound to that value (or to nil if no
hit-form was specified). supphed-pparameter is treated as for &optional parameters: it is bound
to lrue if there was a matching argument pair, and to false otherwise.

Unless keyword argument checking is suppressed, an argument pair must a name matched by a
parameter specifier; see Section 3.5.1.4 (Unrecognized Keyword Arguments).

If keyword argument checking is suppressed, then it is permitted for an argument pair to match
no parameter specifier, and the argument pair is ignored, but such an argument pair is accessible
through the rest parameter if one was supplied. The purpose of these mechanisms is to allow

Evaluation and Compilation 3-29

ANSI X3.226-1994 Programming Language-Common Lisp

sharing of argument lists among several lambda ezpressions and to allow either the caller or the
called lambda ezpmsion to specify that such sharing may be taking place.

Note that if &key is present, a keyword argument of :alloo-other-keys is always permitted-
regardless of whether the associated value is true or false, However, if the value is false, other
non-matching keywords are not tolerated (unless &allow-other-keys was used).

Furthermore, if the receiving argument list specifies a regular argument which would be flagged
by : alloo-other-keys, then : allow-other-keys has both its special-cased meaning (identifying
whether additional keywords are permitted) and its normal meaning (data flow into the function
in question).

3.4.1.4.1 Suppressing Keyword Argument Checking

If &aIIow-other-keys was specilied in the lambda list of a function, keytvordz argument checking
is suppressed in calls to that function.

If the :allov-other-keys argument is true in a call to a function, keywordz argument checking is
suppressed in that call.

The :alloo-other-keys argument is permissible in all situations involving keyword2 arguments,
even when its associated value is false.

3.4.1.4.1.1 Examples of Suppressing Keyword Argument Checking

;;; The caller can supply :ALLOY-OTIiUl-KgYS T to suppress checking.
((laubda (Uey I) x) :x 1 :y 2 :allov-other-keys t) -* 1

;;; The callee can use &ALLOY-OTIS-KEYS to suppress checking.
((lambda (&key x kallov-other-keys) xl :x 1 :J 2) * 1

;;; :ALLOU-OTMR-KEIS IIL is always peruitted.
((laubda (&key) t) :allow-other-keys nil) - T

;;; As oith other keyword arguuents. only the left-uost pair
;;; naued :ALLOY-OTHER-KEYS has any effect.

(bdula (&key x) x)
:x 1 :y 2 :allov-other-keys t :allos-other-keys nil)

+l
;;; only the left-uost pair naued :ALLOY-OTIEK-KEYS has any effect,
;;; so iu safe code this signals a PROGRAM-KKROR (and Bight enter the
;;; debugger). In unsafe code, the consequences are undefined.

((laubda (&key x) x) ;This call is not valid
:I 1 :y 2 :allov-other-keys nil :allov-other-keys t)

3.4.1.5 Specifiers for &aux variables

These are not really parameters. If the lambda list keyword kaux is present, all specifiers after it
are auxiliary variable specifiers. After all parameter specifiers have been processed, the auxiliary
variable specifiers (those following taux) are processed from left to right. For each one, hit-form
is evaluated and VW is bound to that value (or to ail if no hit-form was specified). dcaux variable
processing is analogous to let* processing.

(lambda (x y kaux (a (car x1) (b 2) c) (list x y a b cl)
I (laubda (x y) (let* ((a (car xl) (b 2) c) (list x y a b cl))

3-30 Evaluation and Compilation

Programming Language-Common Lip ANSI X3.226-1994

3.4.1.6 Examples of Ordinary Lambda Liits
Here are some examples involving opGona1 pammclers and msl parameters:

((la&h (a b) (+ a (* b 3))) 4 5) + 19
((la&da (a &optional (b 2)) (+ a (* b 3))) 4 5) + 19
((lahda (a &optional (b 2)) (+ a (* b 3))) 4) 4 10
((la&da (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))

+ (2 PIL 3 YIL #IL)
((laabda &optional (a 2 b) Cc 3 d) &rest x1 (list a b c d x1) 6)

+ (6 T 3 YIL IIL)
(Clarbda &optional (a 2 b) Cc 3 d) &eat x) (list a b c d x)) 6 3)

+ (6 T 3 T IIL)
((la&da (&optional (a 2 b) (c 3 d) &rest x1 (list a b c d x) 1 6 3 8)

* (6 T 3 T (8))
((1aAda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))
6 3 8 9 10 11)

+ (6 t 3 t (8 9 10 11))

Here are some examples involving keyword pammeters:

((h&da (a b &key c d) (list a b c d) 1 1 2) -) (1 2 IIIL JIIL)
((la&da (a b &key c d) (list a b c d)) 1 2 :c 6) -+ (1 2 6 IIL)
((lanbda (a b &key c d) (list a b c d)) 1 2 :d 8) + (1 2 HIL 8)
((larbda (a b &key c d) (list a b c d)) 1 2 :c 6 :d 8) + (1 2 6 8)
((lambda (a b &key c d) (list a b c d)) 1 2 :d 8 :c 6) -C (1 2 6 8)
((lambda (a b &key c d) (list a b c d)) :a 1 :d 8 :c 6) 4 (:a 1 6 8)
((larbda (a b &key c d) (list a b c d)) :a :b :c :d) + (:a :b :d IiIL)
((h&da (a b &key ((:sea c)) d) (list a b c d)) 1 2 :sea 6) -+ (1 2 6 IIIL)
((larbda (a b &key ((c c)) d) (list a b c d)) 1 2 ‘c 6) * (1 2 6 IiIL)

Here are some examples involving opiional pammeters, nsi parameters, and keyword pammeiers
together:

((hAda (a &optional (b 3) &rest x &key c (d a))
(list a b c d I)) 1)

+ (1 3 BIL 1 0)
((la&h (a &optional (b 3) &rest x &key c Cd a))

(listabcdx)) 12)
- (1 2 PIL 1 0)

((la&da (a &optional (b 3) best x &key c (d a))
(list a b c d x)1 :c 7)

+ (:c 7 IlIL :c 0)
((h&da (a lroptional (b 3) &rest x &key c (d a))

(list a b c d I)) 1 6 :c 7)
-) (1 6 7 1 (:c 7))

((lambda (a &optional (b 3) (neat x &key c (d a))
(list a b c d x)) 1 6 :d 8)

4 (1 6 PIL 8 (:d 8))
((lambda (a &optional (b 3) &rest x kkey c Cd a))

(list a b c d x)) 1 6 :d 8 :c 9 :d 10)
+ (1 6 9 8 (:d 8 :c 9 :d 10))

As an example of the use of &allow-other-keys and :alloo-other-keys, consider a function that
takes two named arguments of its own and also accepts additional named arguments to be pu
to make-array:

Evaluation and Compilation 3-31

ANSI X3.226-1994 Programming Language-Common Lisp

(defun array-of-string8 (str dims krest named-pair8
&key Mart 0) end &allow-other-keys)

(apply #‘make-array dima
:initial-eleaent (aubseq str start end)
:allom-other-key8 t
nared-pairs) 1

This function takes a string and dimensioning information and returns an array of the specified
dimensions, each of whose elements is the specified string. However, :start and :end named argu-
ments may be used to specify that a substring of the given string should be used. In addition, the
presence of &allow-other-keys in the lambda list indicates that the caller may supply additional
named arguments; the red parameter provides access to them. These additional named argu-
ments are passed to make-array. The function make-array normally doea not allow the named
arguments :start and :end to be used, and an error should be signaled if such named arguments
are supplied to make-array. However, the presence in the call to make-array of the named ar-
gument :allos-other-keys with a lrue value causes any extraneous named arguments, including
:start and :end, to be acceptable and ignored.

3.4.2 Generic Function Lambda Lists
A generic function lambda list is used to describe the overall shape of the argument list to be
accepted by a generic function. Individual method signatures might contribute additional keyword
parameters to the lambda lid of the efiedive method.

A generic function lambda lisi is used by defgeneric.

A generic function lambda lid has the following syntax:

lambda-list::=({ var)*

[koptional { var 1 (var)}*I
Ckrest varl
[&key { var 1 ({ var 1 (keyword-name var)))}*

[&allow-other-keys]])

A generic function lambda list can contain the lambda lid keywords shown in Figure 3-14.

&allow-other-keys &optional
&key &rest

Figure 3-14. Lambda List Keywords UBed by Generic Function Lambda Lists

A generic function lambda list differs from an ordinary lambda Iis2 in the following ways:

Required arguments

Zero or more required parameters must be specified.

Optional and keyword arguments

Opiional parameters and keyword parameters may not have default initial value forms nor
use supplied-p parameters.

Use of kaux

The use of &aux is not allowed.

3-32 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

3.4.3 Specialized Lambda Lists
A specialized lambda list is used to specialize a method for a particular signature and to
describe how arguments matching that signature are received by the method. The defined names
in Figure 3-15 use specialized lambda lists in some way; see the dictionary entry for each for
information about how.

I defmethod defgeneric

Figure 3-15. Standardized Operators that use Specialized Lambda Lists

I

A specialized lambda list can contain the lambda list keywords shown in Figure 3-16.

&allow-other-keys &key &rest
&aux &optional

Figure 3-16. Lambda List Keywords used by Specialized Lambda Lists

A specialized lambda list is syntactically the same aa an ordinary lambda list except that each
required parameter may optionally be associated with a class or object for which that parameter
is specialized.

limbda-/ist:r=({ var 1 (var [spccializer])}*
[&optional { var 1 (var [hit-form [supplied-pparamcter]])}*l
[&rest varl
[&key { var 1 ((var 1 (keyword-name var)} [’ ‘t-f mr orrn [supplied-p-parameter]])}*

[&allow-other-keys]]
[taux { var 1 (var [in&form])}*l)

3.4.4 Macro Lambda Lists
A macro lambda list is used in describing macros defined by the operators in Figure 3-17.

define-compiler-macro defmacro macrolet
define-setf-expander

Figure 3-17. Operators that use Macro Lambda Lists

With the additional restriction that an environment parameter may appear only once (at any of
the positions indicated), a macro lambda list has the following syntax:

reqvars::={ var 1 jpattern}*

optvars::=[Poptional { var 1 ({ var 1 ipattern} (init-form [supplied-p-parameter]])}*]

restvar::=[(Orest 1 &body} (var 1 ipattern}

keyvars::=[Pkey { var 1 ({ var 1 (keyword-name { var 1 Ipattern))) [in&form [supplied-p-parameter]])]*

[&allow-other-keys]]

auxvars::= [taux { var 1 (var [init-form])}*]

envvar ::= [&environment var]

Evaluation and Compilation 3-33

ANSI X3.226-1994 Programming Language-Common Lisp

who/evar :.= [tohole varl

lambda-/ist:.=(l wholevar lenwar lreqvan lenwar loptvars lenwar
lfcstvar lenwar Jkeyvan lenwar lauxvafs lenwar) 1

(~bvholevar lenwar lfeqvafs lenwar loptvars lenwar . var)

pattern:.=(lwho/evar lreqvan loptvan lrastvar lkeyvars lauxvafs) 1
(lwholevar lreqvan loptvars . var)

A macro lambda list can contain the lambda list keywords shown in Figure 3-18.

&allow-other-keys &environment &rest
&aux klcey &whole
&body &optional

Figure 3-18. Lambda List Keywords used by Macro Lambda Lists

Optional parameters (introduced by &optional) and keyword parameters (introduced by &key)
can be supplied in a macro lambda list, just as in an ordinary iambda list. Both may contain
default initialization forms and supplied-p parameters.

&body is identical in function to &rest, but it can be used to inform certain output-formatting
and editing functions that the remainder of the form is treated 89 a body, and should be indented
accordingly. Only one of &body or &rest can be used at any particular level; see Section 3.4.4.1
(Destructuring by Lambda Lists). &body can appear at any level of a macro lambda list; for
details, see Section 3.4.4.1 (Destructuring by Lambda Lists).

&whole is followed by a single variable that is bound to the entire macro-call form; this is the
value that the macro function receives as its first argument. If &whole and a following variable
appear, they must appear first in lambda-list, before any other parameter or lambda lisi keyword.
&whole can appear at any level of a macro lambda list. At inner levels, the &whole variable is
bound to the corresponding part of the argument, as with &rest, but unlike &rest, other argu-
ments are also allowed. The use of &whole does not affect the pattern of arguments specified.

&environment is followed by a single variable that is bound to an environment representing the
lexical environment in which the macro call is to be interpreted. This environment should be
used with macro-function, get-r&f-expansion, compiler-macr+function, and macroexpand
(for example) in computing the expansion of the macro, to ensure that any lezical bindings or
definitions established in the compilation environment are taken into account. &environment can
only appear at the top level of a macro lambda list, and can only appear once, but can appear
anywhere in that list; the &environment parameter is bound along with &whole before any other
variables in the lambda list, regardless of where &environment appears in the lambda list. The
object that is bound to the environment parameter has dynamic extent.

Destructuring allows a macro lambda list to express the structure of a macro call syntax. If no
lambda list keywords appear, then the macro lambda list is a tree containing parameter names at
the leaves. The pattern and the macro form must have compatible tree structprre; that is, their
iree structure must be equivalent, or it must differ only in that some leaves of the pattern match
non-atomic objects of the macro form. For information about error detection in thii situation, see
Section 3.5.1.7 (Destructuring Mismatch).

A destructuring lambda list (whether at top level or embedded) can be dotted, ending in a
parameter name. This situation is treated exactly as if the parameter name that ends the list had
appeared preceded by &rest.

It is permissible for a macro form (or a subezpression of a macro form) to be a dotted list only

3-34 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

when (... &rest var) or (... . var) is used to match it. It is the responsibility of the macro
to recognize and deal with such situations.

3.4.4.1 Destructuring by Lambda Lists

Anywhere in a macm lambda list where a parameter name can appear, and where ordinary
lambda list syntax (as described in Section 3.4.1 (Ordinary Lambda Lists)) does not otherwise
allow a list, a destructuring lambda list can appear in place of the parameter name. When this is
done, then the argument that would match the parameter is treated as a (possibly dotted) list,
to be used as an argument list for satisfying the parameters in the embedded lambda list. This is
known as deatructuring.

Destructuring is the process of decomposing a compound object into its component parts, US-
ing an abbreviated, declarative syntax, rather than writing it out by hand using the primitive
component-accessing functions. Each component part is bound to a variable.

A destructuring operation requires an object to be decomposed, a pattern that specifies what
components are to be extracted, and the names of the variables whose values are to be the
components.

3.4.4.1.1 Data-directed Destructuring by Lambda Lists

In data-directed destructuring, the pattern is a sample object of the type to be decomposed.
Wherever a component is to be extracted, a symbol appears in the pattern; this symbol is the
name of the variable whose value will be that component.

3.4.4.1.1.1 Examples of Data-directed Destructuring by Lambda Lists

An example pattern is

(a b c)

which destructures a list of three elements. The variable a is assigned to the first element, b to the
second, etc. A more complex example is

((first . rest) . sore)

The important features of data-directed destructuring are its syntactic simplicity and the ability
to extend it to lambda-list-directed destructuring.

3.4.4.1.2 Lambda-list-directed Destructuring by Lambda Lists

An extension of data-directed destructuring of trees is lambda-list-directed destructuring. This
derives from the analogy between the three-element destructuring pattern

(first second third)

and the three-argument lambda list

(first second third)

Lambda-list-directed destructuring is identical to data-directed destructuring if no lambda list
keywords appear in the pattern. Any list in the pattern (whether a sub-lit or the whole pattern
itself) that contains a lambda list keyword is interpreted specially. Elements of the lit to the left
of the first lambda list keyword are treated as destructuring patterns, as usual, but the remaining
elements of the list are treated like a function’s lambda list except that where a variable would
normally be required, an arbitrary destructuring pattern is allowed. Note that in case of ambi-
guity, lambda list syntax is preferred over destructuring syntax. Thus, after &optional a lit of
elements is a list of a destructuring pattern and a default value form.

The detailed behavior of each lambda list keyword in a lambda-lit-directed destructuring pattern

Evaluation and Compilation 3-35

ANSI X3.226-1994 Programming Language-Common Lisp

is as follows:

&optional

Each following element is a variable or a list of a destructuring pattern, a default value
form, and a supplied-p variable. The default value and the supplied-p variable can be
omitted. If the list being destructured ends early, so that it does not have an element
to match against this destructuring (sub)-pattern, the default form is evaluated and
destructured instead. The supplied-p variable receives the value nil if the default form is
used, t otherwise.

&rest, &body

The next element is a destructuring pattern that matches the rest of the list. &body
is identical to &rest but declares that what is being matched is a list of forms that
constitutes the body of form. This next element must be the last unless a lambda list
keyword follows it.

&aw

The remaining elements are not destructuring patterns at all, but are auxiliary variable
bindings.

&whole

The next element is a destructuring pattern that matches the entire form in a macro, or
the entire subezpression at inner levels.

&key

Each following element is one of

a variable,

or a list of a variable, an optional initialization form, and an optional supplied-p
variable.

or a list of a list of a keyword and a destructuring pattern, an optional initialization
form, and an optional supplied-p variable.

The rest of the list being destructured is taken to be alternating keywords and values and
is taken apart appropriately.

&allow-other-keys

Stands by itself.

3.4.5 Destructuring Lambda Lists
A destructuring lambda list is used by destructuring-bind

Destructuring lambda lists are closely related to macro lambda lists; see Section 3.4.4 (Macro
Lambda Lists). A destructuring lambda list can contain all of the lambda list keywords listed for
macro lambda lists except for &environment, and supports destructuring in the same way. Inner
lambda lists nested within a macro lambda list have the syntax of destructuring lambda lists.

3-36 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

A destructufing lambda list has the following syntax:

reqvars::={ var 1 &W7bdJ-/iSt}*

optvarr:.=[Ctoptiona~ { var 1 ((var 1 Ilambda-list} [ini arm [supplied-pparametcr]])}*l t-f

restvar:.=C{&rest 1 &body} {var 1 llambda-list}1

keyvan::=[&key
{ var 1 ({ var 1 (keyword-name { var 1 &mbda-list})} [hit-form [su&;ed-pparameter]])}*
[tallow-other-keys]]

auxvar.s:.= [kaux { var 1 (var [hit-form])}*]

enwar:.= Ckenvironaent vaf

who/evar:= [&whole var]

lambda-list:.=(lwholevar lreqvars Joptvars
(lwholevar lreqvars loptvars

3.4.6 Boa Lambda Lists

lrestvar 1 keyvars lauxvars) 1
. var)

A boa lambda list is a lambda lid that is syntactically like an ordinary lambda list, but that is
processed in “by order of argument” style.

A boa lambda list is used only in a defstruct form, when explicitly specifying the lambda lisi of a
constructor function (sometimes called a “boa constructor”).

The &optional, &rest, &aux, &key, and &allow-other-keys lambda lisl keywords are recognized
in a boa lambda list. The way these lambda lisi keywords differ from their use in an ordinary
lambda lisl follows.

Consider this example, which describes how destruct processes its : constructor option.

(:conatructor create-f00
(a &optional b (c ‘sea) &rest d taux e (f ‘eff)))

This defines create-foo to be a constructor of one or more arguments. The first argument is
used to initialize the a slot. The second argument is used to initialize the b slot. If there isn’t
any second argument, then the default. value given in the body of the defstruct (if given) is used
instead. The third argument is used to initialize the c slot. If there isn’t any third argument, then
the symbol sea is used instead. Any arguments following the third argument, are collected into a
list and used to initialize the d slot. If there are three or fewer arguments, then nil is placed in
the d slot. The e slot is not initialized; its initial value is implementaiion-defined. Finally, the f
slot is initialized to contain the symbol eff. &key and &allow-other-keys arguments default in a
manner similar to that of &optional arguments: if no default is supplied in the lambda l id then
the default value given in the body of the defstruct (if given) is used instead. For example:

(defstruct (foo (:conetructor CBEATE-FDO (a &optional b (c ‘sea)
tkey (d 2)
taux e (f ‘eff))))

(a 1) (b 2) (c 3) (d 4) (e 5) (f 6))

(create-foo 10) + XS(FO0 A 10 B 2 C SEA D 2 E implemeniion-dependent F EFF)
(create-foo 10 ‘bee ‘see :d ‘dee)

+ #S(FOO A 10 B BEE C SEE D DEE E implemention-dependent F EFF)

Evaluation and Compilation 3-37

. ,.. ._--_-L

ANSI X3.226-1994 Programming Language-Common Lisp

If keyword arguments of the form ((key uar) [dejauli [suar]]) are specified, the s lot name is
matched with uur (not key).

The actions taken in the b and e cases were carefully chosen to allow the user to specify all possi-
ble behaviors. The &aux variables can be used to completely override the default initializations
given in the body.

If no default value is supplied for an auz var iable variable, the consequences are undefined if an
attempt is later made to read the corresponding s lot’s value before a value is explicitly ass igned.
If such a s loi has a : type option specified, this suppressed initialization does not imply a type
mismatch s ituation; the declared type is only required to apply when the s lot is finally ass igned.

W ith this definition, the following can be written:

(create-f00 1 2)

instead of

(make-foo :a 1 :b 2)

and create-foo provides defaulting different from that of make-f oo.

Additional arguments that do not correspond to s lot names but are merely present to supply
values used in subsequent initialization computations are allowed. For example, in the definition

(defstruct (frob (:conatructor create-frob
(a &key (b 3 have-b) (c-token ‘c)

(c (list c-token (if have-b 7 2))))))
a b c)

the c-token argument is used merely to supply a value used in the initialization of the c s lot. The
supplied-p parameters associated with optional parameters and keyword parameters might also be
used this way.

3.4.7 Defsetf Lambda Lis ts
A defsetf lambda Iist is used by defsetf,

A defsetf lambda list has the following syntax:

lambda-/isist:=({ war)*

[&optional { var 1 (var [hit-form [supplied-gparameter]])}*I

C&rest var]

&key { var 1 ({ var 1 (keyword-name var) } [hit-form [suppried-pparameterl1))*

[Lallov-other-keys]]

[&environment vafl
A defsetf lambda list can contain the lambda lis i keywords shown in F igure 3-19.

I &allow-other-keys &key &rest
&environment &optional I

F igure 3-19. Lambda List Keywords used by Defsetf Lambda Lists

A defsetf lambda list differs from an ordinary lambda iist only in that it does not permit the use
of &aux, and that it permits use of &environment, which introduces an environmed parameter.

3-38 Evaluation and Compilation

Programming LanguageCommon Lisp ANSI X3.226-1994

3.4.8 Deftype Lambda Lists
A deftype lambda list is used by deftype.

A deftype lambda list has the same syntax as a macro lambda list, and can therefore contain the
lambda list keywords as a macro lambda list.

A deftype lambda list differs from a macro lambda list only in that if no hit-form is supplied
for an optional parameter or keyword parameter in the lambda-list, the default value for that
parameter is the symbol * (rather than nil).

3.4.9 Define-modify-macro Lambda Lists
A defhe-modify-macro lambda list is used by define-modify-macro.

A define-modify-macro lambda lisi can contain the lambda list keywords shown in Figure 3-20.

I &optional &rest I

Figure 3-20. Lambda List Keywords used by DeAne-modify-macro Lambda Lists

Define-modify-macro lambda lists are similar to ordinary lambda lists, but do not support key-
word arguments. define-modify-macro has no need match keyword arguments, and a rest param-
eter is sufficient. Auz variables are also not supported, since define-modify-macro has no body
forms which could refer to such bindings. See the macro defiue-modify-macro.

3.4.10 Define-method-combination Arguments Lambda Lists
A define-method-combination arguments lambda list is used by the :argunents option to
deflne-method-combination

A define-method-combination arguments lambda list can contain the lambda list keywords shown
in Figure 3-21.

&allow-other-keys &key &rest
&aux &optional &whole

Figure 3-21. Lambda List Keywords used by Define-method-combination arguments Lambda Lis

Define-method-combination arguments lambda lists are similar to ordinary lambda lists, but also
permit the use of &whole.

3.4.11 Syntactic Interaction of Documentation Strings and
Declarations
In a number of situations, a documentation string can appear amidst a series of declare ezpnss-
sions prior to a series of forms.

In that case, if a string S appears where a documentation string is permissible and is not followed
by either a declare expression or a form then S is taken to be a form; otherwise, S is taken as
a documentation string. The consequences are unspecified if more than one such documentation
string is present.

Evaluation and Compilation 3-39

.-~-----.- _ -..-.__-

ANSI X3.226-1994 Programming Language--Common Lisp

3.5 Error Checking in Function Calls

3.5.1 Argument Mismatch Detection

3.5.1.1 Safe and Unsafe Calls

A call is a safe call if each of the following is either safe code or system code (other than system
code that results from macro ezpansion of programmer code):

. the call.

. the definition of the function being called.
l the point of fimciional evaluation

The following special cases require some elaboration:

l If the function being called is a generic junction, it is considered safe if all of the follow-
ing are safe code or system code:

- its definition (if it was defined explicitly).
- the method definitions for all applicable methods.
- the definition of its method combination.

l For the form (coerce x ‘function), where x is a lambda expression, the value of the
optimize quality safety in the global environment at the time the coerce is executed
applies to the resulting function.

l For a call to the function ensure-generic-function, the value of the opiimize quality
safety in the environment object passed as the :environrent argument applies to the
resulting generic function.

l For a call to compile with a lambda ezprcssion as the argument, the value of the optimize
quality safety in the global environment at the time compile is called applies to the
resulting compiled function.

l For a call to compile with only one argument, if the original definition of the function
was safe, then the resulting compiled function must also be safe.

l A call to a method by call-next-method must be considered safe if each of the following
is safe code or system code:

- the definition of the generic funciion (if it was defined explicitly).
- the method definitions for all applicable methods.
- the definition of the method combination.

- the point of entry into the body of the method defining form, where the binding
of call-next-method is established.

- the point of functional evaluation of the name call-next-method.

An unsafe call is a call that is not a safe call.

The informal intent is that the programmer can rely on a call to be safe, even when system code
is involved, if all reasonable steps have been taken to ensure that the call is safe. For example, if

340 Evaluation and Compilation

Programming Language-Common Lisp ANSI x3.226-1994

a programmer calls mapcar from safe code and supplies a junction that was compiled as safe, the
implementation is required to ensure that mapcar makes a safe call as well.

3.5.1.1.1 Error Detection Time in Safe Calls

If an error is signaled in a safe call, the exact point of the signal is implementation-dependent.
In particular, it might be signaled at compile time or at run time, and if signaled at run time, it
might be prior to, during, or after ezecuting the call. However, it is always prior to the execution
of the body of the junction being called.

3.5.1.2 Too Few Arguments

It is not permitted to supply too few arguments to a junction. Too few arguments means fewer
arguments than the number of required pammeters for the junction.

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

3.5.1.3 Too Many Arguments

It is not permitted to supply too many arguments to a junction. Too many arguments means
more arguments than the number of required parameters plus the number of optional pamme-
ters; however, if the junction uses &rest or &key, it is not possible for it to receive too many
arguments.

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

3.5 J.4 Unrecognized Keyword Arguments

It is not permitted to supply a keyword argument to a junction using a name that is not recog-
nized by that junction unless keyword argument checking is suppressed as described in Section
3.4.1.4.1 (Suppressing Keyword Argument Checking).

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

3.5.1.5 Invalid Keyword Arguments

It is not permitted to supply a keyword argument to a junction using a name that is not a
symbol.

If this situation occurs in a safe call, an error of type program-error must be signaled unless
keyword argument checking is suppressed as described in Section 3.4.1.4.1 (Suppressing Keyword
Argument Checking); and in an unsafe call the situation has undefined consequences.

3.5.1.6 Odd Number of Keyword Arguments

An odd number of arguments must not be supplied for the keyword pammeters.

If this situation occurs in a safe call, an error of type program-error must be signaled unless
keyword argument checking is suppressed as described in Section 3.4.1.4.1 (Suppressing Keyword
Argument Checking); and in an unsafe call the situation has undefined consequences.

Evaluation and Compilation 341

ANSI X3.226-1994 Prognmming Language-Common Lisp

3.5.1.7 Destructuring Mismatch
When matching a destructwing lambda lid against a form, the pattern and the form must have
compatible tree sfructure, as described in Section 3.4.4 (Macro Lambda Lists).

Otherwise, in a safe call, an error of type program-error must be signaled; and in an unsafe call
the situation has undefined consequences.

3.5.1.8 Errors When Calling a Next Method
If call-next-method is called with argumeds, the ordered set of applicable methods for the
changed set of arguments for call-next-method must be the same as the ordered set of applicable
methods for the original arguments to the generic function, or else an error should be signaled.

The comparison between the set of methods applicable to the new arguments and the set appli-
cable to the original arguments is insensitive to order differences among methods with the same
specializers.

If call-next-method is called with arguments that specify a different ordered set of applicable
methods and there is no neti method available, the test for different methods and the associated
error signaling (when present) takes precedence over calling no-next-method.

3-42 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

3.6 Traversal Rules and Side Effects
The consequences are undefined when code executed during an object-iraversing operation de-
structively modifies the object in a way that might aRect the ongoing traversal operation. In
particular, the following rules apply.

List traversal

For list traversal operations, the cdr chain of the list is not allowed to be destructively
modified.

Array traversal

For array traversal operations, the srray is not allowed to be adjusted and its fill pointer,
if any, is not allowed to be changed,

Hash-table traversal

For hash ioble traversal operations, new elements may not be added or deleted except
that the element corresponding to the current hash key may be changed or removed.

Package traversal

For package traversal operations (e.g., do-symbols), new symbols may not be interned in
or unintemed from the package being traversed or any package that it uses except that
the current symbol may be unintemed from the package being traversed.

Evaluation and Compilation
_~

343

- -...

ANSI X3.226-1994 Programming Language-Common Lisp

3.1 Destructive Operations

3.7.1 Modification of Literal Objects
The consequences are undefined if literal objects are destructively modified. For this purpose, the
following operations are considered destructive:

random-state

Using it as an argument to the function random.

cons

Changing the cari or cdq of the cons, or performing a destructive operation on an object
which is either the car;, or the cdrz of the cons.

array

Storing a new value into some element of the array, or performing a destructive operation
on an object that is already such an element.

Changing the fill pointer, dimensions, or displacement of the array (regardless of whether
the array is actually adjustable).

Performing a destructive operation on another array that is displaced to the array or
that otherwise shares its contents with the array.

hash-table

Performing a destructive operation on any key.

Storing a new valued for any key, or performing a destructive operation on any object
that is such a value.

Adding or removing entries from the hash table.

structure-object

Storing a new value into any slot, or performing a destructive operation on an object that
is the value of some slot.

standard-object

Storing a new value into any slot, or performing a destructive operation on an object that
is the value of some slot.

Changing the class of the object (e.g., using the function change-class).

readtable

Altering the readtable case.

Altering the syntax type of any character in this readtable.

Altering the reader macro function associated with any character in the readtable, or
altering the reader macro functions associated with characters defined as dispatching
macro characters in the readtable.

stream

Performing I/O operations on the stream, or closing the stream.

3-44 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

All other standardized types

[This category includes, for example, character, condition, function,
method-combination, method, number, package, pathname, restart, and symbol.]

There are no standardized destructive operations defined on objects of these types.

3.7.2 Transfer of Control during a Destructive Operation
Should a transfer of control out of a destructive operation occur (e.g., due to an error) the state
of the object being modified is implementation-dependent.

3.7.2.1 Examples of Transfer of Control during a Destructive Operation

The following examples illustrate some of the many ways in which the implementation-dependent
nature of the modification can manifest itself.

(let ((a (list 2 1 4 3 7 6 'five)))
(ignore-errors (sort a #'<))
a)

- (1 2 3 4 6 7 FIVE)
z (2 1 4 3 7 6 FIVE)
4 (2)

(prog foo ((a (list 1 2 3 4 5 6 7 8 9 10)))
(sort a #‘(larbda (x y) (if (zerop (random 5)) (return-from foo a) (> x ~1))))

-(12345678910)
2 (34562789101)
2 (12 4 3)

Evaluation and Compilation 3-45

ANSI X3.226-1994 Programming Language-Common Lisp

la,mbda

Syntax:
lambda lambda-list [{declaration)* 1 documentation] {form)*

Arguments:
‘lambda-list-an ordinary lambda list.

declaration-a declare ezpression; not evaluated.

documentation-a string; not evaluate-d.

form-a form.

Description:
A lambda expwssion is a list that can be used in place of a function name in certain contexts to
denote a function by directly describing its behavior rather than indirectly by referring to the
name of an established fanction.

Documentation is attached to the denoted function (if any is actually created) as a documentation
string.

See Also:
function, documentation, Section 3.1.3 (Lambda Expressions), Section 3.1.2.1.2.4 (Lambda
Forms), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

Notes:
The lambda form

((lambda lambda-list . body) . arguments)

is semantically equivalent to the function form

(funcall #‘(lambda lambda-list . body) . arguments)

lambda

Syntax:
lambda lambda-list [{declaration)* 1 documentation] {form}* -+ function

Arguments and Values:
lambda-list-an ordina y lambda list.

declaration-a declare ezpression; not evaluated.

documentation-a string; not evaluated.

form-a form.

function-a function.

3-46 Evaluation and Compilation

Programming Languag~Common Lisp ANSI X3.226-1994

Description:
Provides a shorthand notation for a function special form involving a lambda ezpression such
that:

(lambda lambda-list [{declaration}* 1 documentation] {form}*)
z (function (la&da lambda-list [{declaration}* 1 documentation] {form)*) 1
E XI (lambda lambda-lisist [{declaration}* 1 documentation] {form}*)

Examples:

(funcall (lambda (x) (+ x 3)) 4) + 7

See Also:
lambda (symbol)

Notes:
This macro could be implemented by:

(defracro la&da (tihole forr &rest bvl-decls-and-body)
(declare (ignore bvl-decls-and-body))
‘S’.forr)

Function

Syntax:
compile name koptional definition + function, warnings-p, failurtp

Arguments and Values:
name-a function name, or nil.

definition-a lambda ezpression or a fun&on. The default is the function definition of name if
it names a fundion, or the macro function of name if it names a macro. The consequences are
undefined if no definition is supplied when the name is nil.

function-the function-name, or a compiled function.

warnings-p-a generalized boolean.

failurcp-a generalized boolean.

Description:
Compiles an interpreted function.

compile produces a compiled function from definition. If the definition is a lambda ezpression, it
is coerced to a function. If the definition is already a compiled function, compile either produces
that function itself (i.e., is an identity operation) or an equivalent function.

If the name is nil, the resulting compiled function is returned directly as the primary value.
If a non-nil name is given, then the resulting compiled function replaces the existing function
definition of name and the name is returned as the primary value; if name is a symbol that names
a macro, its macro function is updated and the name is returned as the primary value.

Evaluation and Compilation 3-47

ANSI X3.226-1994 Programming Language-Common Lisp

Literal objects appearing in code processed by the compile function are neither copied nor
coalesced. The code resulting from the execution of compile references objects that are e$ to the
corresponding objects in the source code.

compile is permitted, but not required, to establish a handler for conditions of type error. For
example, the handler might issue a warning and restart compilation from some implementation-
dependent point in order to let the compilation proceed without manual intervention.

The secondary value, warnings-p, is false if no conditions of type error or warning were detected
by the compiler, and true otherwise.

The tertiary value, failure-p, is false if no conditions of type error or warning (other than
style-warning) were detected by the compiler, and true otherwise.

Examples:

(dafun foo 0 “bar”) * PO0
(compiled-function-p #‘foe) -* implementation-dependent
(compile ‘fool + FOO
(compiled-function-p It’foo) -+ true
(setf (ayabol-function ‘foe)

(compile nil ‘(lambda () “replaced”))) 4 #<Conpiled-Function>
(foe) + “replaced”

Affected By:
*error-output * , *macroexpand-hook* .

The presence of macro definitions and proclamations.

Exceptional Situations:
The consequences are undefined if the lezical environment surrounding the function to be com-
piled contains any bindings other than those for macros, symbol macros, or declarations.

For information about errors detected during the compilation process, see Section 3.2.5 (Excep
tional Situations in the Compiler).

See Also:
compile-flle

Function

syntax:
eval form + {result}*

Arguments and Values:
form-a form.

results-the values yielded by the evaluation of form.

Description:
Evaluates form in the current dynamic environment and the null lecical environment.

eval is a user interface to the evaluator. .
The evaluator expands macro calls as if through the use of macroexpand-1.

3-48 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

Constants appearing in code processed by eval are not copied nor coalesced. The code resulting
from the execution of eval references objects that are eql to the corresponding objects in the
source code.

Examples:

(setq form ‘(l+ a) a 999) -+ 999
(eval form) + 1000
(eval ‘form) - (l+ A)
(let ((a ‘(this vould break if eval used local value))) (eval form))

- 1000

See Also:
macroexpand-l, Section 3.1.2 (The Evaluation Model)

Notes:
To obtain the current dynamic value of a symbol, use of symbol-value is equivalent (and usually
preferable) to use of eval.

Note that an eval form involves two levels of evaluation for its argument. First, form is evaluated
by the normal argument evaluation mechanism as would occur with any call. The object that
results from this normal argument evaluation becomes the value of the form parameter, and is
then evaluated as part of the eval form. For example:

(eval (list ‘cdr (car ‘((quote (a . b)) cl))) -+ b

The argument form (list ‘cdr (car ‘((quota (a . b)) c) 1) is evaluated in the usual
way to produce the argument (cdr (quote (a . b))); eval then evaluates its argument,
(cdr (quote (a . b))), to produce b. Since a single evaluation already occurs for any argu-
men2 form in any function form, eval is sometimes said to perform “an extra level of evaluation.”

eval-when Special Operator

Syntax:
e&-when ({situation} *) {form} * + {red)*

Arguments and Values:
situ&o/r-One of the symbols : compile-toplevel, : load-toplevel, : execute, compile, load, or
evai.

The use of eval, compile, and load is deprecated.

forms-an implicit progn.

results-the values of the forms if they are executed, or nil if they are not.

Description:
The body of an eval-when form is processed as an implicit progn, but only in the situations listed.

The use of the situations :compile-toplevel (or compile) and :load-toplevel (or load) controls
whether and when evaluation occurs when eval-when appears as a top level form in code pro-
cessed by compile-file. See Section 3.2.3 (File Compilation).

The use of the situation :execute (or eval) controls whether evaluation occurs for other eval-when
forms; that is, those that are not top level forms, or those in code processed by eval or compile.

Evaluation and Compilation 3-49

ANSI X3.226-1994 Programming Language-Common Lisp

If the :exacute situation is specified in such a form, then the body forms are processed as au
implicit progn; otherwise, the eval-when form returns nil.

ev&when normally appears as a top level form, but it is meaningful for it to appear as a non-
top-level fonn. However, the compile-time side effects described in Section 3.2 (Compilation) only
take place when eval-when appears as a top level form.

Examples:
One example of the use of eval-when is that for the compiler to be able to read a file properly
when it uses user-defined reader maces, it is necessary to write

(eval-vhen (:coxpile-toplevel :load-toplevel :execute)
(set-macro-character *\S t’(la8hda (atrear char)

(declare (ignore char))
(list ‘dollar (read stress))))) - T

This causea the call to set-macr-character to be executed in the compiler’s execution environ-
ment, thereby modifying its reader syntax table.

;;; The EVIL-UBFJ in this case is not at toplevel, so only the :EXECUTE
;:: keyword is considered. At compile tine, this has no effect.
;;: At load tise (if the LET is at toplevel), or at execution tire
::: (if the LET is eubedded in soue other form which does not execute
::: until later) this sets WHBOL-FUBCTIOB ‘FOOl) to a function which
::: returns 1.
(let ((x 1))

(eval-shen (:execute :load-toplevel :coupile-toplevel)
(setf (symbol-fuuction 'fool) Sy(laubda 0 x1)))

::: If this expression occur8 at the toplevel of a file to be coupiled,
:;; it has BOTH a coupile time ASD a load-Cue effect of setting
:;; M?IBOL-FUIiCTIOg ‘PO021 to a function which returns 2.

(eval-when (:execute :load-toplevel :corpile-toplevel)
(let ((x 2))

(eval-when (:execute :load-toplevel :coupile-toplevel)
(setf (syubol-function 'fool) #'&&da 0 x1))))

::; If this expression occurs at the toplevel of a file to be compiled.
;;; it has BOTH a coupile tire AED a load-tire effect of setting the
;:; function cell of FO03 to a function which returns 3.

(eval-when (:execute :load-toplevel :coupile-toplevel)
(setf kymbol-function 'foot) Ir'(lambda 0 3)))

;;: *4: This shays does nothing. It simply return8 YIL.
(eval-when (:compile-toplevel)

(eval-when (:compile-toplevel)
(print ‘foo4)))

;;; If this form occurs at toplevel of a file to be compiled, FOO5 is
;;; printed at compile time. If this form occurs in a non-top-level
;:; position. nothing is printed at compile time. Regardless of context,
:;; nothing is ever printed at load time or execution time.

(eval-when (:compile-toplevel)
(eval-when (:execute)

(print 'foo5)))

3-50 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

;:; If this fora occurs at toplevel of a file to be conpiled, FO06 is
;:: printed at compile tine. If this fern occurs in a non-top-level
;:; position, nothing is printed at compile time. Regardless of context,
;:: nothing is ever printed at load time or execution time.

(eval-vhen (:execute :load-toplevel)
(eval-uhen (:compile-toplevel)

(print ‘foo6)))

See Also:
compile-ffle, Section 3.2 (Compilation)

Notes:
The following effects are logical consequences of the definition of eval-when:

l Execution of a single eval-when expression executes the body code at most once.

l Macros intended for use in top level forms should be written so that side-effects are
done by the forms in the macro expansion. The macro-expander itself should not do the
side-effects.

For example:

Wrong:

(defaacro foo 0
(really-fool
‘(really-fool)

Right:

(defnacro foo 0
‘(eval-when (:conpile-toplevel :execute :load-toplevel) (really-foe)))

Adherence to this convention means that such macros behave intuitively when appearing
as non-top-level forms.

l Placing a variable binding around an eval-when reliably captures the binding because the
compile-time-too mode cannot occur (i.e., introducing a variable binding means that the
eval-when is not a top level form). For example,

(let ((x 3))
(eval-vhen (:execute :load-toplevel :compile-toplevel) (print x1))

prints 3 at execution (i.e., load) time, and does not print anything at compile time.
This is important so that expansions of defim and defmacro can be done in terms of
eval-when and can correctly capture the letical environment.

(defun bar (x) (defun foo 0 (+ x 3)))

might expand into

(defun bar (x)
(progn (eval-when (:compile-toplevel)

(compiler::notice-function-definition 'foe '(10))
(eval-when (:execute :load-toplevel)

(setf (symbol-function 'foe) #'(lambda (1 (+ x 3))))))

which would be treated by the above rules the same as

Evaluation and Compilation 3-51

ANSI X3.226-1994 Programming Language-Common Lisp

<defuu bar (I)
(setf (symbol-function ‘foe) *‘(lambda 0 (+ I 3))))

when the definition of bar is not a top level fem.

load-t ime-value Special Operator

Syntax:
load-tim+value form &optional read-only-p + object

Arguments and Values:
form-a form; evaluated as described below.

read-only-p-a boolean; not evaluated.

object-the primary value resulting from evaluating form.

Description:
load-time-value provides a mechanism for delaying evaluation of form until the expression is in
the run-time environment; see Section 3.2 (Compilation).

Read-only-p designates whether the result can be considered a constant object. If t, the result is a
read-only quantity that can, if appropriate to the implementation, be copied into read-only space
and/or coalesced with similar constant objects from other programs. If nil (the default), the result
must be neither copied nor coalesced; it must be considered to be potentially modifiable data.

If a load-time-value expression is processed by compile-file, the compiler performs its normal
semantic processing (such as macro expansion and translation into machine code) on form, but
arranges for the execution of form to occur at load time in a null lezical environment, with the
result of this evaluation then being treated aa a liteml object at run time. It is guaranteed that
the evaluation of form will take place only once when the file is loaded, but the order of evaluation
with respect to the evaluation of top level forms in the file is implementation-dependent.

If a load-time-value expression appears within a function compiled with compile, the form is
evaluated at compile time in a null lezical environment. The result of this compile-time evalua-
tion is treated as a literal object in the compiled code.

If a load-time-value expression is processed by eval, form is evaluated in a null lezical environ-
ment , and one value is returned. Implementations that implicitly compile (or partially compile)
expressions processed by eval might evaluate form only once, at the time this compilation is
performed.

If the same list (load-tine-value form) is evaluated or compiled more than once, it is
implementation-dependent whether form is evaluated only once or is evaluated more than once.
This can happen both when an expression being evaluated or compiled shares substructure, and
when the same form is processed by evaI or compile multiple times. Since a load-time-value
expression can be referenced in more than one place and can be evaluated multiple times by
eval, it is implementation-dependent whether each execution returns a fresh object or returns the
same object as some other execution. Users must use caution when destructively modifying the
resulting object.

If two lists (load-tine-value form) that are the same under equal but are not identical are
evaluated or compiled, their values always come from distinct evaluations of form. Their values
may not be coalesced unless read-only-p is t.

3-52 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226- 1994

Examples:

;:; The function IgCRl always returns the sane value, even in different iuages.
;;; The function INCR2 aluaya returns the sane value in a given iuage.
;;; but the value it returns night vary fron inage to iuage.
(defun incrl (xl (+ x t.(randos 171))
(defun incr2 (x): (+ x (load-time-value (random 17))))

;;; The function Fool-REF references the nth elerent of the first of
;;; the l FOO-AhhAYS+ that is available at load tise. It is permissible for
;;; that array to be modified (e.g., by SET-Fool-REP); Fool-REF sill see the
; ; ; updated values.
(defvar *foe-arrays* (list (make-array 7) (nake-array 81))
(defun fool-ref (n) (aref (load-tine-value (first my-arrays*) nil) n))
(defun set-fool-ref (n vail

(setf (aref (load-tine-value (first *ry-arrays*) nil) n) val))

;;; The function BARl-REF references the nth element of the first of
; ; ; the *BAR-ARRAYS* that is available at load tire. The prograsuer ha5
;;; promised that the array vi11 be treated as read-only, so the system
;;: can copy or coalesce the array.
(defvar *bar-arrays* (list (nake-array 7) k&e-array 8)))
(defun barl-ref (n) (aref (load-tire-value (first wry-arrays*) t) n))

;;; This use of LOAD-TIHE-VALUE permits the indicated vector to be coalesced
;;; even though NIL oas specified, because the object sas already read-only
;;; when it oas vritten as a literal vector rather than created by a constructor.
;;; User prograss rust treat the vector v as read-only.
(defun has-ref (n)

(let ((v (load-tine-value #(A B Cl nil)))
(values (svref v n) v)))

;;; This use of LOAU-TIHE-VALUg pernits the indicated vector to be coalesced
;;; even though NIL va5 specified in the outer situation because T va5 specified
;;; in the inner situation. User programs must treat the vector v a5 read-only.
(defun baz-ref (n)

(let ((v (load-tine-value (load-tire-value (vector 1 2 3) t) nil)))
(values (svref v n) ~1))

See Also:
compile-file, compile, eval, Section 3.2.2.2 (Minimal Compilation), Section 3.2 (Compilation)

Notes:
load-time-value must appear outside of quoted structure in a “for evaluation” pcwition. In
situations which would appear to call for 1155 of load-timevalue within a quoted structure, the
backquote reader macrw is probably called for; see Section 2.4.6 (Backquote).

Specifying nil for read-only-p is not a way to force an object to become modifiable if it has already
been made read-only. It is only a way to say that, for an object that is modifiable, this operation
is not intended to make that object read-only.

Evaluation and Compilation 3-53

ANSI X3.226-1994 Programming Language-Common Lisp

qupte Special Operator

syntax:
quote object + object

Arguments and Values:
object-an objecf; not evaluated.

Description:
The quote special operator just returns object.

l’l’d;e~quences are undefined if literal objects (including quoted objects) are destructively

Examples:

(setq a 1) -)) 1
(quote (setq a 3)) + CSETQ A 3)
ad1
'a + A
*'a --) (QUOTB A)
"'a -c (QUOTE (QUOTE A))
hetq a 43) 4 43
(list a (cons a 3)) -+ (43 (43 . 3))
(list (quote a) (quote (cons a 3))) + (A (COBS A 3))
l-+1
'1 -+ 1
"foe" + "fog
"'foe" + yoon
(car '(a b)) -) A
'(car 'tab)) + (CAR (QUOTE (A B)))
S(car '(a b)) + #(CAR (QUOTE (A B)))
'#(car '(a b)) -+ #(CAR (QUOTE (A B)))

See Also:
Section 3.1 (Evaluation), Section 2.4.3 (Single-Quote), Section 3.2.1 (Compiler Terminology)

Notes:
The textual notation ‘object is equivalent to (quote object); see Section 3.2.1 (Compiler Termi-
nology).

Some objects, called self-evaluating objecis, do not require quotation by quote. However, symbols
and lisls are used to represent parts of programs, and so would not be useable as constant data
in a program without quote. Since quote suppresses the evaluation of these objects, they become
data rather than program.

3-54 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

compiler-macro-function Accessor

Syntax:
compiler-macr*function name &optional environment -, function

(eetf (compiler-macr*function name &optional environment) new-function)

Arguments and Values:
name-a function name.

environment-an environment object.

function, new-function-a compiler macro function, or nil.

Description:
Accesses the compiler macro function named name, if any, in the environment.

A value of nil denotes the absence of a compiler macro function named name.

Exceptional Situations:
The consequences are undefined if environment is non-nil in a use of setf of
compiler-macro-function.

See Also:
define-compiler-macro, Section 3.2.2.1 (Compiler Macros)

define-compiler-macro

Syntax:
define-compiler-macro name bmbda-list [{declaration}* 1 documentation] { fwm}*

--) name

Arguments and Values:
name-a function name.

lambda-list-a macro lambda list.

declaration-a declare ezpression; not evaluated.

documentation-a string; not evaluated.

form-a form.

Description:
This is the normal mechanism for defining a compiler macro function. Its manner of definition is
the same as for defmacro; the only differences are:

l The name can be a function name naming any function or macro.

Evaluation and Compilation 3-55

ANSI X3.226-1994 Programming Language-Common Lisp

l The expander function is installed as a compiler macro function for the name, rather than
aa a macro function.

l The &whale argument is bound to the form argument that is passed to the compiler
macIy) funciion. The remaining lambda-list parameters are specified as if this form
contained the function name in the car and the actual arguments in the cdr, but if the
car of the actual form is the symbol funcall, then the destructuring of the arguments is
actually performed using its cddr instead.

w Documentation is attached as a documentation string to name (as kind compiler-macro)
and to the compiler macro function.

l Unlike an ordinary macro, a compiler macro can decline to provide an expansion merely
by returning a form that is the same as the original (which can be obtained by using
&whole).

Examples:

(defun square W (expt x 2)) + SQUAIlE
(define-coapiler-aacro square (tuhole fern arg)

(if (aton arg)
‘ (expt ,arg 2)
(case (car arg)

(square (if (= (length arg) 2)
‘(expt ,(nth 1 arg) 4)
fora))

(expt (if (- (length arg) 3)
(if (nunberp (nth 2 arg))

‘(expt .(nth 1 arg) ,(* 2 (nth 2 arg)))
‘(expt .(nth 1 arg) (* 2 .(nth 2 arg))))

fora))
(other-vise ‘(expt ,arg 2))))) + SQUARE

(square (square 3)) + 81
(racroexpand ‘(square x)) -+ (SQUARE I), false
(funcall (compiler-nacro-function ‘square) ‘(square x) nil)

* (EXPTX2)
(funcall (compiler-macro-function ‘square) ‘(square (square 10) nil)

* (EXPTX4)
(funcall (compiler-macro-function ‘square) ‘(funcall #‘square x) nil)

+ tEXF’TX2)

(defun distance-positional (xl yl x2 ~2)
(sqrt (+ (expt (- x2 xl) 2) (expt (- y2 yl) 2))))

+ DISTABCE-POSITIOHAL
(defun distance (&key (xl 0) (yl 0) (x2 xl) (~2 ~1))

(distance-positional xl yl x2 ~2))
+ DISTADCE

3-56 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

(define-cospiler-sacro distance (kshole fors
&rest fey-value-pairs
&key (xl 0 xl-p)

(Yl 0 91-p)
(x2 xl x2-p)
(Y2 yl y2-p)

tallos-other-keys
kenvironment em)

(flet ((key (IL) (nth (* n 2) key-value-pairs))
(srg (II) (nth (I+ (* n 2)) key-value-pairs))
(sisplep (x1

(let ((expanded-x (macroexpand x env)))
(or (constsntp expanded-x env)

(symbolp expanded-x)))))
(let ((n U (length key-value-pairs) 2)))

(multiple-value-bind (xls yls x28 y2s others)
(loop for (key) on key-value-pairs by t'cddr

count (eq key ':x1) into Xl8
count (eq key ':yl) into y1s
count (eq key ’ :x2) into X28
count (eq key ':yl) into y2s
count (not (mesber key '(:x1 :x2 :yl :y2)))

into others
finally (return (values xls yls x28 ~28 others)))

(cond ((and (= n 4)
(eq (key 0) :x1)
(eq (key I) :yl)
(eq (key 2) :x2)
(eq (key 3) :y2))

‘(distance-positiaal ,x1 .yl .x2 ,yZ))
((and (if xl-p (and (= xls 1) (simplep xl)) t)

(if yl-p (end (0 yls I) (simplep ~1)) t)
(if x2-p (and (= ~2s I) (simplep x2)) t)
(if y2-p (and (= ~28 I) (simplep ~2)) t)
(xerop others))

‘(distance-positional .x1 .yl ,x2 ,y2))
((and (< xls 2) (< yls 2) ((. ~2s 2) (< y2s 2)

(zerop others))
(let ((temps (loop repeat n collect (gensym))))

‘(let ,(loop for i belov n
collect (list (nth i temps) (arg i)))

(distance
,O(loop for i below n

append (list (key i) (nth i terps)))))))
(t fors))))))

+ DISTMCE

Evaluation and Compilation 3-57

ANSI X3.226-1994 Programming Language-Common Lisp

(dolist (fern
'((distance :x1 (setq x 7) :x2 (decf I) :yl (decf x) :y2 (decf x))

(distance :x1 (aetq x 7) :yl (decf x) :x2 (decf x) :y2 (decf XI))
(distance :x1 (eetq x 7) :yl (inCf X))
(dietence :x1 (eetq x 7) :yl (incf x) :x1 (incf x))
(distance :x1 al :yl bl :x2 a2 :y2 b2)
(dietance :x1 al :x2 a2 :yl bl :y2 b2)
(distance :x1 al :yl bl :zl cl :x2 a2 :y2 b2 :22 ~2)))

(print (funcall (corpiler-nacro-function 'distance) forr nil)))
D (LET ((6:06558 (SET9 X 7))
D (lt:G6559 (DECF X))
D (6~~6560 (DECF)o)
D (8:06561 (DECF X)))

(DISTABCE :X1 t:G6558 :X2 #:G6559 :Yl 8:G6560 :Y2 t:G6561))
L (DISWKE-POSITIOP (SETQ x 7) (DECF)o (DECF x) (DECF x1)
D (LET ((6:06567 (SETQ X 7))
D (t:G6568 (IPCF X)))

(DISTABCE :X1 #:G6567 :Yl #:G6568))
: (DISTABCE :X1 (SETQ X 7) :Yl (IICF X)0 :X1 (IICF X))
D (DISTABCE-POSITIOH Al Bl A2 B2)
D (DISTAIOCE-POSITIOIJILAL Al Bl A2 B2)
D (DISTABCE :X1 Al :Yl Bl :21 Cl :X2 A2 :Y2 B2 :Z2 C2)
-* #IL

See Also:
compiler-macro-function, defmacro, documentation, Section 3.4.11 (Syntactic Interaction of
Documentation Strings and Declarations)

Notes:
The consequences of writing a compiler macro definition for a function in the COHHOE-LISP package
are undefined; it is quite possible that in some implementations such an attempt would override
an equivalent or equally important definition. In general, it is recommended that a programmer
only write compiler macro definitions for functions he or she personally maintains-writing a
compiler macro definition for a function maintained elsewhere is normally considered a violation
of traditional rules of modularity and data abstraction.

defmacro Macro

Syntax:
defmacro name lambda-list [{declaration}* [documentation] {form}*

-) name

Arguments and Values:
name-a symbol. I

lambda-list-a macro lambda list.

declaration-a declare ezprcssion; not evaluated.

documentation-a string; not evaluated.

form-a fom3 .

3-58 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

Description:
Defines name as a macro by associating a macre function with that name in the global environ-
ment. The macro function is defined in the same lezical environment in which the defmacro form
appears.

The parameter variables in lambda-list are bound to destructured portions of the macro call.

The expansion function accepts two arguments, a form and an enuironmeut. The expansion
function returns a form. The body of the expansion function is specified by forms. Forms are
executed in order. The value of the last form executed is returned as the expansion of the macro.
The body forms of the expansion function (but not the lambda-list) are implicitly enclosed in a
block whose name is name.

The lambda-list conforms to the requirements described in Section 3.4.4 (Macro Lambda Lists).

Documentation is attached as a documentation string to name (as kind function) and to the
macro function.

defmacro can be used to redefine a macro or to replace a function definition with a macro
definition.

Recursive expansion of the form returned must terminate, including the expansion of other
macros which are subforms of other forms returned.

The consequences are undefined if the result of fully macroexpanding a form contains any circular
list structure except in literal objects.

If a defmacro form appears as a top level form, the compiler must store the macIy) definition
at compile time, so that occurrences of the macro later on in the file can be expanded correctly.
Users must ensure that the body of the macro can be evaluated at compile time if it is referenced
within the jile being compiled.

Examples:

(defnacro racl (a b) "Wacl multiplies and adds”
‘(+ ,a (* .b 3))) + HACl

(racl 4 5) + 19
(docruentation ‘racl ‘function) + “Hacl multiplies and adds”
(defracro nac2 (&optional (a 2 b) (c 3 d) &rest x) “(.a ,b ,c ,d ,x)1 -+ HAC2
(mac2 6) * (6 T 3 HIL IPIL)
(nac2 6 3 8) + (6 T 3 T (8))
(defracro rac3 (tohole r a &optional (b 3) &rest x &key c (d a))

“(,r .a .b ,c .d .x)) -+ HAC3
(aac3 1 6 :d 8 :c 9 :d 10) + ((HAC3 1 6 :D 8 :C 9 :D 10) 1 6 9 8 (:D 8 :C 9 :D 10))

The stipulation that an embedded destructuring lambda list is permitted only where ordinary
lambda list syntax would permit a parameter name but not a list is made to prevent ambiguity.
For example, the following is not valid:

(defracro loser (x koptional (a b West c) &rest z)
. . .)

because ordinary lambda list syntax does permit a list following &optional; the list (a b &rest C)
would be interpreted as describing an optional parameter named a whose default value is that of
the form b, with a supplied-p parameter named &rest (not valid), and an extraneous symbol c in
the list (also not valid). An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)
. . .)

Evaluation and Compilation 3-59

.,.: ._ , -

ANSI X3.226-1994 Programming Language-Common Lisp

The extra set, of parentheses removes the ambiguity. However, the definition is uow incorrect
because a macro call such as (loser (car pool)) would not provide any argument form for the
lambda list (a b arest c), and 80 the default value against which to match the lambda list would
be nil because no explicit default value was specified. The consequences of this are unspecified
since the empty list, nil, does not have fours to satisfy the parameters a and b. The fully correct
definition would be either

(defaacro loser (x &optional ((a b &rest c) '(nil nil)) &rest z)
. . .)

or

(defaacro loser (x &optional ((&optional a b Arest c)) Arest z)
. . .)

These differ slightly: the i?rst requires that if the macro call specifies a explicitly then it must also
specify b explicitly, whereas the second does not have this requirement. For example,

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

(defnacro dala (Lohole x1 “,x)
(macroexpand '(dnla)) - (QUOTE (DHlA))
(nacroexpaud '(dnla a)) is an error.

(defnacro &lb (Lohole x a &optional b) “(.x ,a ,b))
(nacroexpand '(&lb)) is an error.
(macroexpand ‘(dalb q)) + (QUOTE ((DHlB Q) Q BIL))
(aacroexpand '(dulb q r)) 4 (QUOTE (@BlB Q it) Q R))
(racroexpand '(dalb q r 8)) is an error.

(defnacro dm2a (trrhole form a b) “(fora ,forn a .a b .b))
(macroexpand '(dn2a x y)) -+ (QUOTE (FOB!! (DH2A X Y) A X B Y))
(dn2a x J) -+ (FOBI (DH2A X Y) A X B Y)

(defnacro da2b (&whole foru a (&whole b (c . d) &optional (e 5))
&body f tenvironuent env)

“(,'.foxn ,,a .'.b ,',(nacroexpandc env) .',d ,',e ,'.f))
:Bote that because backquote is involved, inplenentations nay differ
;slightly in the nature (though not the functionality) of the expansion.
(macroexpand '(dnlb xl (((incf x2) x3 x4)) x5 x6))
- (LIST* '(DH2B Xl (((IBCF X2) X3 X4))

X5 X6)
Xl
'((((IBCFXZ) X3 X4)) (SETQ X2 (+X2 1)) (X3 X4) 5 (X5 X6))),

T
(let ((xl 5))

(racrolet ((sagundo (x1 ‘(cadr ,x1))
(da2b xl (((Segundo x2) x3 x4)) x5 x6)))

* ((DHZB Xl (((sEOUBDO X2) x3 X4)) x5 X6)
5 (((SEOUBDO x2) x3 x4)) (CADR x2) (x3 x4) 5 (x5 x6))

See Also:
defme-compiler-macro, destructuring-bind, documentation, macroexpand,
macroexpand-hook, macrolet, macro-function, Section 3.1 (Evaluation), Section 3.2 (Compi-
lation), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

3-60 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

macro-function Acceasor

Syntax:
macro-function symbol &optional environment + function

(setf (macr+function symbol &optional environment) new-function)

Arguments and Values:
symbol-a symbol.

environment-an environment object,

function-a macro function or nil.

new-function-a macro function.

Description:
Determines whether symbol has a function definition as a macro in the specified environment.

If so, the macro expansion function, a function of two arguments, is returned. If symbol has
no function definition in the lexical environment environment, or its definition is not a macro,
macrckfuuction returns nil.

It is possible for both macro-function and speck&operator-p to return true of symbol. The
macro definition must be available for use by programs that understand only the standard
Common Lisp special forms.

Examples:

(defnacro nacfun (x) ‘(macro-function ‘racfun)) + HACFW
(not (macro-function ‘racfuu)) + false

(macrolet ((foe &environment env)
(if (macro-function ‘bar env)

’ ‘yes
p’no)))

(list (foe)
(macrolet ((bar 0 :beep))

(foe))))

- (NO YES)

Affected By:
(setf macro-function), defmacro, and macrolet.

Exceptional Situations:
The consequences are undefined if environment is non-nil in a use of setf of macrc&mctlon

See Also:
defmacro, Section 3.1 (Evaluation)

Evaluation and Compilation 3-61

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
setf can be used with macro-function to install a macro as a symbol’s global function definition:

(setf (macro-function eynbol) fn)

The value installed must be a funcfion that accepts two arguments, the entire macro call and
an environment, and computes the expansion for that call. Performing this operation cause5
symbol to have only that macro definition as its global function definition; any previous definition,
whether as a macro or as a fundion, is lost.

macroexpand, macroexpand-l Function

syntax:
macroexpand form &optional env + expansion. axpanded-p

macroexpand- form koptiondl env + expansion, expanded-p

Arguments and Values:
form-a form.

env-au enuironmeni object. The default is nil.

expansion-a fomr.

expanded-p-a generalized boolean.

Description:
macroexpand and macroexpand- expand macros.

If form is a macro form, then macroexpand- expands the macro form call once.

macroexpand repeatedly expands form until it is no longer a macro form. In effect,
macroexpand calls macroexpand- repeatedly until the secondary value it returns is nil.

If form i@ a macro form, then the expansion is a macro ezpansion and expanded-p is true. Other-
wise, the expansion is the given form and expanded-p is false.

Macro expansion is carried out as follows. Once macroexpand-l has determined that the form
is a macro form, it obtains an appropriate expansion function for the macro or symbol macro.
The value of *macroexpand-hook* is coerced to a function and then called as a function of three
arguments: the expansion function, the form, and the env. The value returned from this call is
taken to be the expansion of the form.

In addition to macw definitions in the global environment, any local macro definitions established
within env by macrolet or symbol-macrolet are considered. If only form is supplied as an argu-
ment, then the environment is effectively null, and only global macro definitions as established by
defmacro are considered. Macro definitions are shadowed by local function definitions.

Examples:

(def=acro alpha (x y) ‘(beta .x ,y)) + ALPHA
(defaacro beta (x y) ‘(gaua ,x ,y)) -+ BETA
(defracro delta (x y) ‘(gamma ,x ,y)) + EPSILCNi

3-62 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

(defracro expand (fors kenvironnent env)
(multiple-value-bind (expansion expanded-p)

(racroexpand fern env)
’ (values ‘.expansion ‘.expanded-p))) - BXPABD

(defnacro expand-l (for-n tenvironuent env)
(multiple-value-bind (expansion expanded-p)

(nacroexpand-1 for-n env)
‘(values ’ , expansion ‘,expanded-p))) - BXPABD-1

** Sinple exanples involving just the global environment
‘inacroexpand-1 ‘(alpha a b)) + (BBTA A B), true

(expand-l (alpha a b)) -* (BETA A B) , true
(racroexpand ‘(alpha a b)) -+ (GAIBU A B) , true
(expand (alpha a b)) + (GAHHA A B), frue
(racroexpand-1 ‘not-a-macro) -+ HOT-A-HACRO, fake
(expand-l not-a-macro) + BOT-A-BACBO, fabe
(uacroexpand ‘(not-a-nacro a b)) + (POT-A-HACHO A B). false
(expand (not-a-macro a b)) -+ (HOT-A-BACBO A B) , fake

;; Bxanples involving lexical environments
(racrolet ((alpha (x J) ‘(delta .x ,J)))

(macroexpand- ‘(alpha a b))) -+ (BETA A B) , true
(racrolet ((alpha (x y) ‘(delta .x ,y)))

(expand-i (alpha a b))) + (DELTA A B) , true
(nacrolet ((alpha (x y) ‘(delta .x .y)))

(nacroexpand ‘(alpha a b))) + (GAH?IA A B). true
(macrolet ((alpha (x y) ‘(delta .x ,y)))

(expand (alpha a b))) + (GAHKA A B) , true
(racrolet ((beta (x y) ‘(epsilon .x .y)))

(expand (alpha a b))) - (EPSILON A B), true
(let ((x (list 12 3)))

(synbol-•acrolet ((a (first x)))
(expand a))) + (FIRST Xl, true

(let ((x (list 1 2 3)))
(symbol-sacrolet ((a (first x))>

(nacroexpand ‘a))) + A, fake
(syubol-nacrolet ((b (alpha x y) 1)

(expand-l b)) + (ALPHA X f). true
(symbol-nacrolet ((b (alpha x y)))

(expand b)) + (GABHA X Y) , true
(symbol-nacrolet ((b (alpha x y))

(a b))
(expand-l a)) -+ 8, true

(syubol-nacrolet ((b (alpha x y))
(a b))

(expand a)) + (GABHA X Y) , true

Evaluation and Compilation 3-63

ANSI X3.226-1994 Programming Language-Common Lisp

;; Exaaples of shadowing behavior
(flet ((beta (x y) (+ x y)))

(expand (alpha a b) 1) + (BETA A B) , 2rtbe
(macrolet ((alpha (x y) ‘ (delta ,x ,y)))

(flet ((alpha (x y) (+ x y)))
(expand (alpha a b) 1) 1 -+ W.HiA A B) , fdSe

(let ((x (list 1 2 3)))
(syabol-racrolet ((a (first x)))

(let ((a x1)
(expand a)))) + Ai, false

Affected By:
defmacro, setf of macro-function, macrolet, symbol-macrolet

See Also:
macroexpand-hook, defmacro, setf of macro-Rmction, macrolet, symbol-macrolet, Section
3.1 (Evaluation)

Notes:
Neither macroexpand nor macroexpand-l makes any explicit attempt to expand macro forms
that are either subforms of the form or subforms of the expansion. Such expansion might occur
implicitly, however, due to the semantics or implementation of the macro function.

define-symbol-macro Macro

Syntax:
define-symbol-macro symbol expansion

--) symbol

Arguments and Values:
symbol-a symbol.

expansion-a form,

Description:
Provides a mechanism for globally affecting the macro ezpansion of the indicated symbol.

Globally establishes an expansion function for the symbol macro named by symbol. The only
guaranteed property of an expansion function for a symbol macro is that when it is applied to the
form and the environment it returns the correct expansion. (In particular, it is implementation-
dependenf whether the expansion is conceptually stored in the expansion function, the entkvn-
ment, or both.)

Each global reference to symbol (i.e., not shadowed2 by a binding for a variable or symbol macro
named by the same symbol) is expanded by the normal macro expansion process; see Section
3.1.2.1.1 (Symbols as Forms). The expansion of a symbol macro is subject to further macro
ezpansion in the same lezical environment as the symbol macro reference, exactly analogous to
normal macros.

The consequences are unspecified if a special declaration is made for symbol while in the scope of
this definition (i.e., when it is not shadowed2 by a binding for a variable or symbol macro named
by the same symbol).

3-64 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

Any use of setq to set the value of the symbol while in the scope of this definition is treated as if
it were a setf. psetq of symbol is treated as if it were a psetf, and multiple-value-setq is treated
a.s if it were a setf of values.

A binding for a symbol macro can be shadowed2 by let or symbol-macrolet.

Examples:

(defvar *things* (list 'alpha 'beta 'gamma)) -+ *THINGS*

(define-symbol-macro thing1 (first *things*)) -+ THING1
(define-symbol-macro thing2 (second *things+)) - TBING2
(define-symbol-macro thing3 (third *things+)) -+ TBIPGB

thing1 -) ALPBA
(setq thing1 'ONE) -L ONE
things + (ONE BETA GAMMA)
(multiple-value-setq (thing2 thing31 (values 'two 'three)) + TWO
thing3 -+ TBBEE
things -+ (OWE TYO THREE)

(list thing2 (let ((thing2 2)) thingl)) + (TWO 2)

Exceptional Situations:
If symbol is already defined as a global variable, an error of type program-error is signaled.

See Also:
symbol-macrolet, macroexpand

symbol-macrolet Special Operator

Syntax:
sy m+b;l-m;z..;let ({(symbol expansion)}*) {declaration}* {form}*

resu

Arguments and Values:
symbol-a symbol.

expansion-a fom ,

declaration-a declare expression; not evaluated.

forms-an implicit progn.

results-the values returned by the forms.

Description:
symbol-macrolet provides a mechanism for affecting the macro ezpansion environment for
symbols.

symbol-macrolet lexically establishes expansion functions for each of the symbol macros named
by symbols. The only guaranteed property of an expansion function for a symbol macro is that

Evaluation and Compilation 3-65

ANSI X3.226-1994 Programming Language-Common Lisp

when it is applied to the form and the entironmenf it returns the correct expansion. (In particu-
lar, it is implementaiion-dependeni whether the expansion is conceptually stored in the expansion
function, the environment, or both.)

Each reference to symbol as a variable within the lexical scope of symbol-macrolet is expanded
by the normal macro expansion process; see Section 3.1.2.1.1 (Symbols as Forms). The expansion
of a symbol macro is subject to further macro expansion in the same lexical environment as the
symbol macro invocation, exactly analogous to normal macros.

Exactly the same declarations are allowed as for let with one exception: symbol-macrolet signals
an error if a special declaration names one of the symbols being defined by symbol-macrolet.

When the forms of the symbol-macrolet form are expanded, any use of s&q to set the value of
one of the specified variables is treated as if it were a setf. psetq of a symbol defined as a symbol
macro is treated as if it were a psetf, and multiple-value-s&q is treated as if it were a setf of
VZIhXi.

The use of symbol-macrolet can be shadowed by let. In other words, symbol-macrolet only
substitutes for occurrences of symbol that would be in the scope of a lexical binding of symbol
surrounding the forms.

Examples:

;;; The follooing is equivalent to
;;: (list ‘foe (let ((x ‘bar)) XI)).
;;; not
;;; (list ‘foe (let ((‘foe ‘bar)) ‘too))

(symbol-aacrolet ((x ‘foe))
(list x (let ((x ‘bar)) x)))

+ (foe bar)
not -) (foe fool

(symbol-macrolet ((x ‘(foe x)))
(list x1)

+ ((FDO X))

Exceptional Situations:
If an attempt is made to bind a symbol that is defined as a global variable, an error of type
program-error is signaled.

If declaration contains a special declaration that names one of the symbols being bound by
symbol-macrolet, an error of type program-error is signaled.

See Also:

Notes:

with-slots, macroexpand

The special form symbol-macrolet is the basic mechanism that is used to implement with-slots.

If a symbol-macrolet form is a top level form, the forms are also processed as top level forms.
See Section 3.2.3 (File Compilation).

3-66 Evaluation and Compilation

Programming LanguageCommon Lisp ANSI X3.226-1994

macroexpand-hook Variable

Value Type:
a designator for a function of three arguments: a macro function, a macro jonn, and an environ-
ment object.

Initial Value:
a designator for a function that is equivalent to the function funcall, but that might have addi-
tional implementation-dependent side-effects.

Description:
Used as the expansion interface hook by macroexpand- to control the macro ezpansion process.
When a macro form is to be expanded, this function is called with three arguments: the macro
function, the macro form, and the environment in which the macro form is to be expanded. The
environment object has dynamic edent; the consequences are undefined if the environment object
is referred to outside the dynamic eztent of the macro expansion function.

Examples:

(defun hook (expander fern env)
(format t "liov expanding: 'S'X" form)
(funcall expander form em)) -+ HOOK

(defnacro machook (x y) ‘(/ (+ ,I .y) 2)) -+ IUCHOOK
(macroexpand ‘(nachook 1 2)) -+ (/ (+ 1 2) 2). true

(let ((*macroexpand-hook* #'hook) 1 (macroexpand ‘(machook 1 2)))
0 Nov expanding (HACHOOK 1 2)
-+ ti (+ 1 2) 2)) true

See Also:
macroexpand, macroexpand-1, funcall, Section 3.1 (Evaluation)

Notes:
The net effect of the chosen initial value is to just invoke the macro function, giving it the macro
form and environment as its two arguments.

Users or user programs can assign this variable to customize or trace the macro ezpansion
mechanism. Note, however, that this variable is a global resource, potentially shared by multiple
programs; as such, if any two programs depend for their correctness on the setting of this variable,
those programs may not be able to run in the same Lisp image. For this reason, it is frequently
best to confine its uses to debugging situations.

Users who put their own function into *macroexpand-hook* should consider saving the previous
value of the hook, and calling that value from their own.

proclaim Function

Syntax:
proclaim declaration-specifier + implementation-dependent

Evaluation and Compilation 3-67

ANSI X3.226-1994 Programming Language-Common Lisp

Arguments and Values:
declaration-specifier-a declaration specifier.

Description:
Establishes the declaration specified by declaration-specifier in the global environment.

Such a declaration, sometimes called a global declamtion or a proclamation, is always in force
unless locally shadowed.

Names of variables and functions within declaration-specifier refer to dynamic van’ables and global
function definitions, respectively.

Figure 3-22 shows a list of declaration identifiers that can be used with proclaim.

I declaration inline optimize tn=
ftrpe notinline special I

Figure 3-22. Global Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration identifiers as
well.

Examples:

(defun declare-variable-types-globally (type vars)
(proclaim ‘(type .type .Qvar8))
type)

;; Once this forz is executed, the dynamic variable *TOLERARCE*
;; must alvays contain a float.
(declare-variable-types-globally ‘float ‘(*tolerance*))

* FLOAT

See Also:
declaim, declare, Section 3.2 (Compilation)

Notes:
Although the etecution of a proclaim form has effects that might affect compilation, the compiler
does not make any attempt to recognize and specially process proclaim forms. A proclamation
such as the following, even if a top level form, does not have any effect until it is executed:

(proclaim ‘(special *x*))

If compile time side effects are desired, evaI-when may be useful. For example:

(eval-when (:execute :compile-toplevel :load-toplevel)
(proclaim '(special *x*)))

In most such cases, however, it is preferrable to use declaim for this purpose.

Since proclaim forms are ordinary function forms, macro forms can expand into them.

3-68 Evaluation and Compilation

Programming Language-Common Lisp ANSI x3.226-1994

declaim

Syntax:
declaim {declaration-specifier}* -) implementation-dependent

Arguments and Values:
declaration-specifier-a declaration specifier; not evaluated.

Description:
Establishes the declarations specified by the declaration-specifiers.

If a use of this macro appears as a top level form in a file being processed by the file compiler,
the proclamations are also made at compile-time. As with other defining macros, it is unspecified
whether or not the compile-time side-effects of a declaim persist after the file has been compiled.

See Also:
declare, proclaim

declare Symbol

Syntax:
declare {declaration-specifier}*

Arguments:
declaration-specifier-a declaration specifier; not evaluated.

Description:
A declare ezpression, sometimes called a declaration, can occur only at the beginning of the
bodies of certain forms; that is, it may be preceded only by other declare expressions, or by a
documentation string if the context permits.

A declare ezpression can occur in a lambda ezpression or in any of the forms listed in Figure
3-23.

defgenerlc
de&e-compiler-macro
define-method-combination
define-setf-expander
defmacro
defmethod
defsetf
deft ype
defun
destructuring-bind
do
do*
do-all-symbols

do-external-symbols
do-symbols
dolist
dotimes
flet
handler-case
labels
let
let*
locally
macrolet
multiple-value-bind
pprint-logical-block

prog
pw*
restart-case
symbol-macrolet
with-accessors
with-hash-table-iterator
with-input-from-string
with-open-flle
with-open-stream
with-output-t+string
with-package-iterator
with-slots

Figure 3-23. Standardized Forms In Which Declarations Can Occur

Evaluation and Compilation 3-69

ANSI X3.226-1994 Programming Language-Common Lisp

A declare ezpression can only occur where specified by the syntax of these foms. The conse-
quences of attempting to evaluate a declare ezpression are undefined. In situations where such
ezpressions can appear, explicit checks are made for their presence and they are never actually
evaluated; it is for this reason that they are called “declare expressions” rather than “declare
fOlYl lS.”

Macro forms cannot expand into declarations; declare expressions must appear as actual subex-
pressions of the form to which they refer.

Figure 3-24 shows a list of declanriion identifiers that can be used with declare.

dynamic-extent ignore
ftrpe inline
ignorable notiullne

Figure 3-24. Local Declaration Specifiers

optimize
special
tme

An implementation is free to support other (implementation-defined) declaration identifiers as
well.

Examples:

(defun nonsense (k x z)
(foe 2 x) ;First call to foo
(let CCj (foe k x)) ;Second call to foo

(x (* k k)))
(declare (inline foe) (special x 2))
(foe x j 2))) ;Third call to foo

In this example, the inline declaration applies only to the third call to foo, but not to the first
or second ones. The special declaration of x causes let to make a dynamic binding for x, and
causes the reference to x in the body of let to be a dynamic reference. The reference to x in the
second call to foo is a local reference to the second parameter of nonsense. The reference to x in
the first call to foo is a local reference, not a special one. The special declaration of z causes the
reference to z in the third call to foo to be a dynamic reference; it does not refer to the parameter
to nonsense named z, because that parameter binding has not been declared to be special. (The
special declaration of z does not appear in the body of defuu, but in an inner form, and therefore
does not affect the binding of the parameter.)

Exceptional Situations:
The consequences of trying to use a declare expression as a form to be evaluated are undefined.

See Also:
proclaim, Section 4.2.3 (Type Specifiers), declaration, dynamic-extent, ftype, ignorable,
ignore, inline, notinline, optimize, type

ignore, ignorable Declaration

Syntax:
(ignore {wf I (function fn)}*)

(ignorable { var I (function fn)}*)

3-70 Evaluation and Compilation

‘ .

Programming Language-Common Lisp ANSI X3.226-1994

Arguments:
var-a variable name.

fn-a function name.

Valid Context:
declaration

Binding Types Affected:
variable, function

Description:
The ignore and ignorable declarations refer to for-value references to variable bindings for the
vars and to function bindings for the fns.

An ignore declaration specifies that for-value references to the indicated bindings will not occur
within the scope of the declaration. Within the scope of such a declaration, it is desirable for a
compiler to issue a warning about the presence of either a for-value reference to any var or fn, or
a special declaration for any var.

An ignorable declaration specifies that for-value references to the indicated bindings might or
might not occur within the scope of the declaration. Within the scope of such a declaration, it is
not desirable for a compiler to issue a warning about the presence or absence of either a for-value
reference to any var or fn, or a special declaration for any var.

When not within the scope of a ignore or ignorable declaration, it is desirable for a compiler
to issue a warning about any var for which there is neither a for-value reference nor a special
declaration, or about any fn for which there is no for-value reference.

Any warning about a “used” or “unused” binding must be of type style-warning, and may not
affect program semantics.

The stream variables established by with-open-file, with-open-stream, with-input-from-string,
and with-output-to-string, and all iteration variables are, by definition, always ksed”. Using
(declare (ignore v)), for such a variable v has unspecified consequences.

See Also:
declare

dynamic-extent Declaration

Syntax:
(dynamic-extent [{ var}* I (function fn)*])

Arguments:
var-a van’able name.

fit-a function name.

Valid Context:
declaration

Binding Types Affected:
variable, function

Evaluation and Compilation 3-71

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
IR some containing form, F, this declaration asserts for each vari (which need not be bound by
F), and for each value Vii that vary takea on, and for each object &jk that is an otherwise inacces-
sible part of vij at any time when vij becomes the value of vary, that just after the execution of
F terminates, &jk is either inaccessible (if F established a binding for vafi) or still an otherwise
inaccessible part of the current value of vari (if F did not establish a binding for vari). The same
relation holds for each fh, except that the bindings are in the function namespace.

The compiler is permitted to use this information in any way that is appropriate to the imple-
mentation and that does not conflict with the semantics of Common Lisp.

dynamic-extent declarations can be fme declarations or bound declarations.

The vars and fns named in a dynamic-extent declaration must not refer to symbol macro or
macro bindings.

Examples:
Since stack allocation of the initial value entails knowing at the object’s creation time that the
object can be stack-allocated, it is not generally useful to make a dynamic-extent declaration
for variables which have no lexically apparent initial value. For example, it is probably useful to
write:

(defun f 0
(let ((x (list 1 2 3)))

(declare (dynamic-extent 11)
. ..)I

This would bermit those compilers that wish to do so to stack allocate the list held by the local
variable x. It is permissible, but in practice probably not as useful, to write:

(defun g (x) (declare (dynamic-extent x1) . ..)
(defun f 0 (g (list 1 2 3)))

Most compilers would probably not stack allocate the argument to g in f because it would be
a modularity violation for the compiler to assume facts about g from within f. Only an im-
plementation that was willing to be responsible for recompiling f if the definition of g changed
incompatibly could legitimately stack allocate the list argument to g in f.

Here is another example:

(declati (inline g))
(defun g (x) (declare (dynamic-extent x)) . ..)
(defun f 0 (g (list 1 2 3)))

(defun f 0
(flat ((g (x1 (declare (dynamic-extent x)) . ..))

(g (list 1 2 3))))

In the previous example, some compilers might determine that optimization was possible and
others might not.

A variant of this is the *called “stack allocated rest list” that can be achieved (in implementa-
tions supporting the optimization) by:

(defun f (&rest x)
(declare (dynamic-extent x))
. . . 1

3-72 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

Note that although the initial value of x is not explicit, the f function is responsible for asscm-
bling the list x from the passed arguments, so the f function can be optimized by the compiler to
construct a sra&allocored list instead of a heap-allocated list in implementations that support
such.

In the following example,

(let ((x (list ‘al ‘bl ‘cl))
(y (cons ‘a2 (cons ‘b2 (cons ‘c2 nil)))))

(declare (dynanic-extent x y))
. . . 1

The otherwise inaccessible parts of x are three conses, and the otherwise inaccessible parts of y
are three other conses. None of the symbols al, bl, cl, a2, b2, c2, or nil is an otherwise inacces-
sible part of x or y because each is interned and hence accessible by the package (or packages) in
which it is interned. However, if a freshly allocated uninterned symbol had been used, it would
have been an otherwise inaccessible part of the list which contained it.

; ; In this sxanple. the inplenentation is pernitted to stack allocate
; ; the liat that is bound to X.

(let ((x (list 12 3)))
(declare (dynamic-extent xl)
(print x)
:done)

D (1 2 3)
+ :DOWE

;; In this example. the list to be bound to L can be stack-allocated.
(defnn sap (x y z)

(do ((1 (list x y z) (cdr 1)))
((null 1))

(declare (dynanic-extent 1) 1
(prinl (car 1)))) -+ ZAP

(zap 1 2 3)
o 123
-* NIL

;; Some implementations might open-code LIST-ALL-PACKAGES in a vay
;; that permits using stack allocution of the list to be bound to L.

(do ((1 (list-all-packages) (cdr 1)))
((null 1))

(declare (dynanic-extent 1))
(let ((name (package-nane (car 1))))

(ohen (string-search “COFDION-LISP” name) (print nane))))
D “CONHON-LISP”
D “COMHON-LISP-USER”
--* NIL

; ; Sane inplementations night have the ability to stack allocate
;; rest lists. A declaration such as the following should be a cue
;; to such inplementations that stack-allocation of the rest list
;; sonld be desirable.

(defun add (&rest x)
(declare (dynamic-extent x) 1
(apply t’+ xl) + ADD

(add 1 2 3) -V 6

Evaluation and Compilation 3-13

ANSI X3.226-1994 Programming Language--Common Lisp

(defun zap (n 1)
;; Computes (IWDOH (+ H 1)) at relative speed of roughly O(1J).
;; It may be FSOP, but with a good compiler at least it
;; doesn't waste mch heap storage. :-I
(let ((a (make-mayn)))

(declare (dynamic-extent a))
(dotimes (i n)

(declare (dynamic-extent i))
(setf (aref a i) (random (+ i 1))))

(aref a 8))) 4 ZAP
(< (zap 5 3) 3) + irue

The following are in error, since the value of x is used outside of its eztenf:

(length (list (let ((x (list 1 2 3))) ; Invalid
(declare (dynamic-extent x1)
x)1)

(progn (let ((x (list 1 2 3))) ; Invalid
(declare (dynamic-extent x))
xl[)

nil)

See Also:
declare

Notes:
The most common optimization is to stack allocate the initial value of the objects named by the
wars.

It is permissible for an implementation to simply ignore this declaration.

type Declaration

Syntax:
(type typespec (war}*)

(typespec {war}*)

Arguments:
typespec-a type specifier.

war-a variable name.

Valid Context:
declaration or proclamation

Binding Types Affected:
vanable

Description:
Affects only variable bindings and specifies that the wars take on values only of the specified
typespec. In particular, values assigned to the variables by setq, as well as the initial values of the

3-74 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226- 1994

vsrs must be of the specified typespcc. type declarations never apply to function bindings (see
ftype) .

A type declaration of a symbol defined by symbol-macrolet is equivalent to wrapping a the
expression around the expansion of that symbol, although the symbol’s macro expansion is not
actually affected.

The meaning of a type declaration is equivalent to changing each reference to a variable (var)
within the scope of the declaration to (the typespec var), chang,ing each expression assigned to
the variable (new-value) within the scope of the declaration to (the typespec new-value), and
executing (the typespec var) at the moment the scope of the declaration is entered.

A type declaration is valid in all declarations. The interpretation of a type declaration is as
follows:

1. During the execution of any reference to the declared variable within the scope of the
declaration, the consequences are undefined if the value of the declared variable is not of
the declared type.

2. During the execution of any s&q of the declared variable within the scope of the declara-
tion, the consequences are undefined if the newly assigned value of the declared variable is
not of the declared type.

3. At the moment the scope of the declaration is entered, the consequences are undefined if
the value of the declared variable is not of the declared type.

A type declaration affects only variable references within its scope.

If nested type declarations refer to the same variable, then the value of the variable must be a
member of the intersection of the declared types.

If there is a local type declaration for a dynamic variable, and there is also a global type procla-
mation for that same variable, then the value of the variable within the scope of the local declara-
tion must be a member of the intersection of the two declared types.

type declarations can be free declarations or bound declarations.

A symbol cannot be both the name of a type and the name of a declaration. Defining a symbol
as the name of a class, structure, condition, or type, when the symbol has been declared aa a
declaration name, or vice versa, signals an error.

Within the lezical scope of an array type declaration, all references to array elements are as-
sumed to satisfy the ezpressed array element type (as opposed to the upgraded amay element
type). A compiler can treat the code within the scope of the array type declaration as if each
access of an array element were surrounded by an appropriate the form.

Examples:

(defun f (x y)
(declare (type fixnum x y))
(let ((2 (+x ~1))

(declare (type fixnum 2))
2)) - F

(f 1 2) -) 3

Evaluation and Compilation 3-75

ANSI X3.226-1994 Programming Language-Common Lisp

;; The previous definition of F is equivalent to
(defun f (x y)

;; This declaration is a shorthand forr of the TYPE declaration
(declare (fixnum x y))
;; To declare the type of a return value, it’s not necessary to
;; create a n-ad variable. A THEZ special f om can be used instead.
(the fixnur (+ x y))) + F

(f 1 2) * 3

(defvar *one-array* (rake-array 10 :elenent-type ‘(signed-byte 5)))
(defvar *another-array* (make-array 10 : element-type ’ (signed-byte 8)) 1

(defun frob (an-array)
(declare (type (array (signed-byte 5) 1) an-array))
(setf (aref an-array 1) 31)
(setf (aref an-array 2) 127)
(setf (aref an-array 3) (* 2 (aref an-array 3)))
(let ((too 0))

(declare (type (signed-byte 5) fool)
(setf foo (aref an-array 0))))

(frob *one-array*)
(frob *another-array*)

The above definition of frob is equivalent to:

(defun frob (an-array)
(setf (the (signed-byte 5) (aref an-array 1)) 31)
(setf (the (signed-byte 5) (aref an-array 2)) 127)
(setf (the (signed-byte 5) (aref an-array 3))

(* 2 (the (signed-byte 5) (aref an-array 3))))
(let ((foo 0))

(declare (type (signed-byte 5) foe))
(setf foo (the (signed-byte 5) (aref an-array 0)))))

Given an implementation in which fiznums are 29 bits but Axnum arrays are upgraded to signed
32-bit arrays, the following could be compiled with all fiznum arithmetic:

(defun burp-counters (counters)
(declare (type (array fixnur l) bump-counters))
(dotties (i (length counters))

(incf (aref counters iI)))

See Also:
declare, declaim, proclaim

Notes:
(typespcc { var}*) is an abbreviation for (type typespec {war}*).

A type declaration for the arguments to a function does not necessarily imply anything about the
type of the result. The following function is not permitted to be compiled using implementation-
dependent j&urn-only arithmetic:

(defun f (x y) (declare (fixnr x y)) (+ x y))

3-76 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

To see why, consider tf most-positive-fixmm 1). Common Lisp defines that F must return a
bignum here, rather than signal an error or produce a mathematically incorrect result. If YOU have
special knowledge such “jknum overflow” cases will not come up, you can declare the result value
to be in the fiznum range, enabling some compilers to use more efficient arithmetic:

(defun f (I y)
(declare (fixnum x y))
(the fixnum (+ x y)))

Note, however, that in the three-argument case, because of the possibility of an implicit interme-
diate value growing too large, the following will not cause implemenfation-dependent fiznum-only
arithmetic to be used:

(defun f (x y)
(declare (fixnur x y 2))
(the fixnur (+ x y z)))

To see why, consider (f most-positive-fixnun 1 -1). Although the arguments and the result
are all fiznums, an intermediate value is not a jiznum. If it is important that implementation-
dependent jiznum-only arithmetic be selected in implementations that provide it, consider writing
something like this instead:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ (the fixnm (+ x y)) z)))

inline, not inline Declaration

Syntax:
(inline {function-name}*)

(notinline { fUmtiO/bname}*)

Arguments:
function-name-a function name.

Valid Context:
declaration or proclamation

Binding Types Affected:
function

Description:
inline specifies that it is desirable for the compiler to produce inline calls to the functions named
by function-names; that is, the code for a specified function-name should be integrated into the
calling routine, appearing “in line” in place of a procedure call. A compiler is free to ignore this
declaration. inline declarations never apply to variable bindings.

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition.

While no conforming implementation is required to perform inline expansion of user-defined
functions, those implementations that do attempt to recognize the following paradigm:

Evaluation and Compilation 3-77

ANSI X3.226-1994 Programming Language-Common Lisp

To define a function f that is not Mine by default but for which (declare (inline f) 1 will make
f be locally inlined, the proper definition sequence is:

(declaim (inline f))
(defun f . ..I
(declair (notinline f))

The Mine proclamation preceding the defun form ensures that the compiler has the opportunity
save the information necessary for inline expansion, and the notinline proclamation following the
defun form prevents f from being expanded inline everywhere.

notMine specifies that it is undesirable to compile the functions named by function-names in-
line. A compiler is not free to ignore this declaration; calls to the specified functions must be
implemented as out-of-line subroutine calls.

If one of the junctions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition.

In the presence of a compiler macro definition for function-name, a notinline declaration prevents
that compiler macro from being used. An inline declaration may be used to encourage use of
compiler macro definitions. inline and notinline declarations otherwise have no effect when the
lexically visible definition of function-name is a macre definition.

inline and notinline declarations can be free declarations or bound declarations. inline and
notinline declarations of functions that appear before the body of a fleet or 1abeIs form that
defines that function are bound declamtions. Such declarations in other contexts are free declam-
tions.

Examples:

; ; The globally defined function DISPATCH should be open-coded,
:; if the implementation supports inlining, uuless a NOTINLINE
;; declaration overrides this effect.
(declati (inline dispatch))
(defun dispatch (x) (funcall (get (car x> ‘dispatch) x))
:: Here is an exaple where inlining would be encouraged.
(defun top-level-l 0 (dispatch (read-couand)) 1
;; Here is an example vhere inlining vould be prohibited.
(defun top-level-2 0

(declare (notinline dispatch))
(dispatch (read-couand)))

.* Here is an example vhere inlining vould be prohibited.
iieclair (notinline dispatch))
(defun top-level-3 0 (dispatch (read-command)))
;; Here is an example vhere inlining vould be encouraged.
(defun top-level-4 0

(declare (inline dispatch))
(dispatch (read-command)))

See Also:
declare, declaim, proclaim

3-78 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

ftype Declaration

Syntax:
(ftype type (fuflCtiO/P-name}*)

Arguments:
function-name--a junction name.

type-a type specifier.

Valid Context:
declaration or proclamation

Binding Types Affected:
junction

Description:
Specifies that the junctions named by function-names are of the functional type type. For exam-
ple:

(declare (ftype (function (integer list) t.) ith)
(ftype (function (number) float) sine cosine))

If one of the junctions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition. ftype declarations never apply to variable bindings (see type).

The lexically apparent bindings of function-names must not be macro definitions. (This is because
ftype declares the functional definition of each function name to be of a particular subtype of
function, and macros do not denote junctions.)

ftype declarations can be free declarations or bound declarations. ftype declarations of func-
tions that appear before the body of a flet or labels form that defines that function are bound
declarations. Such declarations in other contexts are free declarations.

See Also:
declare, declaim, proclaim

declaration Declaration

Syntax:
(declaration {name)*)

Arguments:
name-a symbol.

Valid Context:
proclamation only

Evaluation and Compilation 3-79

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
Advises the compiler that each name is a valid but potentially non-standard declaration name.
The purpose of this is to tell one compiler not to issue warnings for declarations meant for
another compiler or other program processor.

Examples:

(declaim (declaration author target-language target-machine))
(declaim (target-language ada))
(declaim (target-machine IBll-650))
(defun strangep (x)

(declare (author "Harry ToeekeP))
(member x '(strange weird odd peculiar)))

See Also:
declaim, proclaim

optimize Declaration

syntax:
(optimize {quality I (quality value)}*)

Arguments:
quality-an optimize quality.

value-one of the integers 0, 1, 2, or 3.

Valid Context:
declaration or proclamation

Description:
Advises the compiler that. each quality should be given attention according to the specified
corresponding value. Each quality must be a symbol naming an optimize quality; the names and
meanings of the standard optimize qualities are shown in Figure 3-25.

Name
compilation-speed
debug
safety
space
speed

Figure 3-25. Optimize qualities

Meaning
speed of the compilation process
ease of debugging
run-time error checking
both code size and run-time space
speed of the object code

There may be other, implementation-defined optimize qualities.

A value o means that the corresponding quality is totally unimportant, and 3 that the quality is
extremely important; 1 and 2 are intermediate values, with 1 the neutral value. (quality 3) can be
abbreviated to quality.

Note that code which has the optimization (safety 3), or just safety, is called safe code.

The consequences are unspecified if a quality appears more than once with difierent values.

3-80 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check I y)
(hairy-setup x)
(do ((i 0 (+ i 1))

(2 x (cdr 2)))
((null 2))

;: This inner loop really needs to burn.
(declare (optirize speed))
(declare (f ixnua i))
1)

See Also:
declare, declaim, proclaim, Section 3.3.4 (Declaration Scope)

Notes:
An optimize declaration never applies to either a variable or a function binding. An optimize
declaration can only be a free declaration. For more information, see Section 3.3.4 (Declaration
Scope).

special Declaration

Syntax:
(special { vaf}*)

Arguments:
var-a symbol.

Valid Context:
declaration or proclamation

Binding Types Affected:
van’able

Description:
Specifies that all of the vars named are dynamic. This specifier affects variable bindings and
affects references. All variable bindings affected are made to be dynamic bindings, and affected
variable references refer to the current dynamic binding. For example:

(defun hack (thing *nod*) ;The binding of the parameter
(declare (special *rod+)) ; *mod* is visible to hackl,
(hack1 (car thing))) ; but not that of thing.

(defun hack1 (arg)
(declare (special *mod*)) ;Declare references to mod*

;uithin hack1 to be special.
(if (aton arg) *mod*

(cons (hack1 (car arg)) (hack1 (cdr arg)))))

A special declaration does not affect inner bindings of a var; the inner bindings implicitly shadow
a special declaration and must be explicitly m-declared to be special. special declarations never
apply to function bindings.

Evaluation and Compilation 3-81

ANSI X3.226-1994 Programming Languag+Common Lisp

special declarations can be either boand declarations, affecting both a binding and references, or
free declarations, affecting only references, depending on whether the declaration is attached to a
variable binding.

When used in a proclamation, a special declaration specifier applies to all bindings as well as to
ail references of the mentioned variables. For example, after

(declaim (special x1)

then in a function definition such ss

(defun example (x) . ..)

the parameter x is bound as a dynamic variable rather than as a lexical variable.

Examples:

(defun declare-eg (y)
(declare (special y))
(let ((y t))

(list y

;this y is special

;this y ia lexical

(locally (declare (special y)) ~1))) ;this y refers to the
;special binding of y

+ DECLARE-EC
(declare-q nil) -+ (T IUL)

(setf (symbol-value 'x1 6)
(defun foo (x1

(print x)
(let ((x (l+ x)))

(declare (special x)1
(bar))

cl+ xl)
(defun bar 0

;a lexical binding of x

;a special binding of x
;and a lexical reference

(print (locally (declare (special x)1
x)))

(foe 10)
b 10
b 11
+ 11

(setf (symbol-value 'x) 6)
(defun bar (x y) ;Cl] 1st occurrence of x

(let ((old-x x) ;[2] 2nd occurrence of x -- same as 1st occurrence
(x y)) ;C3] 3rd occurrence of x

(declare (special x))
(list old-x 10))

(bar 'first 'second) + (FIRST SECOND)

(defun few (x &optional (y *foe+))
(declare (special *foe*))
. . .)

The reference to *foe* in the first line of this example is not, special even though there is a
special declaration in the second line.

(declaim (special prosp)) -+ implementation-dependent
(setq proap 1 reg 1) + 1

3-82 Evaluation and Compilation

Programming Language-Common Lisp ANSI X3.226-1994

(let ((prosp 2) keg 2)) ;the binding of prosp is special
(set ‘prosp 3) (set keg 3) ;due to the preceding proclzuation,
(list prosp rag)) ;whereas the variable rag is lexical

+ (3 2)
(list prosp reg) + (1 3)

(declati (special x)) :x is always special.
(defun example (x y)

(declare (special y))
(let ((y 3) (x (* x 2)))

(print (+ y (locally (declare (special y)) y)))
(let ((y 4)) (declare (special y)) (foe x1))) -+ EXAMPLE

In the contorted code above, the outermost and innermost bindings of y are dynamic, but the
middle binding is lexical. The two arguments to + are different, one being the value, which is 3, of
the lexical variable y, and the other being the value of the dynamic variable named y (a binding
of which happens, coincidentally, to lexically surround it at an outer level). All the bindings of x
and references to x are dynamic, however, because of the proclamation that x is always special.

See Also:
defparameter , defvar

Special Operator

syntax:
locally {declaration)* {form}* + { rasult}*

Arguments and Values:
Declaration-a declare ezpression; not evaluated.

forms-an implicit progn.

results-the values of the forms.

Description:
Sequentially evaluates a body of forms in a lezical environment where the given declarations have
effect.

Examples:

(defun sample-function (y) ;this y is regarded as special
(declare (special y))
(let ((y t)) ;this y is regarded as lexical

(list y
(locally (declare (special y))

;; this next y is regarded as special
y))))

+ sA?fPLE-FlJgcTIoI
(sample-function nil) + (T IIL)
(setq x '(1 2 3) y '(4 . 5)) -+ (4 . 5)

Evaluation and Compilation 3-83

_ _ - - _ - - . - . - - - - I

A N S I X 3 .2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e -C o m m o n L i s p

;;; T h e fo l l o w i n g d e c l a r a ti o n s a r e n o t n o ta b l y u s e fu l i n s p e c i f i c .
;;; T h e y j u s t o ffe r a s a m p l e o f v a l i d d e c l a r a ti o n s y n ta x u s i n g L O C A L L Y .

(l o c a l l y (d e c l a r e (i n l i n e fl o o r) (n o ti n l i n e c a r c d r))
(d e c l a r e (o p ti m i z e s p a c e))

(f l o o r (c a r x) (c d r y))) + 0 , 1

;;; T h i s e x a m p l e s h o w s a d e fi n i t i o n o f a fu n c ti o n th a t h a s a p a rt i c u l a r s e t
;;; o f O P T IM IZ E s e tti n g s m a d e l o c a l l y to th a t d e fi n i t i o n .

(l o c a l l y (d e c l a r e (o p ti r i z e (s a fe ty 3) (s p a c e 3) (s p e e d 0)))
(d e fu n fro b (u x y & o p ti o n a l (z (fo e x y)))

(r u m b l e x y z v)))
- -) F B O B

;;; T h i s i s l i k e th e p r e v i o u s e x a m p l e , e x c e p t th a t th e o p ti m i z e s e tti n g s
;;; r e m a i n i n e ffe c t fo r s u b s e q u e n t d e fi n i t i o n s i n th e s a m e c o m p i l a t i o n u n i t.

(d e c l a i m (o p ti m i z e (s a fe ty 3) (s p a c e 3) (s p e e d 0)))
(d e fu n fro b (II x y & o p ti o n a l (z (fo e x y)))

(m u m b l e x y z v))
* P B O B

S e e A l s o :
d e c l a r e

N o te s :
T h e s p e c i a l d e c l a r a ti o n m a y b e u s e d w i th l o c a l l y to a ffe c t r e fe r e n c e s to , r a th e r th a n b i n d i n g s o f,
v a r i a b l e s .

If a l o c a l l y j o n n i s a to p l e v e l j o n n , th e b o d y fo rm s a r e a l s o p r o c e s s e d a s to p l e v e l fo rm s . S e e
S e c ti o n 3 .2 .3 (F i l e C o m p i l a ti o n).

S p e c i a l O p e r a to r

S y n ta x :
th e v a l u e -ty p e fo rm - - - L { r e s u l t } *

A r g u m e n ts a n d V a l u e s :
v a l u e -ty p e - a ty p e s p e c i f i e r; n o t e v a l u a te d .

fo rm -a fo rm ; e v a l u a te d .

r e s u l ts -th e v a l u e s r e s u l ti n g fro m th e e v a l u a ti o n o f fo rm . T h e s e v a l u e s m u s t c o n fo rm to th e ty p e
s u p p l i e d b y v a l u tty p e ; s e e b e l o w .

D e s c r i p ti o n :
th e s p e c i fi e s th a t th e v a l u e s l o r e tu r n e d b y fo rm a r e o f th e ty p e s s p e c i fi e d b y v a l u tty p e . T h e
c o n s e q u e n c e s a r e u n d e fi n e d i f a n y r e s u l t i s n o t o f th e d e c l a r e d ty p e .

It i s p e rm i s s i b l e fo r fo rm to y i e l d a d i ffe r e n t n u m b e r o f v a l u e s th a n a r e s p e c i fi e d b y v a l u e -ty p e ,
p r o v i d e d th a t th e v a l u e s fo r w h i c h ty p e s a r e d e c l a r e d a r e i n d e e d o f th o s e ty p e s . M i s s i n g v a l u e s a r e
tre a te d a s n i l fo r th e p u r p o s e s o f c h e c k i n g th e i r ty p e s .

3 - 8 4 E v a l u a ti o n a n d C o m p i l a ti o n

_.

Programming Language-Common Lisp ANSI X3.226-1994

Regardless of number of values declared by value-type, the number of values returned by the the
special form is the same as the number of values returned by form.

Examples:

(the symbol (car (list (gem&))) -) #:G9876
(the fixnua (+ 5 7)) -+ 12
(the (values) (truncate 3.2 2)) --, 1. 1.2
(the integer (truncate 3.2 2)) + 1. 1.2
(the (values integer) (truncate 3.2 2)) -) 1, 1.2
(the (values integer float) (truucate 3.2 2)) + 1. 1.2
(the (values integer float symbol) (truncate 3.2 2)) + 1, 1.2
(the (values integer float symbol t null list)

(truncate 3.2 2)) -+ 1, 1.2
(let ((i 100))

(declare (fixnus i))
(the fixnum (l+ i))) -+ 101

(let* ((x (list 'a 'b 'c))
(Jr 5))

(setf (the fixnuu (car x)) y)
x> + (5 B C)

Exceptional Situations:
The consequences are undefined if the values yielded by the form are not of the type specified by
value-type.

See Also:
values

Notes:
The vaIues type specifier can be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))
(the (values string t)

(gethash the-key the-string-table))

setf can be used with the type declarations. In this case the declaration is transferred to the form
that specifies the new value. The resulting eetf form is then analyzed.

special-operator-p Function

Syntax:
special-operator-p symbol -+ generalized-boolean

Arguments and Values:
symbol-a symbol.

generalized-boolean-a generalized boolean.

Description:
Returns true if symbol is a special opemtor; otherwise, returns false.

Evaluation and Compilation 3-85

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(special-operator-p ‘if) + true
(special-operator-p ‘car) -+ false
(special-operator-p ‘one) + false

Exceptional Situations:
Should signal type-error if its argument is not a symbol.

Notes:
Historically, this function was called special-for-z-p. The name was finally declared a misnomer
and changed, since it returned true for special operaiors, not special forms.

constantp Function

syntax:
constautp form &optional environment + generalized-boolean

Arguments and Values:
form-a form.

environment-an environment object. The default is nil.

generalized-boolean generalized boolean.

Description:
Returns true if form can be determined by the implementation to be a constant form in the
indicated environment; otherwise, it returns false indicating either that the form is not a constant
form or that it cannot be determined whether or not form is a constant form.

The following kinds of forms are considered constant forms:

l Self-evaluating objects (such aa numbers, characters, and the various kinds of urrsys) are
always considered constant forms and must be recognized as such by constautp.

l Constant vnriables, such as Keywords, symbols defined by Common Lisp as constant (such
as nil, t, and pi), and symbols declared as constant by the user in the indicated environ-
ment using defcoustant are always considered constant forms and must be recognized as
such by coustantp.

l quote forms are always considered constant forms and must be recognized as such by
constantp.

l An implementation is permitted, but not required, to detect additional constant forms. If
it does, it is also permitted, but not required, to make use of information in the environ-
ment. Examples of constant forms for which coustautp might or might not return trtre
are: (sqrt pi), (+ 3 2), (length ‘(a b cl), and (let ((x 7)) (zerop x1).

If an implementation chooses to make u8e of the environment information, such actions as expand-
ing macros or performing function inlining are permitted to be used, but not required; however,
expanding compiler macros is not permitted.

3-66 Evaluation and Compilation

Programming LanguageCommon Lisp ANSI X3.226-1994

Examples:

(constantp 1) -+ true
(constantp ‘temp) + false
(constantp ‘Vmp)) -+ true
(defconstant this-is-a-constant ‘never-changing) + THIS-IS-A-COBSTA~
(constantp ‘this-is-a-constant) -+ We
(constantp “temp*l) - true
(setq a 6) --* 6
(constantp a) -+ irue
(constantp 3 (sin pi)) -+ implementation-dependent
(constautp ’ (car 9 (x)) 1 + implementation-dependent
(constantp ‘(eql x x)) - implementation-dependent
(constantp ’ (typep x ‘nil)) + implementation-dependent
(constantp ‘(typep x St)) + implementation-dependent
(constantp ’ (values this-is-a-constant) 1 + implementation-dependent
(constantp ’ (values ‘x ‘y) 1 + implementation-dependent
(constantp ‘(let ((a ‘(a b c))) (+ (length a) 6))) + implementation-dependent

Affected By:
The state of the global environment (e.g., which symbols have been declared to be the names of
constant variables).

See Also:
defconstant

Evaluation and Compilation 3-87

ANSI X3.226-1994 Programming Language-Common Lisp

3-88 Evaluation and Compilation .

ANSI X3.226-1994

Programming Language-Common Lisp

4. Types and Classes

ANSI X3.226-1994 Programming Language-Common Lisp

ii Types and Claswa

Programming Language-Common Lisp ANSI X3.226-1994

4.1 Introduction
A type is a (possibly infinite) set of objects. An objeci can belong to more than one type. Types
are never explicitly represented as objects by Common Lisp. Instead, they are referred to indi-
rectly by the use of iype specifiers, which are objects that denote types.

New types can be defined using deftype, defstruct, defclass, and define-condition

The function typep, a set membership test, is used to determine whether a given object is of a
given type. The function subtypep, a subset test, is used to determine whether a given type is a
subtype of another given type. The function type-of returns a particular type to which a given
object belongs, even though that object must belong to one or more other types as well. (For
example, every object is of type t, but type-of always returns a type specifier for a type more
specific than t.)

Objects, not variables, have types. Normally, any variable can have any object as its value. It
is possible to declare that a variable takes on only values of a given type by making an explicit
type declaration. Types are arranged in a directed acyclic graph, except for the presence of
equivalences.

Declarations can be made about types using declare, proclaim, declaim, or the. For more
information about declarations, see Section 3.3 (Declarations).

Among the fundamental objects of the object system are classes. A class determines the structure
and behavior of a set of other objects, which are called its instances. Every object is a direct
instance of a class. The class of an object determines the set of operations that can be performed
on the object. For more information, see Section 4.3 (Classes).

It is possible to write functions that have behavior specialized to the class of the objects which are
their arguments. For more information, see Section 7.6 (Generic Functions and Methods).

The class of the class of an object is called its metaclass. For more information about meta-
classes, see Section 7.4 (Meta-Objects).

Types and Classes 4-l

ANSI X3.226-1994 Programming LanguageCommon Lisp

4.2 Types

4.2.1 Data Type Definition
Information about type usage is located in the sections specified in Figure 4-1. Figure 4-i’ lists
some classes that are particularly relevant to the object system. Figure 9-1 lists the defined
condifion types.

Section
Section 4.3 (Classes)
Section 7.5 (Slots) ’
Chapter 7 (Objects)
Section 7.6 (Generic Functions and Methods)
Section 9.1 (Condition System Concepts)
Chapter 4 (Types and Classes)
Chapter 2 (Syntax)
Section 22.1 (The Lisp Printer)
Section 3.2 (CornDilation)

Data Tvne
Object System types
Object System types
Object System types
Object System types
Condition System types
Miscellaneous types
All types-read and print syntax
All types-print syntax
All tvpes-compilation issues

Figure 4-l. Cross-References to Data Type Information

4.2.2 Type Relationships

l The Qpes cous, symbol, array, number, character, hash-table, function, readtable,
package, pathname, stream, random-state, condition, restart, and any single other
type created by defstruct, define-condition, or defclass are pairwise disjoint, ex-
cept for type relations explicitly established by specifying superclasses in defclass or
define-condition or the : include option of destruct.

l Any two types created by defstruct are disjoint unless one is a supertype of the other by
virtue of the defstruct : include option.

l Any two distinct classes created by defclass or define-condition are disjoint unless they
have a common subclass or one class is a subclass of the other.

l An implementation may be extended to add other subtype relationships between the
specified types, as long as they do not violate the type relationships and disjointness
requirements specified here. An implementation may define additional types that are
subtypes or supertypes of any specified types, as long as each additional type is a subtype
of type t and a supertype of type nil and the disjointness requirements are not violated.

At the discretion of the implementation, either standard-object or structure-object
might appear in any class precedence list for a system class that, does not already specify
either standard-object or structure-object. If it does, it must precede the class t and
follow all other standardized classes.

4-2 Types and Classes

Programming Language--Common Lisp ANSI X3.226-1994

4.2.3 Type Specifiers
Type specifiers can be symbols, classes, or lists. Figure 4-2 lists symbols that are standardized
atomic type specifiers, and Figure 4-3 lists standardized compound type specifier names. For
syntax information, see the dictionary entry for the corresponding type spec$er. It is possible to
define new type specifiers using defclass, define-condition, defstruct, or deftype.

arithmetic-error function simple-condition
array generic-function simple-error
atom hash-table simple-string
base-char integer simple-type-error
base-string keyword simple-vector
bignum list simple-warning
bit logical-pathname single-float
bit-vector long-float standard-char
broadcast-stream method standard-class
built-in-class method-combination standard-generic-function
cell-error nil standard-method
character null standard-object
class number storage-condition
compiled-function package stream
complex package-error stream-error
concatenated-stream parse-error string
condition pathname string-stream
cons print-not-readable structure-class
control-error program-error structure-object
division-by-zero random-state style-warning
double-float ratio symbol
echo-stream rational synonym-stream
end-of-file reader-error t
error readtable two-way-stream
extended-char real type-error
Ale-error restart unbound-slot
Ale-stream sequence unbound-variable
Axnum serious-conditiou undefined-function
float short-float unsigned-byte
floating-point-inexact signed-byte vector
floating-point-invalid-operation simple-array warning
floating-point-overilow simple-base-string
floating-point-underflow simple-bit-vector --

Figure 4-2. Standardized Atomic Type Specifiers

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
information. Such a type specifier is called a compound type specifier. Except as explicitly
stated otherwise, the subsidiary items can be unspecified. The unspecified subsidiary items are
indicated by writing *. For example, to completely specify a vector, the type of the elements and
the length of the vector must be present.

(vector double-float 100)

The following leaves the length unspecified:

(vector double-float *)

The following leaves the element type unspecified:

(vector l 100)

Types and Classes 4-3

ANSI X3.226-1994 Programming Language-Common Lisp

Suppose that two type specifiers are the same except that the first has a * where the second has a
more explicit specification. Then the second denotes a subtype of the type denoted by the first.

If a list has one or more unspecified items at the end, those items can be dropped. If dropping
ail occurrences of * results in a singleton list, then the parentheses can be dropped as well (the
list can be replaced by the symbol in its car). For example, (vector double-float *) can be
abbreviated to (vector double-float), and (vector * *) can be abbreviated to (vector) and then
to vector.

and
array
base-string
bit-vector
complex
cons
double-float
4
float
function
integer

long-float
member
mod
not
or
rational
real
satisfies
short-float
signed-byte
simple-array

simple-base-string
simple-bit-vector
simple-string
simple-vector
single-float
string
unsigned-byte
values
vector

Figure 4-3. Standardized Compound Type Specifier Names

Figure 4-4 show the defined names that can be used as compound type specifier names but that
cannot be used as atomic type specifiers.

mod
not

satisfles
values

Figure 4-4. Standardized Compound-Only Type Specifier Names

New type specifiers can come into existence in two ways.

l Defining a structure by using defstruct without using the :type specifier or defining
a class by using defclass or de&x-condition automatically causes the name of the
structure or class to be a new type specifier symbol.

l deftype can be used to define derived type specifiers, which act as ‘abbreviations’ for
other type specifiers.

A class object can be used as a type specifier. When used this way, it denotes the set of all
members of that class.

Figure 4-5 shows some defined names relating to types and declarations.

coerce defstruct
declaim deftype
declare fine
defclass locally
define-condition proclaim

Figure 4-5. Deflned names relating to types and declarations.

subtypep
the
type
type-of
types

Figure 4-6 shows all defined names that are type specifier names, whether for atomic type speci-
fiers or compound type specifiers; this list is the union of the lists in Figure 4-2 and Figure 4-3.

44 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

and
arithmetic-error
=mv
atom
base-char
base-string
bignum
bit
bit-vector
broadcast-stream
built-in-class
cell-error
character
class
compiled-function
complex
concatenated-stream
condition
cons
control-error
division-by-zero
double-float
echo-stream
end-of-file
4
error
extended-char
file-error
Ale-stream
flxnum
float
floating-point-inexact
floating-point-invalid-operation
floating-point-overflow
floating-point-underflow

function
generic-function
hash-table
integer
keyword
list
logical-pathname
long-float
member
method
method-combination
mod
nil
not
null
number
or
Package
package-error
parse-error
pathname
print-not-readable
program-error
random-state
ratio
rational
reader-error
readtable
real
restart
satisfies
sequence
serious-condition
short-float
signed-byte

simple-array
simple-base-string
simple-bit-vector
simple-condition
simple-error
simple-string
simple-type-error
simple-vector
simple-warning
single-float
standard-char
standard-class
standard-generic-function
standard-method
standard-object
storage-condition
stream
stream-error
string
string-stream
structure-class
structure-object
style-warning
symbol
synonym-stream
t
two-way-stream
type-error
unbound-slot
unbound-variable
undeflned-function
unsigned-byte
values
vector
warning

Figure 4-6. Standardized Type Specifier Names

Types and Classes 4-5

ANSI X3.226-1994 Programming Language-Common Lisp

4.3 Classes
While the object system is general enough to describe all standardized classes (including, for ex-
ample, number, hash-table, and symbol), Figure 4-7 contains a list of classes that are especially
relevant to understanding the object system.

built-in-class method-combination
class standard-class
generic-function standard-generic-function
method standard-method

Figure 4-7. Object System Classes

standard-object
structure-class
structure-object

Introduction to Classes
A class is an object that determines the structure and behavior of a set of other objects, which
are called its instances.

A class can inherit structure and behavior from other classes. A class whose definition refers
to other classes for the purpose of inheriting from them is said to be a subclass of each of those
classes. The classes that are designated for purposes of inheritance are said to be superclasses of
the inheriting class.

A class can have a name. The function class-name takes a class object and returns its name.
The name of an anonymous class is nil. A symbol can name a class. The function find-class
takes a symbol and returns the class that the symbol names. A class has a proper name if the
name is a symbol and if the name of the class names that class. That is, a class C has the
proper name S if S = (class-naae C) and C = (find-class S) . Notice that it is possible for
(find-class S1) = (find-class Sz) and S1 # S2, If C = (find-class S), we say that C is the
class named S.

A class Cl is a direct superclass of a class Cz if C2 explicitly designates Cl as a superclass in
its definition. In this case C2 is a direct subcJass of C1. A class C,, is a superclass of a class
Cl if there exists a series of classes Cz, . . . , C&-l such that C’i+l is a direct superclass of Ci for
1 5 i < n. In this case, Cl is a subclass of C,,. A class is considered neither a superclass nor a
subclass of itself. That is, if Cl is a superclass of Cz, then Cl # Cz. The set of classes consisting
of some given class C along with all of its superclasses is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of the given class
and its superclasses. The total ordering is expressed as a list ordered from most specific to least
specific. The class precedence list is used in severa ways. In general, more specific classes can
shadow1 features that would otherwise be inherited from less specific classes. The method
selection and c.ombination process uses the class precedence list to order methods from most
specific to least specific.

When a class is defined, the order in which its direct superclasses are mentioned in the defining
form is important. Each class has a local precedence order, which is a list consisting of the
class followed by its direct superclasses in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of each class in the
list. The classes in each local precedence order appear within the class precedence list in the
same order. If the local precedence orders are inconsistent with each other, no class precedence
list can be constructed, and an error is signaled. The class precedence list and its computation is
discussed in Section 4.3.5 (Determining the Class Precedence List).

classes are organized into a directed acyclic graph. There are two distinguished classes, named
t and standard-object. The class named t has no superclasses. It is a superclass of every class

4-6 Types and Classes

Programming LanguageCommon Lisp ANSI X3.226-1994

except itself. The class named standard-object is an instance of the class standard-class and is
a superclass of every class that is an instance of the class standard-class except itself.

There is a mapping from the object system class space into the type space. Many of the standard
types specified in this document have a corresponding class that has the same name as the type.
Some types do not have a corresponding class. The integration of the type and class systems is
discussed in Section 4.3.7 (Integrating Types and Classes).

Classes are represented by objects that are themselves instances of classes. The class of the class
of an object is termed the metaclass of that object When no misinterpretation is possible, the
term metaclass is used to refer to a class that has instances that are themselves classes. The
metaclass determines the form of inheritance used by the classes that are its instances and the
representation of the instances of those classes. The object system provides a default metaclass,
standard-class, that is appropriate for most programs.

Except where otherwise specified, all classes mentioned in this standard are instances of the class
standard-class, all generic functions are instances of the class standard-generic-function, and
all methods are instances of the class standard-method.

4.3.1.1 Standard Metaclasses

The object system provides a number of predefined metaclasses. These include the classes
standard-class, built-in-class, and structure-class:

l The class standard-class is the default class of classes defined by defclass.

l The class built-in-class is the class whose instances are classes that have special impie-
mentations with restricted capabilities. Any class that corresponds to a standard type
might be an instance of built-in-class. The predefined type specifiers that are required
to have corresponding classes are listed in Figure 4-8. It is implementation-dependent
whether each of these classes is implemented as a built-in class.

l All classes defined by means of defstruct are instances of the class structure-class.

4.3.2 Defining Classes
The macro defclass is used to define a new named class.

The definition of a class includes:

l The name of the new class. For newly-defined classes this name is a proper name.

l The list of the direct superclasses of the new class.

l A set of slot specifiers. Each slot specifier includes the name of the slot and zero
or more slot options. A slot option pertains only to a single slot. If a class definition
contains two slot specifiers with the same name, an error is signaled.

l A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass form provide mechanisms for the following:

l Supplying a default initial value form for a given slot.

l Requesting that methods for generic functions be automatically generated for reading or
writing slots.

Types and Classes 4-7

ANSI X3.226-1994 Programming Language-Common Lisp

s Controlling whether a given slot is shared by all instances of the class or whether each
instance of the class has its own slot.

l Supplying a set of initialization arguments and initialization argument defaults to be used
in instance creation.

l Indicating that the metaclass is to be other than the default The :netaclass option is
reserved for future use; an implementation can be extended to make use of the :retaclass
option.

l Indicating the expected type for the value stored in the slot.

l Indicating the documentation stting for the slot.

4.3.3

4.3.4

Creating Instances of Classes
The generic function make-instance creates and returns a new instance of a class. The object
system provides several mechanisms for specifying how a new instance is to be initialized. For
example, it is possible to specify the initial values for slots in newly created instances either by
giving arguments to make-instance or by providing default initial values. Further initialization
activities can be performed by methods written for generic functions that are part of the initial-
ization protocol. The complete initialization protocol is described in Section 7.1 (Object Creation
and Initialization).

Inheritance
A class can inherit methods, slots, and some defclass options from its superclasses. Other sec-
tions describe the inheritance of methods, the inheritance of slots and slot options, and the
inheritance of class options.

4.3.4.1 Examples of Inheritance

(defclass Cl 0
((Sl :initform 5.4 :type number)

(S2 :allocation :claes)))

(defclass C2 (Cl)
((Sl :initform 5 :type integer)

(S2 :allocation :inatance)
(S3 :acceesor C2-S3)))

Instances of the class CI have a local slot named Sl, whose default initial value is 5.4 and whose
value should always be a number. The class Cl also has a shared slot named ~2.

There is a local slot named Sl in instances of ~2. The default initial value of ~1 is 5. The value of
Sl should always be of type (and integer number). There are also local slots named S2 and S3 in
instances of ~2. The class ~2 has a method for C2-S3 for reading the value of slot S3; there is also
a method for (setf C2-S3) that writes the value of S3.

4-8 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

4.3.4.2 Inheritance of Class Options
The :default-initarge class option is inherited. The set of defaulted initialization arguments
for a class is the union of the sets of initialization arguments supplied in the :default-initargs
class options of the class and its superclasses. When more than one default initial value form is
supplied for a given initialization argument, the default initial value form that is used is the one
supplied by the class that is most specific according to the class precedence list.

If a given :default-initargs class option specifies an initialization argument of the same name
more than once, an error of type program-error is signaled.

4.3.5 Determining the Class Precedence List
The defclass form for a class provides a total ordering on that class and its direct superclasses.
This ordering is called the local precedence order. It is an ordered list of the class and its
direct superclasses. The &ss precedence list for a class C is a total ordering on C and its
superclasses that is consistent with the local precedence orders for each of C and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all other direct super-
classes specified to its right in the superclasses list of the defclass form. For every class C, define

Rc = {(C,CI),(CI,CZ), . . ., (Cn-l,Cn)}

where Cl,..., C,., are the direct superclasses of C in the order in which they are mentioned in
the defclass form. These ordered pairs generate the total ordering on the class C and its direct
superclasses.

Let SC be the set of C and its superclasses. Let R be

The set R might or might not generate a partial ordering, depending on whether the R,, c E SC,
are consistent; it is assumed that they are consistent and that R generates a partial ordering.
When the R, are not consistent, it is said that R is inconsistent.

To compute the class precedence list for C, topologically sort the elements of SC with respect
to the partial ordering generated by R When the topological sort must select a class from a set
of two or more classes, none of which are preceded by other classes with respect to R, the class
selected is chosen deterministically, as described below.

If R is inconsistent, an error is signaled.

4.3.5.1 Topological Sorting

Topological sorting proceeds by finding a class C in SC such that no other class precedes that
element according to the elements in R The class C is placed first in the result. Remove C from
SC, and remove all pairs of the form (C, D), D E SC, from R Repeat the process, adding classes
with no predecessors to the end of the result. Stop when no element can be found that has no
predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent. If every class in the
finite set of classes is preceded by another, then R contains a loop. That is, there is a chain of
classes Cl,..., C,, such that Ci precedes Ci+i, 1 5 i < n, and C,, precedes Ci.

Sometimes there are several classes from SC with no predecessors. In this case select the one that
has a direct subclass rightmost in the class precedence list computed so far. (If there is no such
candidate class, R does not generate a partial ordering-the R,, c E SC, are inconsistent.)

Types and Classes 4-9

ANSI X3.226-1994 Programming LiUrguage-Common Lisp

In more precise terms, let {Nr , . . . , N,}, m > 2, be the classes from SC with no predecessors. Let
(Cl . . .C,,), n 2 1, be the class precedence lr% constructed so far. Ci is the most specific class,
and C, is the least specific. Let 1 < j 5 n be the largest number such that there exists an i where
1 5 i < m and IV; is a direct superclass of Cj ; Ni is placed next.

The effect of this rule for selecting from a set of classes with no predecessors is that the classes
in a simple superclass chain are adjacent in the class precedence list and that classes in each
relatively separated subgraph are adjacent in the class precedence list. For example, let Tl and
Tz be subgraphs whose only element in common is the class J. Suppose that no superclass of .7
appears in either Tl or Tz, and that J is in the superclass chain of every class in both Tl and
T2. Let Ci be the bottom of Tl; and let C’s be the bottom of T2. Suppose C is a class whose
direct superclasses are Ci and Cs in that order, then the class precedence list for C starts with C
and is followed by all classes in Tr except J. All the classes of T2 are next. The class J and its
superclasses appear last.

4.3.5.2 Examples of Class Precedence List Determination
This example determines a class precedence list for the class pie. The following classes are
defined:

(defclass pie (apple cinnamon) 0)

(defclass apple (fruit) 0)

(defclass cinnamon (spice) 0)

(defclass fruit (food) 0)

(def class spice (food) 0 1

(defclass food (1 0)

The set Spie = {pie, apple, cinnamon, fruit, spice, food, standard-object, t}. The set R =
{(pie, apple), (apple, cinnamon), (apple. fruit), (cinnamon, spice),
(fruit. food), (spice, food), (food, standard-object), (standard-object, t)).

The class pie is not preceded by anything, so it comes first; the result so far is (pie). Remove
pie from S and pairs mentioning pie from R to get S = {apple, cinnamon, fruit, spice, food,
standard-object, t) and R = {(apple, cinnamon). (apple. fruit), (cinnamon. spice),
(fruit, food). (spice, food), (food, standard-object), (standard-object, t)}.

The class apple is not preceded by anything, so it is next; the result is (pie apple). Removing
apple and the relevant pairs results in S = {cinnamon, fruit, spice, food, standard-object, t}
and R = {(cinnamon, spice), (fruit, food), (spice, food). (food, standard-object).
(standard-object, t)}.

The classes cinnamon and fruit are not preceded by anything, so the one with a direct subclass
rightmost in the class precedence list computed so far goes next. The class apple is a direct
subclass of fruit, and the class pie is a direct subclass of cinnenon Because apple appears to
the right of pie in the class precedence list, fruit goes next, and the result so far is (pie apple
fruit). S = {cinnamon, spice, food, standard-object, t}; R = {(cinnmon, spice), (spice.
food) ,
(food. standard-object). (standard-object, t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon). At this
point S = {spice, food, standard-object, t}; R = {(spice. food), (food, standard-object),
(standard-object. t)}.

4-10 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

The classes spice, food, standard-object, and t are added in that order, and the class precedence
list is (pie apple fruit cinnanon spice food standard-object t).

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) 0)

(defclass apple (fruit) 0)

The class fruit must precede apple because the local ordering of superclasses must be preserved.
The class apple must precede fruit because a class always precedes its own superclasses. When
this situation occurs, an error is signaled, as happens here when the system tries to compute the
class precedence list of new-class.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) 0)

(defclass pastry (cinnamon apple) 0)

(defclass apple 0 0)

(defclass cinnamon 0 0)

The ctoss precedence list for pie is (pie apple cinnanon standard-object t).

The class precedence list for pastry is (pastry cinnamon apple standard-object t).

It is not a problem for apple to precede cinnamon in the ordering of the superclasses of pie but not
in the ordering for pastry. However, it is not possible to build a new class that has both pie and
pastry aa superclasses.

4.3.6 Redefining Classes
A class that is a direct instance of standard-class can be redefined if the new class is also a direct
instance of standard-class. Redefining a class modifies the existing class object to reflect the new
class definition; it does not create a new class object for the class. Any method object created by
a :reader, :uriter, or :accessor option specified by the old defclass form is removed from the
corresponding generic function. Methods specified by the new defclasa form are added.

When the class C is redefined, changes are propagated to its instances and to instances of any of
its subclasses. Updating such an instance occurs at an implementation-dependent time, but no
later than the next time a slot of that instance is read or written. Updating an instance does not
change its identity as defined by the function eq. The updating process may change the slots of
that particular instance, but it does not create a new instance. Whether updating an instance
consumes storage is implementation-dependent.

Note that redefining a class may cause slots to be added or deleted. If a class is redefined in a
way that changes the set of local slots accessible in instances, the instances are updated. It is
implementation-dependent whether instances are updated if a class is redefined in a way that
does not change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in the new class is re-
tained. If such a shared slot was unbound in the old class, it is unbound in the new class. Slots
that were local in the old class and that are shared in the new class are initialized. Newly added
shared slots are initialized.

Each newly added shared slot is set to the result of evaluating the captured initialization form for
the slot that was specified in the defclass form for the new class. If there was no initialization
form, the slot is unbound.

Types and Classes 4-11

ANSI X3.226-1994 Programming Language--Common Lisp

If a class is redefined in such a way that the set of local slois accessible in an indance of the class
is changed, a twostep process of updating the inslances of the class takes place. The process
may be explicitly started by invoking the generic function make-instances-obsolete. This two-
step process can happen in other circumstances in some implementations. For example, in some
implementations this two-step process is triggered if the order of slots in storage is changed.

The first step modifies the structure of the indance by adding new local slois and discarding
local slois that are not defined in the new version of the class. The second step initializes the
newly-added local slois and performs any other user-defined actions. These two steps are further
specified in the next two sections.

4.3.6.1 Modifying the Structure of Instances

The first step modifies the structure of instances of the redefined class to conform to its new
class definition. Local slots specified by the new class definition that are not specified as either
local or shared by the old class are added, and slots not specified as either local or shared by the
new class definition that are specified as local by the old class are discarded. The names of these
added and discarded slots are passed as arguments to update-instance-for-redefined-class as
described in the next section.

The values of local slots specified by both the new and old classes are retained. If such a local slot
was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in the new class is
retained. If such a shared slot was unbound, the local slot is unbound.

4.3.6.2 Initializing Newly Added Local Slots

The second step initializes the newly added local slois and performs any other user-defined
actions. This step is implemented by the generic function update-instance-for-redefiued-class,
which is called after completion of the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four required arguments: the
instance being updated after it has undergone the first step, a list of the names of local slois that
were added, a list of the names of local slois that were discarded, and a property list containing
the sloi names and values of slois that were discarded and had values. Included among the
discarded slots are slots that were local in the old class and that are shared in the new class.

The generic function update-instance-for-redefhred-class also takes any number of initialization
arguments. When it is called by the system to update an instance whose class has been redefined,
no initialization arguments are provided.

There is a system-supplied primary method for update-instance-for-redefined-class whose
parameier specialirer for its instance argument is the class standard-object. First this method
checks the validity of initialization arguments and signals an error if an initialization argument
is supplied that is not declared as valid. (For more information, see Section 7.1.2 (Declaring
the Validity of Initialization Arguments).) Then it calls the generic function shared-initialize
with the following arguments: the instance, the list of names of the newly added slots, and the
initialization arguments it received.

4.3.6.3 Customizing Class Redefinition

Methods for update-instance-for-redefmed-class may be defined to specify actions to be taken
when an insiance is updated. If only afier methods for update-instance-for-redefined-class
are defined, they will be run after the system-supplied primary method for initialization and
therefore will not interfere with the default behavior of update-instance-for-redefined-class.
Because no initialization arguments are passed to update-instance-for-redefined-class when

4-12 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

it is called by the system, the initialization forms for slots that are filled by before methods for
update-instance-for-redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

4.3.7 Integrating Types and Classes
The object system maps the space of classes into the space of types. Every class that has a
proper name has a corresponding type with the same name.

The proper name of every class is a valid type specifier. In addition, every class object is a valid
type specifier. Thus the expression (typep object class) evaluates to true if the class of object
is class itself or a subclass of class. The evaluation of the expression (subtypep class1 classl)
returns the values true and true if class1 is a subclass of class:! or if they are the same class;
otherwise it returns the values false and true. If I is an instance of some class C named S and
C is an instance of standard-class, the evaluation of the expression (type-of 1) returns S if S is
the proper name of C; otherwise, it returns C.

Because the names of classes and class objects are type specijers, they may be used in the special
form the and in type declarations.

Many but not all of the predefined type specifiers have a corresponding class with the same
proper name as the type. These type specifiers are listed in Figure 4-8. For example, the type
array has a corresponding class named array. No type specifier that is a list, such as (vector
double-float 1001, has a corresponding class. The operator deftype does not create any classes.

Each class that corresponds to a predefined type specifier can be implemented in one of three
ways, at the discretion of each implementation. It can be a standard class, a structure class, or a
system class.

A built-in class is one whose generalized instances have restricted capabilities or special repre-
sentations. Attempting to use defclass to define subclasses of a built-in-class signals an error.
Calling make-instance to create a generalized instance of a built-in class signals an error. Calling
slot-value on a generalized instance of a built-in class signals an error. Redefining a built-in class
or using change-class to change the class of an object to or from a built-in class signals an error.
However, built-in classes can be used as parameter specializers in methods.

It is possible to determine whether a class is a built-in class by checking the metaclass. A stan-
dard class is an instance of the class standard-class, a built-in class is an instance of the class
built-in-class, and a structure class is an instance of the class structure-class.

Each structure type created by defstruct without using the :type option has a corresponding
class. This class is a generalized rnstance of the class structure-class. The :include option of
defstruct creates a direct subclass of the class that corresponds to the included structure type.

It is implementation-dependent whether slots are involved in the operation of functions defined
in this specification on instances of classes defined in this specification, except when slots are
explicitly defined by this specification.

If in a particular implementation a class defined in this specification has slots that are not defined
by this specfication, the names of these slots must not be eztemal symbols of packages defined in
this specification nor otherwise accessible in the CL-USER package.

The purpose of specifying that many of the standard type specifiers have a corresponding class is
to enable users to write methods that discriminate on these types. Method selection requires that
a class precedence list can be determined for each class.

The hierarchical relationships among the type specifiers are mirrored by relationships among the
classes corresponding to those types.

Types and Classes
_--- -

4-13

ANSI X3.226-1994 Programming Language-Common Lisp

Figure 4-S lists the set of classes that correspond to predefined iype specifiers.

arithmetic-error generic-function simple-error
=raY hash-table simple-type-error
bit-vector integer simple-warning
broadcast-stream list standard-class
built-in-class logical-pathname standard-generic-function
cell-error method standard-method
character method-combination standard-object
class null storage-condition
complex number stream
concatenated-stream package stream-error
condition package-error string
cons parse-error string-stream
control-error pathname structure-class
division-by-zero print-not-readable structure-object
echo-stream program-error style-warning
end-of-flle random-state symbol
error ratio synonym-stream
file-error rational t
Ale-stream reader-error twc+way-stream
float readtable type-error
floating-point-inexact real unbound-slot
floating-point-invalid-operation restart unbound-variable
floating-point-over5ow sequence undefined-function
5oating-point-under5ow serious-condition vector
function simple-condition warning

Figure 4-8. Classes that correspond to predeflned type specifiers

The class precedence list information specified in the entries for each of these classes are those
that are required by the object system.

Individual implementations may be extended to define other type specifiers to have a correspond-
ing class. Individual implementations may be extended to add other subclass relationships and to
add other elements to the class precedence lists as long as they do not violate the type relation-
ships and disjointness requirements specified by this standard. A standard class defined with no
direct superclasses is guaranteed to be disjoint from all of the classes in the table, except for the
class named t.

4-14
--

Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

Supertypes:
all types

Description:
The type nil contains no objects and so is also called the empty type. The type nil is a subtype of
every type. No object is of type nil.

Notes:
The type containing the object nil is the type null, not the type nil.

boolean

Supertypes:
boolean, symbol, t

Description:
The type boolean contains the symbols t and nil, which represent true and false, respectively.

See Also:
t (constant variable), nil (constant variable), if, not, complement

Notes:
Conditional operations, such as if, permit the use of generalized booleans, not just booleans;
any non-nil value, not just t, counts as true for a generaked boolean. However, as a matter of
convention, the symbol t is considered the canonical value to use even for a generalized boolean
when no better choice presents itself.

function System Class

Class Precedence List:
function, t

Description:
A junction is an object that represents code to be executed when an appropriate number of
arguments is supplied. A junction is produced by the function special form, the junction coerce,
or the function compile. A function can be directly invoked by using it as the first argument to
funcall, apply, or multiple-value-call.

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(function Cafg-typespec [value-typcspec]])

Types and Classes 4-15

ANSI X3.226-1994 Programming Language-Common Lisp

arg-typespcc.:=({ typespcc)*
[aoptional { rypespec}*l
[&rest typespec]
Ctkey {(kepwd tup=pec))*l)

Compound Type Specifier Arguments:
typespec-a type specifier.

valuctypespec-a type specifier.

Compound Type Specifier Description:
The list form of the function type-specifier can be used only for declaration and not for discrim-
ination. Every element of this type is a function that accepts arguments of the types specified
by the argi-types and returns values that are members of the iypes specified by value-type. The
&optional, &rest, &key, and &allow-other-keys markers can appear in the list of argument
types. The type specifier provided with &rest is the type of each actual argument, not the fype of
the corresponding variable.

The &key parameters should be supplied as lists of the form (keyword type). The keyword
must be a valid keyword-name symbol as must be supplied in the actual arguments of a call.
This is usually a symbol in the KEYWORD package but can be any symbol. When &key is given
in a function type specifier lambda list, the keyword parameters given are exhaustive unless
&allow-other-keys is also present. &allow-other-keys is an indication that other keyword
arguments might actually be supplied and, if supplied, can be used. For example, the type of the
function make-list could be declared as follows:

(function ((integer 0) kkey (:initial-elenent t)) list)

The value-type can be a values type speci$er in order to indicate the types of muliiple values.

Consider a declaration of the following form:

(ftype (function Cargo-type argl-type . . .) val-type) f))

Any form (f argo argl . . .) within the scope of that declaration is equivalent to the following:

(the val-type (f (the argO-type arg0) (the argl-type argl) . ..))

That is, the consequences are undefined if any of the arguments are not of the specified types or
the result is not of the specified type. In particular, if any argument is not of the correct type, the
result is not guaranteed to be of the specified type.

Thus, an ftype declaration for a fundion describes calls to the function, not the actual definition
of the fun&ion.

Consider a declaration of the following form:

(type (function Cargo-type argl-type . ..) val-type) fn-valued-variable)

This declaration has the interpretation that, within the scope of the declaration, the consequences
are unspecified if the value of fn-valued-variable is called with arguments not of the specified
types; the value resulting from a valid call will be of type val-type.

As with variable type declarations, nested declarations imply intersections of types, as follows:

l Consider the following two declarations of ftype:

4-16 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

(ftype (function cargo-type1 argl-type1 . . .) val-type0 f))

and

(ftype (function cargo-type2 argl-type2 . ..) val-typea) f))

If both these declarations are in effect, then within the shared scope of the declarations,
calls to f can be treated as if f were declared as follows:

(ftype (function ((and argO-type1 a.rgO-type2) (and argl-type1 argl-type2 . ..) . ..)
(and val-type1 val-type2))

f))

It is permitted to ignore one or all of the fiype declarations in force.

l If two (or more) type declarations are in effect for a variable, and they are both function
declarations, the declarations combine similarly.

compiled-function

Supertypes:
compiled-function, function, t

Description:
Any function may be considered by an implementation to be a a compiled function if it contains
no references to macros that must be expanded at run time, and it contains no unresolved
references to load time values. See Section 3.2.2 (Compilation Semantics).

Functions whose definitions appear lexically within a file that has been compiled with
compile-file and then loaded with load are of type compiled-function. Functions produced
by the compile function are of type compiled-function. Other functions might also be of type
compiled-function.

generic-function System Class

Class Precedence List:
generic-function, function, t

Description:
A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object contains a set of methods, a lambda hi, a
method combination type, and other information. The methods define the claw-specific behavior
and operations of the generic junction; a method is said to specialize a generic junciion. When
invoked, a generic junction executes a subset of its methods based on the classes or identities of
its arguments.

A generic junction can be used in the same ways that an ordinary junction can be used; specif-
ically, a generic juncfion can be used as an argument to funcall and apply, and can be given a
global or a local name.

Types and Classes 4-17

ANSI X3.226-1994 Programming Language-Common Lisp

standard-generic-function System Class

Class Precedence List:
standard-generic-function, generic-function, function, t

Description:
The class standard-generic-function is the default class of generic functions established by
defmethod, ensure-generic-function, defgeneric, and defclass forms.

System Class

Class Precedence List:
class, standard-object, t

Description:
The iype class represents objects that determine the structure and behavior of their instances.
Associated with an object of type class is information describing its place in the directed acyclic
graph of classes, its slois, and its options.

built-in-class System Class

Class Precedence List:
built-in-class, class, standard-object, t

Description:
A buikin class is a class whose inslances have restricted capabilities or special representations.
Attempting to use defclass to define subclasses of a built-in class signals an error of fype error.
Calling make-instance to create an instance of a buill-in class signals an error of lype error.
Calling slot-value on an insknce of a built-in class signals an error of type error. Redefining a
built-in class or using change-class to change the class of an instance to or from a built-in class
signals an error of type error. However, built-in classes can be used aa parameter speciolizers in
methods.

structure-class System Class

Class Precedence List:
structure-class, class, standard-object, t

Description:
All classes defined by means of defstruct are instances of the class structure-class.

4-18 Types and Classes

Programming Language--Common Lisp ANSI X3.226-1994

standard-class System Class

Class Precedence List:
standard-class, class, standard-object, t

Description:
The class standard-class is the default class of classes defined by defclass.

method System Class

Class Precedence List:
method, t

Description:
A method is an object that represents a modular part. of the behavior of a generic fun&on.

A method contains code to implement the meihod’s behavior, a sequence of parameter specializers
that specify when the given method is applicable, and a sequence of qualifiers that is used by
the method combination facility to distinguish among methods. Each required parameter of
each method has an associated parameter specializer, and the method will be invoked only on
arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they are
run, and the values that are returned by the generic function. The object system offers a default
method combination type and provides a facility for declaring new types of method combination.

See Also:
Section 7.6 (Generic Functions and Methods)

standard-method System Class

Class Precedence List:
standard-method, method, standard-object, t

Description:
The class standard-method is the default class of methods defined by the defmethod and
defgeneric forms.

Types and Classes 4-19

ANSI X3.226-1994 Programming Language-Common Lisp

structure-object

Class Precedence List:
structure-object, t

Description:
The class structure-object is an instance of structure-class and is a superclass of every class
that is an instance of structure-class except itself, and is a superclass of every class that is
defined by defstruct.

See Also:
defstruct, Section 2.4.8.13 (Sharpsign S), Section 22.1.3.12 (Printing Structures)

standard-object

Class Precedence List:
standard-object, t

Description:
The class standard-object is an instance of standard-class and is a superclass of every class that
is an instance of standard-class except itself.

method-combination System Class

Class Precedence List:
method-combination, t

Description:
Every method combination object is an indirect instance of the class method-combination A
method combination object represents the information about the method combination being used
by a generic function. A method combination object contains information about both the type of
method combination and the arguments being used with that type.

t System Clau

Class Precedence List:
t

Description:
The set of all objects. The type t is a supertype of every type, including itself. Every object is of
type t.

4-20 Types and Classes

Programming LanguageCommon Lisp ANSI X3.226-1994

satisfies Type Specifier

Compound Type Specifier Kind:
Predicating.

Compound Type Specifier Syntax:
(satisfies predicate-name)

Compound Type Specifier Arguments:
predicate-name-a symbol.

Compound Type Specifier Description:
This denotes the set of all objects that satisfy the predicate predicattname, which must be a
symbol whose global function definition is a oneargument predicate. A name is required for
predicatcname; lambda ezpressions are not allowed. For example, the type specifier (and integer
(satisfies evenp)) denotes the set of all even integers. The form (typep x ‘(satisfies p)) is
equivalent to (if (p x) t nil).

The argument is required. The symbol * can be the argument, but it denotes itself (the symbol
*), and does not represent an unspecified value.

The symbol satisfies is not valid as a type specifier.

member Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(member {object} *)

Compound Type Specifier Arguments:
object-an object.

Compound Type Specifier Description:
This denotes the set containing the named objects. An object is of this type if and only if it is eql
to one of the specified objects.

The type specifiers (member) and nil are equivalent. * can be among the objects, but if so it
denotes itself (the symbol *) and does not represent an unspecified value. The symbol member
is not, valid as a type specifier; and, specifically, it is not an abbreviation for either (member) or
(member *).

See Also:
the type eql

Types and Classes 4-21

ANSI X3.226-1994 Programming Language-Common Lisp

not Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(not typespcc)

Compound Type Specifier Arguments:
typespcc-a type specifier.

Compound Type Specifier Description:
This denotes the set of all objects that are not of the type typespec.

The argument is required, and cannot be *.

The symbol not is not valid as a type specijier.

and Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(and { typcs~ec}*)

Compound Type Specifier Arguments:
typespec-a type specifier.

Compound Type Specifier Description:
This denotes the set of all objects of the type determined by the intersection of the typespecs.

* is not permitted as an argument.

The type specifiers (and) and t are equivalent. The symbol and is not valid as a type specijer,
and, specifically, it is not an abbreviation for (and).

4-22 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

or Type Specijier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(or { typespec}*)

Compound Type Specifier Arguments:
typespec-a type specifier.

Compound Type Specifier Description:
This denotes the set of all objects of the type determined by the union of the typespecs. For
example, the type list by definition is the same as (or null cons). Also, the value returned by
position is an object of type (or null (integer 0 *)); i.e., either nil or a non-negative integer.

* is not permitted as an argument.

The type specifiers (or) and nil are equivalent. The symbol or is not valid as a type specifier; and,
specifically, it is not an abbreviation for (or).

values Type Specifier

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(values Jvaluttypespec)

vdut-typespcc:.= { typespec}* C&optional { typespec}*l [&rest typespec] [&allow-other-keys]

Compound Type Specifier Arguments:
typespec-a type specifier.

Compound Type Specifier Description:
This type specifier can be used only as the value-type in a function type specifier or a the special
form. It is used to specify individual types when multiple values are involved. The &optional
and &rest markers can appear in the value-type list; they indicate the parameter list of a function
that, when given to multiple-value-call along with the values, would correctly receive those
values.

The symbol * may not be among the value-types.

The symbol values is not valid as a type specifier; and, specifically, it is not an abbreviation for
(values).

Types and Classes 4-23

ANSI X3.226-1994 Programming Language-Common Lisp

4 Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(eql object)

Compound Type SpeciAer Arguments:
object-an object.

Compound Type Specifier Description:
Represents the iype of all x for which (eql object x) is true.

The argument object is required. The object can he *, but if so it denotes itself (the symbol
*) and does not represent an unspecified value. The symbol eql is not valid as an aiomic type
specifier.

coerce Function

Syntax:
coerce object result-type + result

Arguments and Values:
object-an object.

result-type-a type specifier.

result-an object, of type result-type except in situations described in Section 12.1.5.3 (Rule of
Canonical Representation for Complex Rationals).

Description:
Coerces the object to type result-type.

If object is already of type result-type, the object itself is returned, regardless of whether it would
have been possible in general to coerce an object of some other type to result-type.

Otherwise, the object is coerced to type result-type according to the following rules:

sequence

If the result-type is a recognizable subtype of list, and the object is a sequence, then the
result is a list that has the same elements as object.

If the result-type is a recognizable subtype of vector, and the object is a sequence, then
the result is a vector that has the same elements as object. If result-type is a specialized
type, the result has an actual array element type that is the result of upgrading the
element type part of that specialized type. If no element type is specified, the element
type defaults to t. If the implementation cannot determine the element type, an error is
signaled.

4-24 Types and Classes

Programming Language-Common Lisp ANSI x3.226-1994

character

If the result-type is character and the object is a character designator, the result is the
choracier it denotes.

complex

If the result-type is complex and the object is a real, then the result is obtained by
constructing a complez whose real part is the object and whose imaginary part is the
result of coercing an integer zero to the fype of the object (using coerce). (If the real part
is a rational, however, then the result must be represented as a rational rather than a
complex; see Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals).
So, for example, (coerce 3 ‘complex) is permissible, but will return 3, which is not a
complex .)

float

If the result-type is any of float, short-float, single-float, double-float, long-float, and
the object is a real, then the result is a jioat of type result-type which is equal in sign and
magnitude to the object to whatever degree of representational precision is permitted by
that float representation. (If the result-type is float and object is not already a jloat, then
the result is a single pout.)

function

If the result-type is function, and object is any function name that is fbound but that is
globally defined neither as a macro name nor as a special opemtor, then the result is the
func2ional value of object.

If the result-type is function, and object is a lambda expression, then the result is a
closure of object in the null lexical enuironmen2.

t

Any object can be coerced to an object of type t. In this case, the object is simply re-
turned.

Examples:

(coerce '(a b c) 'vector) -) #(A B C)
(coerce 'a 'character) -+ #\A
(coerce 4.56 'complex) + tC(4.56 0.0)
(coerce 4.580 'complex) - +C(4.580 0.080)
(coerce 7/2 'complex) + 7/2
(coerce 0 'short-float) -(0.0~0
(coerce 3.5LO 'float) --) 3.5LO
(coerce 7/2 'float) -+ 3.5
(coerce (cons 1 2) t) + (1 . 2)

All the following forms should signal an error:

(coerce '(a b c) '(vector l 4))
(coerce #(a b c) '(vector * 4))
(coerce '(a b c) '(vector l 2))
(coerce #(a b c) '(vector * 2))
(coerce "fog" '(string 2))
(coerce #(*\a S\b X\c) '(string 2))
(coerce '(0 1) '(simple-bit-vector 3))

Types and Classes 4-25

ANSI X3.226-1994 Programming LanguageCommon Lisp

Exceptional Situations:
If a coercion is not possible, an error of type type-error is signaled.

(coerce x ‘nil) always signals an error of type type-error.

An error of type error is signaled if the result-type is function but object is a symbol that is not
fbound or if the symbol names a macro or a special operator.

An error of type type-error should be signaled if result-type specifies the number of elements and
object is of a different length.

See Also:
rational, floor, char-code, char&t

Notes:
Coercions from floats to rationals and from ratios to integers are not provided because of round-
ing problems.

(coerce x ‘t) S (identity XI) Z x

deftype Macro

Syntax:
deftype name lambda-list f { declaration}* 1 documentation] {form}* - name

Arguments and Values:
name-a symbol.

lambda-list-a deflype lambda list.

declaration-a declare expression; not evaluated.

documentation-a string; not evaluated.

form-a form.

Description:
deftype deiines a derived type specijier named name.

The meaning of the new type specifier is given in terms of a function which expands the type
specifier into another type specifier, which itself will be expanded if it contains references to
another derived type specifier.

The newly defined type specifier may be referenced as a list of the form (name argl args . . .).
The number of arguments must be appropriate to the lambda-list. If the new type specifier takes
no arguments, or if all of its arguments are optional, the type specifier may be used as an atomic
type specifier.

The argument expressions to the type specifier, argl . . . arg,,, are not evaluated. Instead, these
literal objects become the objects to which corresponding parameters become bound.

The body of the deftype form (but not the lambda-list) is implicitly enclosed in a block named
name, and is evaluated as an implicit progn, returning a new type specijer.

4-26 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

The lexical environment of the body is the one which was current at the time the deftype form
was evaluated, augmented by the variables in the lambda-list.

Recursive expansion of the type specifier returned as the expansion must terminate, including the
expansion of type specifiers which are nested within the expansion.

The consequences are undefined if the result of fully expanding a type specifier contains any
circular structure, except within the objects referred to by member and eql type specifiers.

Documentation is attached to name as a documentation string of kind type.

If a deftype form appears as a top level form, the compiler must ensure that the name is recog-
nized in subsequent type declarations. The programmer must ensure that the body of a deftype
form can be evaluated at compile time if the name is referenced in subsequent type declarations.
If the expansion of a type specifier is not defined fully at compile time (perhaps because it ex-
pands into an unknown type specifier or a satisfies of a named function that isn’t defined in
the compile-time environment), an implementation may ignore any references to this type in
declarations and/or signal a warning.

Examples:

(defun equidimensional (a)
(or (< (array-rank a) 2)

(apply #‘= (array-dimensions a)))) + ElJJIDIMENSIOUAL
(deftype square-matrix (&optional type size)

‘(and (array ,type (.size .size))
(satisfies equidimensional))) + SQUARE-HATFLIX

See Also:
declare, defmacro, documentation, Section 4.2.3 (Type Specifiers), Section 3.4.11 (Syntactic
Interaction of Documentation Strings and Declarations)

subtypep Function

Syntax:
subtypep type-1 type-2 &optional environment + subtype-p, valid-p

Arguments and Values:
type-l-a type specifier.

typc2-a type specifier.

environment-an environment object. The default is nil, denoting the null lexical environment
and the current global environment.

subtypa-p-a generalized boolean.

valid-p-a generalized boolean.

Description:
If type-l is a recognizable subtype of typt2, the first value is true. Otherwise, the first value is
false, indicating that either type-l is not a subtype of type-2, or else type-l is a subtype of type-2
but is not a recognizable subtype.

Types and Classes 4-27

ANSI X3.226-1994 Programming Language-Common Lisp

A second value is also returned indicating the ‘certainty’ of the first value. If this value is true,
then the first value is an accurate indication of the subtype relationship. (The second value is
always true when the first value is true.)

Figure 4-9 summarizes the possible combinations of values that might result.

I Value 1 Value 2 Meaning
true
false
false

true
true
false

type-l is definitely a subtype of type-2.
type-l is definitely not a subtype of type-2.
subtypep could not determine the relationship,
so typcl might or might not be a subtype of type-2.

Figure 4-9. Result possibilities for subtypep

subtypep is permitted to return the values false and false only when at least one argument in-
volves one of these type specifiers: and, eql, the list form of function, member, not, or, satisfles,
or values. (A type specifier ‘involves’ such a symbol if, after being type expanded, it contains
that symbol in a position that would call for its meaning as a type specijer to be used.) One
consequence of this is that if neither type-l nor type-2 involves any of these type specifiers, then
subtypep is obliged to determine the relationship accurately. In particular, subtypep returns the
values true and true if the arguments are equal and do not involve any of these type specifiers.

subtypep never returns a second value of nil when both type-l and type-2 involve only the names
in Figure 4-2, or names of types defined by defstruct, define-condition, or defclass, or derived
types that expand into only those names. While type specifiers listed in Figure 4-2 and names
of defclass and defstruct can in some cases be implemented as derived types, subtypep regards
them as primitive.

The relationships between types reflected by subtypep are those specific to the particular im-
plementation. For example, if an implementation supports only a single type of floating-point
numbers, in that implementation (subtypep ‘float ‘long-float) returns the values true and true
(since the two types are identical).

For all R and T2 other than *, (array 71) and (array 7-2) are two different type spec-
ijers that always refer to the same sets of things if and only if they refer to arrays of ex-
actly the same specialized representation, i.e., if (upgraded-array-elent-type ’ Tl) and
(upgraded-array-elaent-type ’ T2) return two different type specifiers that always refer
to the same sets of objects. This is another way of saying that ’ (array type-specifier) and
’ (array , (upgraded-array-element-type ‘type-specifier)) refer to the same set of specialized array
representations For all Tl and T2 other than *, the intersection of (array Tl) and (array T2)
is the empty set if and only if they refer to arrays of different, distinct specialized representations.

Therefore,

(subtypep ‘(array Tl) '(array T2)) -+ true

if and only if

(upgraded-array-elenent-type 'Tl) and
(upgraded-array-element-type 'T2)

return two different type specifiers that always refer to the same sets of objects.

For all type-specifiers Tl and T2 other than *,

(subtypep ‘(complex Tl) ‘(complex T2)) + true. true

if:

4-28 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

1. Tl is a subtype of T2, or
2. (upgraded-complex-part-type * Tl) and (upgraded-complex-part-type * T2) return

two different type specifiers that always refer to the same sets of objects; in this case,
(complex Tl) and (complex T2) both refer to the same specialized representation.

The values are false and true otherwise.

The form

(subtypep ‘(complex single-float) ‘(complex float))

must return true in all implementations, but

hbtypep ‘(array single-float) ‘(array float))

returns true only in implementations that do not have a specialized array representation for
single floats distinct from that for other floats.

Examples:

(subtypep ‘compiled-function ‘function) + true. true
(subtypep ‘null ‘list) + t?Xe. true
(subtypep ‘null ‘symbol) + trUf2. he

(subtypep ‘integer ‘string) + fake, true
(subtypep ’ (satisfies dummy) nil) -+ fake, implementation-dependent
(subtypep ‘(integer 1 3) ‘(integer 1 4) 1 --) true, true
(subtypep ‘(integer (0) (0)) ‘nil) + true, true
(subtypep ‘nil ‘(integer (0) (0))) + true, true
(subtypep ‘(integer (0) (0)) ‘(member)) --) true, true ;or fake, false
(subtypep ‘(member) ‘nil) --) true, true ;or fake, false
(subtypep ‘nil ‘(member)) + true, true ;or false. fake

Let tact-x> and <set-y> be two distinct type specifiers that do not always refer to the same sets
of objects in a given implementation, but for which make-array, will return an object of the same
array type.

Thus, in each case,

(subtypep (array-element-type (make-array 0 :element-type ‘taet-x>))
(array-element-type (make-array 0 :element-type ‘<set-y>)))

- true, true

(subtypep (array-element-type (make-array 0 :element-type ‘<set-y>))
(array-element-type (make-array 0 :element-type ‘<set-x>)))

+ true, true

If (array <set-x>) and (array <set-y>) are different names for exactly the same set of objecfs,
these names should always refer to the same sets of objects. That implies that the following set of
tests are also true:

(subtypep ‘(array <set-x>) ‘(array <set-y>)) + true, true
(subtypep ‘(array <set-y>) ‘(array <set-x>)) -+ true, true

See Also:
Section 4.2 (Types)

Notes:
The small differences between the subtypep specification for the array and complex types are
necessary because there is no creation function for completes which allows the specification of the
resultant part type independently of the actual types of the parts. Thus in the case of the type

Types and Classes 4-29

ANSI X3.226-1994 Programming Language-Common Lisp

complex, the actual type of the parts is referred to, although a number can be a member of more
than one type. For example, 17 is of type (mod 18) as well as type (mod 256) and type integer; and
2.3f5 is of type single-float as well as type float.

type-of Function

syntax:
type-of object 4 typespec

Arguments and Values:
object-an object.

typespec-a type specijier.

Description:
Returns a type specifier, iypespec, for a type that has the object as an element. The typespec
satisfies the following:

1. For any object that is an element of some built-in type:

a. the type returned is a recognizable subtype of that built-in type.

b. the type returned does not involve and, sql, member, not, or, satisfies, or values.

2. For all objects, (typep object (type-of object)) returns true. Implicit in this is that type
specifiers which are not valid for use with typep, such as the list form of the function
type specifier, are never returned by type-of.

3. The type returned by type-of is always a recognizable subtype of the class returned by
class-of. That is,

(subtypep (type-of object) (class-of object)) + true. true

4. For objects of metaclass structure-class or standard-class, and for conditions, type-of
returns the proper name of the class returned by class-of if it has a proper name, and
otherwise returns the class itself. In particular, for objects created by the constructor
function of a structure defined with defstruct without a : type option, type-of returns the
structure name; and for objects created by make-condition, the fypespec is the name of
the condition type.

5. For each of the types short-float, single-float, double-float, or long-float of which the
object is an element, the typespec is a recognizable subtype of that type.

Examples:

(type-of ‘a) 4 SYHBOL
(type-of ‘(1 . 2))

- COBS
s (COSS FIXHUH FIXHUH)

4-30 Types and Classes

Programming Language-Common Lip ANSI X3.226-1994

(type-of *cc0 1))
+ COHFLEX
2 (COMPLEX IITEGER)

(defstruct tamp-struct x y z) + TEHP-STRUCT
(type-of (rake-terp-struct)) -* TEHP-STRUCT
(type-of "abc")

-) STRIUG
z (STRIUG 3)

(subtypep (type-of "abc") 'string) -+ true, true
(type-of (expt 2 40))

+ BIGHUH
2 INTEGER
z (IHTEGER 1099511627776 1099511627776)
2 SYSTEM::TYO-WORD-BIGIRJH
2 FIXNUH

(subtypep (type-of 112312) 'integer) -+ true, he
(defvar *foe* hake-array 5 :element-type t)) -P l FOOe
(class-name (class-of *foe*)) + VECTOR
(type-of *foe*)

-) VECTOR
2 (VECTOR T 5)

See Also:
array-element-type, class-of, defstruct, typeease, typep, Section 4.2 (Types)

Notes:
Implementors are encouraged to arrange for type-oft0 return a portable value.

tYPeP Function

Syntax:
typep object type-specifier aoptional cnwkonment + generahzcd-boolean

Arguments and Values:
object-an object.

type-specifier-any type specifier except values, or a type spec$er list whose first element is either
function or values.

environment-an environment object. The default is nil, denoting the null lexical environment
and the and current global environment.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of the type specified by type-specifier; otherwise, returns false.

A type-specifier of the form (satisfies fn) is handled by applying the function fn to object.

(typep object * (array type-specifier)), where type-specifier is not *, returns true if and only
if object is an array that could be the result of supplying typcspecifier as the :elerent-type
argument to make-array. (array *) refers to all arrays regardless of element type,

Types and Classes 4-31

ANSI X3.226-1994 Programming Language-Common Lisp

while (array type-specifier) refers only to those arrays that can result from giving type
specifier as the :element-type argument to make-array. A similar interpretation applies to
(sbple-array type-specifier) and (vector type-specifier). See Section 15.1.2.1 (Array Upgrading).

(typep object ‘(complex type-specifier)) returns true for all complez numbers that can result
from giving numbers of type typcspecifier to the function complex, plus all other complez
numbers of the same specialized representation. Both the real and the imaginary parts of any
such complet number must satisfy:

(typep realpart ‘type-specifier)
(typep imagpart ‘type-specifier)

See the function upgraded-complex-part-type.

Examples:

(typep 12 ‘integer) -+ true
(typep (l+ most-positive-fixnnm) ‘fixnnm) + false
(typep nil t) 4 true
(typep nil nil) + false
(typep 1 ‘(mod 2)) --) true
(typep #ccl I) ‘(complex (eql 1))) + true

; ; TO understand this next example, you might need to refer to
;; Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals).

(typep tc(O 0) ‘(complex (eql 0))) + false

Let A= and A~ be two type specifiers that denote different types, but for which

(upgraded-array-element-type ‘A,)

and

(upgraded-array-element-type ‘A,)

denote the same type. Notice that

(typep (make-array 0 :element-type ‘4) ‘(array A,)) -+ true
(typep (make-array 0 :element-type ‘A,) ‘(array A,)) + true
(typep (make-array 0 :element-type ‘bEI ‘(array A,)) + true
(typep (rake-array 0 :element-type ‘A,) ‘(array A,)) - true

Exceptional Situations:
An error of type error is signaled if type-specifier is values, or a type specifier list whose first
element is either function or values.

The consequences are undefined if the type-specifier is not a type specifier.

See Also:
type-of, upgraded-array-element-type, upgraded-complex-part-type, Section 4.2.3 (Type
Specifiers)

Notes:
Implementations are encouraged to recognize and optimize the case of (typep x (the class y)),
since it does not involve any need for expansion of deftype information at runtime.

4-32 Types and Classes

Programming Language-Common Lisp ANSI X3.226-1994

type-error Condition Type

Class Precedence List:
type-error, error, serious-condition, condition, t

Description:
The type type-error represents a situation in which an object is not of the expected type.
The “offending datum” and “expected type” are initialized by the initialization arguments
named :datm and :expected-type to make-condition, and are accessed by the functions
type-error-datum and type-error-expected-type.

See Also:
type-error-datum, type-error-expected-type

type-error-datum, type-error-expected-type Function

Syntax:
type-error-datum condition + datum

type-error-expected-type condition -* expected-type

Arguments and Values:
condition-a condition of type type-error.

datum-an object.

expected-type-a type specifier.

Description:
type-error-datum returns the offending datum in the siluation represented by the condition.

type-error-expected-type returns the expected type of the offending datum in the situation
represented by the condition.

Examples:

(defun fix-digits (condition)
(check-type condition type-error)
(let* ((digits ’ (zero one two three four

five six seven eight nine))
(val (position (type-error-datum condition) digits)))

(if (and val (subtypep ‘fixnum (type-error-expected-type condition)))
(store-value 7))))

(defun foo (x)
(handler-bind ((type-error #‘fix-digits))

(check-type x number)
(+ x 3)))

Types and Classes 4-33

ANSI X3.226-1994 Programming Language-Common Lisp

(f 00 ‘seven)
+ 10

See Also:
type-error, Chapter 9 (Conditions)

simple-type-error Condition Type

Class Precedence List:
simple-type-error, simple-condition, type-error, error, serious-condition, condition, t

Description:
Condiiions of type simple-type-error are like condiiions of type type-error, except that they
provide an alternate mechanism for specifying how the condition is to be reported; see the type
simple-condition

See Also:
simple-condition, simple-condition-format-control, simple-condition-format-arguments,
type-error-datum, type-error-expected-type

4-34 Types and Classes

ANSI X3.226-1994

Programming Language-Common Lisp

5. Data and Control Flow

ANSI X3.226-1994 Programming Language-Common Lisp

ii Data and Control Flow

Programming Language-Common Lisp

5.1 Generalized Reference

ANSI X3.226-1994

5.1 .l Overview of Places and Generalized Reference
A generalized reference is the use of a form, sometimes called a place, as if it were a variable
that could be read and written. The value of a place is the object to which the place form eval-
uates. The value of a place can be changed by using s&f. The concept of binding a place is not
defined in Common Lisp, but an implementation is permitted to extend the language by defining
this concept.

Figure 5-l contains examples of the use of setf. Note that the values returned by evaluating the
forms in column two are not necessarily the same as those obtained by evaluating the forms in
column three. In general, the exact macIy) expansion of a setf form is not guaranteed and can
even be implementation-dependent; all that is guaranteed is that the expansion is an update form
that works for that particular implementation, that the left-to-right evaluation of subforms is
preserved, and that the ultimate result of evaluating setf is the value or values being stored.

Access function Update Function
X (setq x datw)
(car x) (rplaca x datum)
(symbol-value x) (set x datum)

Figure 5-l. Examples of s&f

Update using setf
(setf x datum)
(setf (car x) datum)
(setf (symbol-value x) datum)

Figure 5-2 shows operators relating to places and generalized reference.

assert defsetf
CCafX! get-setf-expansion
ctypecase getf
decf incf
define-modify-macro POP
define-setf-expander psetf

Figure 5-2. Operators relating to places and generalized reference.

p-h
remf
rotatef
s&f
shiftf

Some of the operators above manipulate places and some manipulate setf expanders. A setf
expansion can be derived from any place. New setf expanders can be defined by using defsetf and
define-setf-expander .

5.1.1.1 Evaluation of Subforms to Places

The following rules apply to the evaluation of subforms in a place:

1. The evaluation ordering of subfonns within a place is determined by the order specified
by the second value returned by get-setf-expansion. For all places defined by this
specification (e.g., getf, ldb, . . .), th is order of evaluation is left-toright. When a place is
derived from a macro expansion, this rule is applied after the macro is expanded to find
the appropriate place.

Places defined by using defmacro or define-setf-expander use the evaluation order
defined by those definitions. For example, consider the following:

(defmacro wrong-order <x y) ‘(getf .y .x))

This following form evaluates place2 first and then place1 because that is the order they

Data and Control Flow 5-l

ANSI X3.226-1994 Programming Language-Common Lisp

are evaluated in the macro expansion:

(push value (wrong-order place1 place2))

2. For the macros that manipulate places (push, pu&new, remf, incf, decf, shiftf,
rotatef, psetf, s&f, pop, and those defined by d&e-modify-macro) the subforms
of the macro call are evaluated exactly once in left-t&right order, with the subforms of
the places evaluated in the order specified in (1).

push, pushnew, remf, incf, decf, shiftf, rotatef, psetf, pop evaluate all subforms before
modifying any of the place locations. setf (in the case when setf has more than two
arguments) performs its operation on each pair in sequence. For example, in

(setf place1 value1 place2 value2 . ..)

the subforms of place1 and value1 are evaluated, the location specified by place1 is
modified to contain the value returned by valuei, and then the rest of the setf form is
processed in a like manner.

3. For check-type, ctypecase, and cease, subforms of the place are evaluated once as in (l),
but might be evaluated again if the type check fails in the case of check-type or none of
the cases hold in ctypecase and cease.

4. For assert, the order of evaluation of the generalized references is not specified.

Rules 2, 3 and 4 cover all standardized macros that manipulate places.

5.1.1.1.1 Examples of Evaluation of Subforms to Places

(let ((ref2 (list ‘0)))
(push (progn (print “1”) ‘ref-1)

(car (progn (print “2’0 ref2))))
b 12
* (REPI)

(let (XI)
(push (aetq x (list ‘a))

(car (aetq x (list ‘b))))
x)

- (((A) . B))

push first evaluates (setq x (list ‘a)) + (a), then evaluates (eetq x (list ‘b)) * (b), then
modifies the car of this latest value to be ((a) . b).

5.1.1.2 Setf Expansions

Sometimes it is possible to avoid evaluating subforms of a place multiple times or in the wrong
order. A setf ezpansion for a given access form can be expressed as an ordered collection of five
objects:

List of temporary variables

a list of symbols naming temporary variables to be bound sequentially, as if by let*, to
values resulting from value forms.

List of value forms

a list of forms (typically, subforms of the place) which when evaluated yield the values to
which the corresponding temporary variables should be bound.

5-2 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

List of store variables

a list of symbols naming temporary store variables which are to hold the new values that
will be assigned to the place.

Storing form

a form which can reference both the temporary and the store variables, and which
changes the value of the place and guarantees to return as its values the values of the
store variables, which are the correct values for setf to return.

Accessing form

a form which can reference the temporary variables, and which returns the value of the
place.

The value returned by the accessing form is affected by execution of the storing form, but either
of these forms might be evaluated any number of times.

It is possible to do more than one setf in parallel via psetf, shiftf, and rotatef. Because of
this, the seif ezpander must produce new temporary and store variable names every time. For
examples of how to do this, see gensym.

For each standardized accessor function F, unless it is explicitly documented otherwise, it is
implementation-dependent whether the ability to use an F form as a setf place is implemented by
a setf expander or a setffunction. Also, it follows from this that it is implementation-dependent
whether the name (setf F) is fbound.

5.1.1.2.1 Examples of Setf Expansions

Examples of the contents of the constituents of setf expansions follow.

For a variable x:

0
0
(gOOO1)
(setq X go000
X

;list of temporary variables
;liit of value forms
;list of store variables
;storing form
;accessing form

Figure 5-3. Sample Setf Expansion of a Variable

For (car l xp):

(gOOO2) ;list of temporary variables
(exp) ;list of value forms
(gOOO3) ;list of store variables
(progn (rplaca go002 gOOO3) gOOO3) ;storing form
(car gOOO2) ;accessing form

Figure 54. Sample Setf Expansion of a CAR Form

For (subseq scq s e):

Data and Control Flow 5-3

ANSI X3.226-1994 Programming Language-Common Lisp

(go004 go005 gOOO6) ;list of temporary variables
(seq s cl ;list of value forms
lgOOO7) ;list of store variables
(progn (replace go004 go007 :startl go005 :endl gOOO6) gOOO7)

;storing form
(eubseq go004 go005 gOOO6) ; accessing form

Figure 5-5. Sample Setf Expansion of a SUBSEQ Form

In some cases, if a subform of a place is itself a place, it is necessary to expand the subform in
order to compute some of the values in the expansion of the outer place. For (ldb bs (car exp)):

(go001 gOOO2) ;list of temporary variables
(bs exp) ;list of value forms
(gOOO3) ;list of store variables
(progn (rplaca go002 (dpb go003 go001 (car gOOO2))) go0031

;storing form
(ldb go001 (car gOOO2)) ; accessing form

Figure 5-6. Sample Setf Expansion of a LDB Form

5.1.2 Kinds of Places
Several kinds of places are defined by Common Lisp; this section enumerates them. This set can
be extended by implementations and by programmer code.

5.1.2.1 Variable Names as Places

The name of a lexical variable or dynamic variable can be used as a place.

5.1.2.2 Function Call Forms as Places

A function form can be used as a place if it falls into one of the following categories:

l A function call form whose first element is the name of any one of the functions in Figure
5-7.

5-4 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226- 1994

aref cdadr get
bit cdar gethash

cddaar logical-pathname-translations
caaadr cddadr macro-function
caaar cddar ninth
caadar cdddar nth
caaddr cddddr readtable-case
CE%S& cdddr rest
caar cd& row-mGor-aref
cadaar Cdr sbit
cadadr char SChZU

cadar class-name second
caddar compiler-macrctfunction seventh
cadddr documentation sixth
caddr eighth slot-value
cadr elt SUbseq
CST fdeAni tion svref
cdaaar ilfth symbol-function
cdaadr All-pointer symbol-plist
cdaar And-class symbol-value
cdadar first tenth
cdaddr fourth third

Figure 5-i’. Functions that setf can be used with-l

In the case of subseq, the replacement value must be a sequence whose elements might
be contained by the sequence argument to subseq, but does not have to be a sequence of
the same type as the sequence of which the subsequence is specified. If the length of the
replacement value does not equal the length of the subsequence to be replaced, then the
shorter length determines the number of elements to be stored, as for replace.

l A function call form whose first element is the name of a selector function constructed by
defstruct. The function name must refer to the global function definition, rather than a
locally defined function.

l A function call form whose first element is the name of any one of the functions in Figure
5-8, provided that the supplied argument to that function is in turn a place form; in this
case the new place has stored back into it the result of applying the supplied “update”
function.

Fbnction name
Idb
mask-field
netf

Argument that is a place
second
second
first

Update function used
dpb
deposit-field
imolementaiion-devendeni

Figure 5-8. Functions that s&f can be used with--t

During the setf expansion of these forms, it is necessary to call get-setf-expansion in
order to figure out how the inner, nested generalized variable must be treated.

The information from get-setf-expansion is used as follows.

ldb

In a form such as:

Data and Control Flow 5-5

ANSI X3.226-1994 Programming Language-Common Lisp

(setf (ldb bytespec piaccform) VahItform)

the place referred to by the place-form must always be both read and written;
note that the update is to the generalized variable specified by plactform, not to
any object of type integer.

Thus this setf should generate code to do the following:

1. Evaluate byta-spec (and bind it into a temporary variable).
2. Bind the temporary variables for p/ace-form.

3. Evaluate valutform (and bind its value or values into the store variable).

4. Do the read from placa-form.

5. Do the write into placcform with the given bits of the integer fetched in
step 4 replaced with the value from step 3.

If the evaluation of value-form in step 3 alters what is found in plactform, such as
setting different bits of integer, then the change of the bits denoted by byte-spec
is to that altered integer, because step 4 is done after the value-form evaluation.
Nevertheless, the evaluations required for binding the temporary variables are
done in steps 1 and 2, and thus the expected left-t&right evaluation order is seen.
For example:

(setq integer #x69) + *x69
(rotatef (ldb (byte 4 4) integer)

(ldb (byte 4 0) integer))
integer + #x96

;;: This example is trying to swap two independent bit fields
;;; in an integer. Note that the generalized variable of
;:; interest here is just the (possibly local) progrsa variable
;;: integer.

mask-field

This case is the same as ldb in all essential aspects.

In a form such as:

(setf (getf place-form ind-form) valutform)

the place referred to by p/ace-form must always be both read and written; note
that the update is to the generalized variable specified by p/actform, not neces-
sarily to the particular list that is the property list in question.

Thus this setf should generate code to do the following:

1. Bind the temporary variables for place-form.

2. Evaluate ind-form (and bind it into a temporary variable).
3. Evaluate valucform (and bind its value or values into the store variable).

4. Do the read from place-form.
5. Do the write into place-form with a possibly-new property list obtained

by combining the values from steps 2, 3, and 4. (Note that the phrase
“possibly-new property list” can mean that the former property list is

5-6 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

somehow destructively reused, or it can mean partial or full copying of
it. Since either copying or destructive reuse can occur, the treatment of
the resultant value for the possibly-new property list must proceed as if
it were a different copy needing to be stored back into the generalized
variable.)

If the evaluation of valueform in step 3 alters what is found in place-form, such
as setting a different named property in the list, then the change of the property
denoted by ind-form is to that altered list, because step 4 is done after the value-
form evaluation. Nevertheless, the evaluations required for binding the temporary
variables are done in steps 1 and 2, and thus the expected left-toright evaluation
order is seen.

For example:

(setq s (setq r (list (list ‘a 1 lb 2 *c 3)))) -+ ((a 1 b 2 c 3))
(setf (getf (car r) ‘b)

(progn (setq r nil) 6)) + 6
r -+ NIL
s + ((A 1 B 6 C 3))

;;; gote that the (setq r nil) does not affect the actions of
; ; ; the SETF because the value of R had already been saved in
;;; a temporary variable as part of the step 1. Only the CAB
;;; of this value oil1 be retrieved, and subsequently modified
;;; after the value computation.

5.1.2.3 VALUES Forms as Places

A values form can be used as a place, provided that each of its subforms is also a place form.

A form such as

(setf (values place-l . . . plactn) values-form)

does the following:

1. The subforms of each nested place are evaluated in left-toright order.
2. The values-form is evaluated, and the first store variable from each p/ace is bound to its

return values as if by multiple-value-bind.

3. If the setf ezppansion for any p/ace involves more than one store variable, then the addi-
tional store variables are bound to nil.

4. The storing forms for each place are evaluated in left-twright order.

The storing form in the setf ezpansion of values returns as multiple values2 the values of the store
variables in step 2. That is, the number of values returned is the same as the number of place
forms. This may be more or fewer values than are produced by the values-form.

5.1.2.4 THE Forms as Places

A the form can be used as a place, in which case the declaration is transferred to the ncwvaluc
form, and the resulting setf is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x1 (the integer (+ y 3)))

Data and Control Flow 5-7

_ _____ -_L._-Y-.--..----
. . - ~.. .- __ -A._

ANSI X3.226- 1994 Programming LanguageCommon Lisp

5.1.2.5 APPLY Forms as Places

The following s ituations involving setf of apply must be supported:

l (setf (apply ~t’aref array { subsc r ipt}* more-subscripts) new-element)
. (setf (apply #‘bit array {subscript}* mortsubscripts) new-clement)
. (setf (apply t ‘shit array {subscript}* more-subscripts) new-clement)

In all three cases, the element of array designated by the concatenation of subsc r ipts and more-
subsc r ipts (i.e., the same element which would be read by the call to apply if it were not part of
a setf form) is changed to have the value given by new-element. For these usages, the function
name (aref, bit, or sbit) must refer to the global function definition, rather than a locally defined
function.

No other standardized function is required to be supported, but an implementation may define
such support. An implementation may also define support for implementation-defined operators.

If a user-defined function is used in this context, the following equivalence is true, except that
care is taken to preserve proper left-to-right evaluation of argument subforms:

(setf (apply *‘name {arg}*) val)
E (apply X1 (setf name) val {arg}*)

5.1.2.6 Setf Expansions and Places
Any compound form for which the operator has a setf ezpander defined can be used as a place.
The operator must refer to the global function definition, rather than a locally defined function or
macro.

5.1.2.7 Macro Forms as Places

A macro form can be used as a place, in which case Common Lisp expands the macro form as if
by macroexpand- and then uses the macro ezpansion in place of the original place. Such macro
expansion is attempted only after exhausting all other possibilities other than expanding into a
call to a function named (setf reader).

5.1.2.8 Symbol Macros as Places

A reference to a symbol that has been established as a symbol macro can be used as a place. In
this case, setf expands the reference and then analyzes the resulting form.

5.1.2.9 O ther Compound Forms as Places

For any other compound form for which the operator is a symbol f, the s&f form expands into a
call to the junction named (setf f). The first argument in the newly constructed function form
is newvalue and the remaining arguments are the remaining elements of place. Thii expansion
occurs regardless of whether f or (setf f) is defined as a junction locally, globally, or not at all.
For example,

(aetf (f argl arg2 . . .) newvalue)

expands into a form with the same effect and value as

5-8 Data and Control F low

Programming Language-Common Lisp ANSI X3.226-1994

(let ((t:temp-1 a.+ ;force correct order of evaluation
(#:temp-2 arg2)
. . .
(#:temp-O new-value) 1

(funcall (function (setf f)) t:temp-0 #:temp-1 t:temp-2...))

A function named (setf f) must return its first argument as its only value in order to preserve
the semantics of setf.

5.1.3 Treatment of Other Macros Based on SETF
For each of the “read-modify-write” operators in Figure 5-9, and for any additional macros
defined by the programmer using define-modify-macro, an exception is made to the normal rule
of left-to-right evaluation of arguments. Evaluation of argument forms occurs in left-to-right
order, with the exception that for the place argument, the actual read of the “old value” from
that place happens after all of the argument form evaluations, and just before a “new value” is
computed and written back into the place.

Specifically, each of these operators can be viewed as involving a form with the following general
syntax:

(operator {preceding-form}* place {following-form}*)

The evaluation of each such form proceeds like this:

1.
2.

Eualuate each of the preceding-forms, in left-to-right order.
Evaluate the subfomas of the place, in the order specified by the second value of the setf
ezpansion for that place.

3. Evaluate each of the following-forms, in left-to-right order.
4. Read the old value from place.

5. Compute the new value.
6. Store the new value into place.

deef POP
incf push

Figure 5-Q. Read-Modify-Write Macros

puahnew
remf

Data and Control Flow 5-9

ANSI X3.226-1994 Programming Language-Common Lisp

5.2 Transfer of Control to an Exit Point
When a transfer of control is initiated by go, return-from, or throw the following events occur in
order to accomplish the transfer of control. Note that for go, the exit point is the form within the
tagbody that is being executed at the time the go is performed; for return-from, the etit point is
the corresponding block form; and for throw, the ezit point is the corresponding catch form.

1. Intervening ezit points are “abandoned” (i.e., their eztent ends and it is no longer valid
to attempt to transfer control through them).

2. The cleanup clauses of any intervening unwind-protect clauses are evaluated.

3. Intervening dynamic bindings of special variables, catch tags, condition handlers, and
restarts are undone.

4. The etient of the exit point being invoked ends, and control is passed to the target.

The extent of an exit being “abandoned” because it is being passed over ends as soon as the
transfer of control is initiated. That is, event 1 occurs at the beginning of the initiation of the
transfer of control. The consequences are undefined if an attempt is made to transfer control to
an ezit point whose dynamic extent has ended.

Events 2 and 3 are actually performed interleaved, in the order corresponding to the reverse
order in which they were established. The effect of this is that the cleanup clauses of au
unwind-protect see the same dynamic bindings of variables and catch tags as were visible when
the unwind-protect was entered.

Event 4 occurs at the end of the transfer of control.

5-10 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

apply Function

Syntax:
apply function &rest args+ --* {fes~lt}*

Arguments and Values:
function-a function designator.

args-a spreadable argument list designator.

results-the values returned by function.

Description:
Applies the function to the args.

When the function receives its arguments via &rest, it is permissible (but not required) for
the implementation to bind the rest parameter to an object that shares structure with the last
argument to apply. Because a function can neither detect whether it was called via apply nor
whether (if so) the last argument to apply was a constant, conforming programs must neither rely
on the list structure of a rest list to be freshly consed, nor modify that list structure.

setf can be used with apply in certain circumstances; see Section 5.1.2.5 (APPLY Forms as
Places).

Examples:

(setq f ‘+I + +
(apply f ‘(1 2)) --, 3
(setq f t’-> 4 t<FUlKTIOll ->
(apply f ‘(1 2)) + -1
(apply #‘mu 3 5 ‘(2 7 3)) -+ 7
(apply ‘cons ‘((+ 2 3) 4)) -+ ((+ 2 3) . 4)
(apply t’+ ‘0) -+ 0

(defparaneter +sone-list+ ‘(a b c))
(defun strange-test (&rest x1 (eq x esone-list*))
(apply *‘strange-test *some-list*) + implementation-dependent

(defun bad-boy &rest x> (rplacd x ‘y>)
(bad-boy ‘a ‘b ‘c) has undefined consequences.
(apply #‘bad-boy esone-list*) has undefined consequences.

(defun foo (size &rest keys &key double tallow-other-keys)
(let ((v (apply #‘sake-array size :allow-other-keys t keys)))

(if double (concatenate (type-of v) v v> v))>
(foe 4 :initial-contents ‘(a b c d) :double t)

+ *(A B C D A B C D)

See Also:
funcall, fdeflnition, function, Section 3.1 (Evaluation), Section 5.1.2.5 (APPLY Forms as Places)

Data and Control Flow 5-11

ANSI X3.226-1994 Programming Language-Common Lisp

defun

syntax:
defun function-name lambda-list [{declaration}* 1 documentation] {form}*

+ function-name

Arguments and Values:
function-name-a function name.

lambda-list-an ordina y lambda list.

declaration-a declare ezpression; not evaluated.

documentation-a sh-ing; not evaluated.

forms-an implicit progn .

block-name-the fin&on block name of the function-name.

Description:
Defines a new function named function-name in the global environmenl. The body of the fundion
defined by defun consists of forms; they are executed as an imp&i progn when the junction is
called. defun can be used to define a new funcGon, to install a corrected version of an incorrect
definition, to redefine an already-defined function, or to redefine a macro as a function.

defun implicitly puts a block named block-name around the body forms (but not the forms in the
lambda-list) of the function defined.

Documentation is attached as a documeniation string to name (as kind function) and to the
junction object.

Evaluating defun causes function-name to be a global name for the funciion specified by the
lambda ezpression

(larbda lambda-list
[{declaration}* 1 documentation]
(block block-name {form}*))

processed in the lezical environmen in which defun was executed.

(None of the arguments are evaluated at macro expansion time.)

defun is not required to perform any compile-time side effects. In particular, defun doea not
make the function definition available at compile time. An implementation may choose to store
information about the function for the purposes pf compile-time error-checking (such as checking
the number of arguments on calls), or to enable the function to beexpanded inline.

Examples:

(defun recur (x)
(when 0 x 0)

(recur Cl- x)1)) -* REXUR
(defun ex (a b &optional c (d 66) treat keys &key test (start 0))

(list a b c d keys test start)) - EX
(ex 1 2) - (1 2 NIL 66 lpIL YIL 0)

5-12 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(ex 1 2 3 4 :test 'equal :start 50)
- (1 2 3 4 (:TEST EQUAL :START 50) EQUAL 50)

(ax :test 1 :start 2) 4 (:TEST 1 :START 2 NIL UIL 0)

;; This function assuses its callers have checked the types of the
;; arguments, and authorizes the compiler to build in that assumption.
(defun discriminant (a b c)

(declare (nunbar a b cl)
"Compute the discrininant for a quadratic equation."
(- (* b b) (8 4 a ~1)) -* DISCRIHINANT

(discrisinant 1 213 -2) -+ T6/9

;; This function assunes its callers have not checked the types of the
;; argosents. and performs explicit type checks before faking any assumptions.
(defun careful-discriminant (a b c)

"Compute the discriminant for a quadratic equation."
(check-type a number)
(check-type b number)
(check-type c number)
(locally (declare (number a b c))

(- (* b b) (* 4 a c)))) + CAREFUL-DISCRIDIIANT
(careful-discrininant 1 2/3 -2) * 76/9

See Also:
flet, labels, block, return-from, declare, documentation, Section 3.1 (Evaluation), Section X4.1
(Ordinary Lambda Lists), Section 3.4.11(Syntactic Interaction of Documentation Strings and
Declarations)

Notes:
return-from can be used to return prematurely from a junction defined by defun.

Additional side effects might take place when additional information (typically debugging infor-
mation) about the function definition is recorded.

fdefinit ion Accessor

Syntax:
fdefinition function-name --, definition

(s&f (fdefinition function-name) new-definition)

Arguments and Values:
function-name-a junction name. In the non-setf case, the name must be jbound in the global
environmeni.

definition-Current global function definition named by function-name.

new-definition-a junction.

Description:
fdefinition accesses the current global function definition named by function-name. The definition
may be a junction or may be an object representing a special form or macro. The value returned

Data and Control Flow 5-13

ANSI X3.226-1994 Programming Language-Common Lisp

by fdetition when fioundp returns true but the function-name denotes a macro or special form
is not well-defined, but fdeflnition does not signal an error.

Exceptional Situations:
Should signal an error of type type-error if function-name is not a junction name.

An error of type undefined-function is signaled in the non-setf case if function-name is not
jbound.

See Also:
fboundp, fmakunbound, macr*function, special-operator-p, symbol-function

Notes:
fdetiition cannot access the value of a lexical function name produced by flet or labels; it can
access only the global function value.

setf can be used with fdefinition to replace a global function definition when the function-name’s
function definition does not represent a special form. setf of fdeflnition requires a junciion as the
new value. It is an error to set the fdefluition of a function-name to a symbol, a list, or the value
returned by fdeflnition on the name of a macro or special form.

Function

Syntax:
fioundp name - generalized-boolean

Pronunciation:
[,ef ’ ba&ndpE]

Arguments and Values:
name-a junction name.

generalized-boolean-a generalized boolean.

Description:
Returns true if name is j’bound; otherwise, returns false.

Examples:

(fboundp ‘car) --) irue
(fboundp ‘nth-value) + false
(fboundp ‘pith-open-file) + true
(fboundp ‘unwind-protect) + true
(defun my-function (x) x1 + PN-FUNCTION
(fbomdp ‘my-function) + true
(let ((saved-definition (symbol-function ‘my-function)))

(unwind-protect (progn (fmakunbound ‘my-function)
(fboundp ‘my-function))

(setf (symbol-function ‘my-function) saved-definition)))
+ false

(fboundp ‘my-function) + true
(defracro my-macro (x) “,x0 + MY-HACRO
(fboundp ‘my-macro) + true

5-14 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(fmakunbound 'my-function) --) WY-FUUCTIOIIJ
(fboundp ‘my-function) + fake
(flet ((my-function (x1 xt))

(fboundp ‘my-function)) * fake

Exceptional Situations:
Should signal an error of iype type-error if name is not a function name.

See Also:
symbol-function, fmakunbound, fdefinition

Notes:
It is permissible to call symbol-function on any symbol that is fbound.

fioundp is sometimes used to “guard” an access to the function cell, as in: (if (fboundp x)
(symbol-function x))

Defining a setf ezpander F does not cause the setf function (setf F) to become defined.

fmakunbound Function

Syntax:
fmakunbound name -) name

Pronunciation:
[,ef’makcn,bakd] or [,ef’miikcn,baimd]

Arguments and Values:
name-a function name.

Description:
Removes the function or macro definition, if any, of name in the global enuironmeni.

Examples:

(defun add-some (x) (+ x 19)) + ADD-SOHE
(fboundp ‘add-some) * true
(flet ((add-some (x) (+ x 37)))

(fmakunbound ‘add-some)
(add-some 1)) -+ 38

(fboundp ‘add-some) + false

Exceptional Situations:
Should signal an error of type type-error if name is not a function name.

The consequences are undefined if name is a special operator.

See Also:
f ioundp, makunbound

Data and Control Flow 5-15

ANSI x3.226 1994 Programming Language-Common Lisp

flet , labels, macrolet Special Operator

Syntax:
flet ({(function-name lambda-list [{local-declaration}* 1 local-documentation] {local-form}*))*)

{ declara Con}* {form}*

+ {few/t}*

labels ({(function-name lambda-list [{local-declaration}* 1 local-documentation] { /ocaCform} *)}*)
{declaration)* {form)*

+ {result}*

macrolet ({(name lambda-list [{local-declaration}* 1 /ocaCdocumentation] {/oca/-form}*)}*)
(declaration}* {form}*

- {resu/t}*

Arguments and Values:
function-name-a fundion name.

name-a symbol.

lambda-list-a lambda list; for flet and labels, it is an ordinary lambda list; for macrolet, it is a
macro lambda list.

local-declaration-a declare ezprcssion; not evaluated.

declaration-a declare ezpnrssion; not evaluated.

local-documentation-a string; not evaluated.

local- forms, forms-an implicit progn .

results-the values of the forms.

Description:
flet, labels, and macrolet define local functions and macros, and execute forms using the local
definitions. Forms are executed in order of occurrence.

The body forms (but not the lambda list) of each function created by flet and labels and each
macro created by macrolet are enclosed in an implicit block whose name is the function block
name of the function-name or name, as appropriate.

The scope of the declarations between the list of local function/macro deilnitions and the body
forms in flet and labels does not include the bodies of the locally defined functions, except that
for labels, any inline, notinline, or ftype declarations that refer to the locally defined functions
do apply to the local function bodies That is, their scope is the same as the function name that
they affect. The scope of these declarations does not include the bodies of the macro expander
functions defined by macrolet.

flet

flet defines locally named functions and executes a series of forms with these definition
bindings. Any number of such local functions can be defined.

5-16 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

The scope of the name binding encompasses only the body. Within the body of %et,
function-names matching those defined by %et refer to the locally defined functions rather
than to the global function definitions of the same name, Also, within the scope of %et,
global setf ezpander definitions of the function-name defined by %et do not apply. Note
that this applies to (dafsetf f . ..).not (defmethod (setf fi . ..I.

The names of functions defined by %ct are in the letical environment; they retain their
local definitions only within the body of %et. The function definition bindings are visible
only in the body of %et, not the definitions themselves. Within the function definitions,
local function names that match those being defined refer to functions or macros defined
outside the %et. %et can locally shadow a global function name, and the new definition
can refer to the global definition.

Any local-documentation is attached to the corresponding local function (if one is actually
created) as a documentation string.

labels

labels is equivalent to %et except that the scope of the defined function names for iabels
encompasses the function definitions themselves as well as the body.

macrolet

macrolet establishes local macro definitions, using the same format used by defmacro.

Within the body of macrolet, global setf ezpander definitions of the namer defined by the
macrolet do not apply; rather, setf expands the macro form and recursively process the
resulting form.

The macro-expansion functions defined by macrolet are defined in the lezical en-
vironment in which the macrolet form appears. Declarations and macrolet and
symbol-macrolet definitions affect the local macro definitions in a macrolet, but the
consequences are undefined if the local macro definitions reference any local variable or
function bindings that are visible in that lezical environment.

Any local-documentation is attached to the corresponding local macro function as a
documentation string.

Examples:

(defun foo (x flag)
(macrolet ((fudge (z)

;The paraeters x and flag are not accessible
: at this point; a reference to flag vould be to
; the global variable of that name.
‘(if flag (* ,z ,z) .z)))

;The parameters x and flag are accessible here.
(+ x

(fudge x1
(fudge (+ x 1)))))

=
(defun foo (I flag)

(+ x
(if flag (* x x1 11)
(if flag (* (+ x 1) (+ x 1)) (+ x 1))))

after macro expansion. The occurrences of x and flag legitimately refer to the parameters of the
function foo because those parameters are visible at the site of the macro call which produced the
expansion.

Data and Control Flow 5-17

ANSI X3.226-1994 Programming Language-Common Lisp

(flet ((fletl (n) (+ n n)))
(flat ((fletl (n) (+ 2 (fletl It))))

(flat1 2))) -+ 6

(defun dummy-function 0 'top-level) -+ DIJHMY-FVIJCTIOP
(funcall #t'dummy-function) + TOP-LEVEL
(flet ((dummy-function 0 'shadow))

(funcall *'dummy-function)) -+ SHADOW
(eq (funcall #'dummy-function) (funcall 'dummy-function))

-+ true
(flat ((dummy-function 0 'shadow))

(eq (funcall #'dummy-function)
(funcall 'dummy-function)))

+ false

(defun recursive-times (k n)
(labels ((temp (n)

(if (zerop n) 0 (+ k (temp (l- n))))))
(tamp n))) + RECDSSIvE-TIHES

(recursive-times 2 3) -+ 6

(defmacro mlets (x &environment env)
(let ((form '(babbit .xX)))

(macroexpand form env))) + IILJITS
(macrolet ((babbit (2) ‘(+ ,z ,z))) (mlets 5)) + 10

(flet ((safesqrt (11 (sqrt cabs x)1))
;; The safesqrt function is used in tvo places.

hfesqrt (apply *I+ (map 'list t'safesqrt '(1 2 3 4 5 6)))))
+ 3.291173

(defun integer-pover (n k)
(declare (integer n))
(declare (type (integer 0 l) k))
(labels ((expt0 (x k a)

(declare (integer x a) (type (integer 0 l) k))
(cond ((zerop k) a)

((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* I x1 (floor k 2) (* x a)))))

(exptl (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))

(t (expt0 (* x x) (floork 2) (* x a))))))
CarptO n k 1))) + IMTEGER-POYER

(defun example (y 1)
(flet ((attach (x)

(setq 1 (append 1 (list I)))))
(declare Cnline attach))
(dolist (x y)

bless (null (cdr x))
(attach XI) 1)

1))

5-18 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(example ‘((a apple apricot) (b banana) (c cherry) (d) (a))
‘((1) (2) (3) (4 2) (5) (6 3 2)))

+ ((1) (2) (3) (4 2) (5) (6 3 2) (A APPLE APRICOT) (B BANANA) (C CHERRY))

See Also:

Notes:

declare, defmacro, defun, documentation, let, Section 3.1 (Evaluation), Section 3.4.11 (Syntac-
tic Interaction of Documentation Strings and Declarations)

It is not possible to define recursive functions with flet. labels can be used to define mutually
recursive functions.

If a macrolet form is a top level form, the body forms are also processed as top level forms. See
Section 3.2.3 (File Compilation).

funcall Function

syntax:
funcall function &rest args -+ {result}*

Arguments and Values:
function-a function designator.

args-arguments to the function.

results-the values returned by the function.

Description:
funcall applies function to args. If function is a symbol, it is coerced to a function aa if by finding
its functional value in the global environment.

Examples:

(funcall t’+ 1 2 3) -+ 6
(funcall ‘car ‘(1 2 3)) -+ 1
(funcall ‘position 1 ‘(1 2 3 2 1) :start 1) + 4
(cons 1 2) -4 (1 . 2)
(flet ((cons (x y) ‘(kens ,x ,y)))

(let ((cons (symbol-function I+)))
(funcall #*cons

(funcall ‘cons 1 2)
(funcall cons 1 2))))

+ (KONS (1 . 2) 3)

Exceptional Situations:
An error of type undefined-function should be signaled if function is a symbol that does not have
a global definition as a function or that has a global definition aa a macro or a special operator.

See Also:
apply, function, Section 3.1 (Evaluation)

Data and Control Flow 5-19

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:

(funcall function argl arg2 . . .I
t (apply function argl arg2 . . . nil)
E (apply function (list argl arg2 . . .))

The difference between funcall and an ordinary function call is that in the former case the
function is obtained by ordinary eualuation of a form, and in the latter case it is obtained by the
special interpretation of the function position that normally occurs.

function Special Operator

Syntax:
function name + function

Arguments and Values:
name-a function name or lambda ezpression.

function-a function object.

Description:
The value of function is the functional value of name in the current lezical environment.

If name is a function name, the functional definition of that name is that established by the
innermost lexically enclosing flet, labels, or macrolet form, if there is one. Otherwise the global
functional definition of the function name is returned.

If name is a lambda ezpression, then a lexical closure is returned. In situations where a closure
over the same set of bindings might be produced more than once, the various resulting closures
might or might not be eq.

It is an error to use function on a function name that does not denote a function in the lexical
environment in which the function form appears. Specifically, it is an error to use function on a
symbol that denotes a macro or special form. An implementation may choose not to signal this
error for performance reasons, but implementations are forbidden from defining the failure to
signal an error ss a useful behavior.

Examples:

(defun adder (10 (function (lambda (y) (+ x y))I)

The result of (adder 3) is a function that adds 3 to its argument:

betq add3 (adder 3))
(funcall add3 5) -+ 8

This works because function creates a closure of the lambda ezpression that is able to refer to the
value 3 of the variable x even after control has returned from the function adder.

See Also:
defun, fdeflnition, flet, labels, symbol-function, Section 3.1.2.1.1 (Symbols ss Forms), Section
2.4.8.2 (Sharpsign Single-Quote), Section 22.1.3.13 (Printing Other Objects)

Notes:
The notation #*name may be used as an abbreviation for (function name).

5-20 Data and Control Flow

Programming LanguageCommon Lisp ANSI X3.226-1994

function-lambda-expression Function

Syntax:
fbction-lambda-expression function

+ lambda-axpression, closure-p. name

Arguments and Values:
function-a function.
lambda-axpression-a lambda ezpnssion or nil.

closure-p-a generalized boolean.

name-an object.

Description:
Returns information about function as follows:

The primary value, lambda-axprassion, is function’s defining lambda ezpression, or nil if the
information is not available. The lambda ezpression may have been pm-processed in some ways,
but it should remain a suitable argument to compile or function. Any implementation may
legitimately return nil aa the lambda-exprassion of any function.

The secondary value, closurcp, is nil if function’s definition was enclosed in the null lezical
environment or something non-nil if function’s definition might have been enclosed in some non-
null lexical environment. Any implementation may legitimately return true as the closurcp of any
function.

The tertiary value, name, is the “name” of function. The name is intended for debugging only
and is not necessarily one that would be valid for use as a name in defim or function, for ex-
ample. By convention, nil is used to mean that function has no name. Any implementation may
legitimately return nil as the name of any function.

Examples:
The following examples illustrate some possible return values, but are not intended to be exhaus-
tive:

(function-ladda-expression X’(ladda (x) x))
-) NIL, false, YIL
4 IIL, true. llIL
2 UI¶BDA (X1 X1, true, IiIL
z WHBDA (X) I), false, IiIL

(function-ladda-expre8sion
(funcall *‘(la&da 0 #‘(la&da (x) x))))

+ PIL. false, IiIL
25 III.. true, IIL
z UHBDA (X) X), true. IiIL
2 O.N4BDA (X1 X), false, BIL

Data and Control Flow 5-21

-

ANSI X3.226-1994 Programming LanguageCommon Lisp

(function-laMa-expression
(funcall t’(la8bda (x) t’(larbda 0 x)) nil))

+ NIL. irue, KIL
2 (LAIYBDA 0 Xx), true. IIL
“2 HIL, false. KIL
2 (MDA () x), false, PIL

(flat ((foo (x1 I))
(setf (symbol-function ‘bar) #‘fool
(function-labda-expression #‘bar))

-+ PIL, false. IJIL
f2 HIL. Irue. UIL
5 (LAHBDA (X) (BLOCK FOO X)1, frUe, EIL
z (LAHBDA (I) (BLOCK FOO X)1, f&e, FOO
4 (~1: :BLOCK-LARBDA FDO (X) X1, faJse. PO0

(defun foo 0
(flat ((bar (x) x))

S ‘bar))
(function-larbde-expression (foe))

-t NIL. faJse, NIL
f5 RIL. irue, KIL
2 (LAHBDA (X1 (BLOCK BAR X1). tfire, PIL
2 (LAHBDA (X) (BLOCK BAR X)1, frUe. (:IKTERKAL FOO 0 BAR)
4 (LAHBDA (I) (BLOCK BAR XI), faJse. WR in ~00~~

Notes:
Although implementations are free to return “nil, true, nil” in all cases, they are encouraged to
return a lambda eqwession as the primary value in the case where the argument was created by a
call to compile or eval (as opposed to being created by loading a compiled file).

functionp Function

Syntax:
functionp object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generaJired boolean.

Description:
Returns true if object is of fype function; otherwise, returns faJse.

Examples:

(functionp ‘append) + fakre
(functionp #‘append) + true
(functionp (symbol-function ‘append)) + true
(flet ((f 0 1)) (functionp *‘f)) + true
(functionp (compile nil ‘(lambda 0 259))) -+ true

5-22 Data and Control Flow

4

Programming Language-Common Lisp
.

ANSI X3.226-1994

(functionp nil) + fake
(functionp 12) + false
(functionp ‘(lambda W (* x x))) + false
(functionp *‘(lambda (x) (* x x)1) + frue

Notes:

(functionp object) E (typep object ‘function)

compiled-function-p Function

Syntax:
compiled-function-p object + gcneralize’d-boolean

Arguments and Values:
object-an o bjeci .

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type compiled-function; otherwise, returns false.

Examples:

(defun f (x1 x) + F
(compiled-function-p #‘f)

4 false
4 irue

(compiled-function-p ‘f) * false
(compile ‘f) + F
(compiled-function-p S’f) * true
(compiled-function-p ‘f) -+ fake
(compiled-function-p (conpile nil ‘(lambda (x) x)))

-+ true
(compiled-function-p X’Clarbda (x) x))

+ false
4 true

(compiled-function-p ‘(lambda (XI) XI)) -+ false

See Also:
compile, compile-file, compiled-function

Notes:

(compiled-function-p object) z (typep object ‘conpiled-function)

Data and Control Flow 5-23

.

ANSI X3.226-1994 Programming Language-Common Lisp

call-argument s-limit Constant Variable

Constant Value:
An integer not smaller than 50 and at least as great as the value of lambda-parameters-limit,
the exact magnitude of which is implementation-dependent.

Description:
The upper exclusive bound on the number of arguments that may be passed to a function.

See Also:
lambda-parameters-limit, multiple-values-limit

lambda-list-keywords Constant Variable

Constant Value:
a list, the elements of which are implementation-dependent, but which must contain at least
the symbols &allow-other-keys, kaux, &body, &environment, &key, &optional, &rest, and
&whole.

Description:
A list of all the lambda list keywords used in the implementation, including the additional ones
used only by macro definition forms.

See Also:
defun, flet, defmacro, macrolet, Section 3.1.2 (The Evaluation Model)

lambda-parameters-limit Constant Variable

Constant Value:
implementation-dependent, but not smaller than SO.

Description:
A positive integer that is the upper exclusive bound on the number of parameter names that can
appear in a single lambda list.

See Also:
call-arguments-limit

Notes:
Implementors are encouraged to make the value of lambda-parameters&nit as large as possible.

5-24 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

defconstant

Syntax:
defconstant name initiaLvalue [documentation] -P name

Arguments and Values:
name-a symbol; not evaluated.

initial-value-a form; evaluated.

documentation-a string; not evaluated.

Description:
defconstant causes the global variable named by name to be given a value that is the result of
evaluating initial-value.

A constant defined by defconstant can be redefined with defconstant. However, the consequences
are undefined if an attempt is made to assign a value to the symbol using another operator, or to
assign it to a different value using a subsequent defconstant.

If documentation is supplied, it is attached to name as a documentation string of kind variable.

defconstant normally appears as a top level form, but it is meaningful for it to appear as a
non-top-level form. However, the compile-time side effects described below only take place when
defconstent appears as a top level form.

The consequences are undefined if there are any bindings of the variable named by name at the
time defconstant is executed or if the value is not eql to the value of initial-value.

The consequences are undefined when constant symbols are rebound as either lexical or dynamic
variables. In other words, a reference to a symbol declared with defconstant always refers to its
global value.

The side effects of the execution of defconstant must be equivalent to at least the side effects of
the execution of the following code:

(setf (symbol-value ‘name) initial-value)
(setf (documentation ‘name 'variable) *documentation)

If a defconstant form appears as a top level form, the compiler must recognize that name names
a constant uatiable. An implementation may choose to evaluate the value-form at compile time,
load time, or both. Therefore, users must ensure that the initial-value can be evaluated at compile
time (regardless of whether or not references to name appear in the file) and that it always
evaluates to the same value.

Examples:

(defconstant this-is-a-constant 'never-changing "for a test") + THIS-IS-A-CONSTANT
this-is-a-constant * NEVER-CHANGING

(documentation 'this-is-a-constant 'variable) -+ "for a test"
(constantp ‘this-is-a-constant) -* true

See Also:
declaim, defparameter, defver, documentation, proclaim, Section 3.1.2.1.1.3 (Constant Vari-
ables), Section 3.2 (Compilation)

Data and Control Flow

5-25

ANSI X3.226-1994 Programming Language-Common Lisp

defparameter, defvar Macro

syntax:
defparameter name initial-value [documentation] -+ name

defvar name [initial-value [documentation]] -+ name

Arguments and Values:
name-a symbol; not evaluated.

initial-value-a form; for defparameter, it is always evaluated, but for defvar it is evaluated only
if name is not already bound.

documentation-a string; not evaluated.

Description:
defparameter and defvar establish name as a dynamic variable.

defparameter unconditionally assigns the initial-value to the dynamic variable named name.
defvar, by contrast, assigns initial-value (if supplied) to the dynamic variable named name only if
name is not already bound.

If no initial-value is supplied, defvar leaves the value cell of the dynamic variable named name
undisturbed, if name was previously bound, its old value persists, and if it was previously un-
bound, it remains unbound.

If documentation is supplied, it is attached to name as a documentation string of kind variable.

defparameter and defvar normally appear as a top level form, but it is meaningful for them to
appear as non-top-level forms. However, the compile-time side effects described below only take
place when they appear as top level forms.

Examples:

(defparareter v* 1) + *P*
p - 1
(conetantp ‘*p*) + false
(eetq *p+ 2) + 2
(defparameter *p* 3) -+ *P*
p + 3

(defvar *v* 1) -+ *V*
v w 1
(constantp ‘*v*) 4 false
(setq l v* 2) - 2
(defvar l v* 3) + *V+
v --) 2

(defun foo 0
(let ((+p* ‘p) (*v* *v))

(bar))) + FOO
(defun bar 0 (list l p* l v*)) -P BAR
(foe) + (P VI

The principal operational distinction between defparameter and defvar is that defparameter

5-26 Data and Control Flow

Programming Language-Common Lisp ANSI x3.226-1994

makes an unconditional assignment to name, while defvar makes a conditional one. In practice,
this means that d¶meter is useful in situations where loading or reloading the definition
would want to pick up a new value of the variable, while defvar is used in situations where the
old value would want to be retained if the file were loaded or reloaded. For example, one might
create a file which contained:

(defvar *the-interesting-nunbere* ‘0)
(defmacro define-interesting-nunber (nane n)

‘ (progn (defvar .nene ,n)
(puebnew ,nane *the-interesting-nunbare*)
’ .name))

(define-interesting-nunber *ny-height* 168) ;u
(define-interesting-number *ny-weight* 13) ;stones

Here the initial value, 0, for the variable *the-intereating-nu.nbernumbers* is just a seed that we are
never likely to want to reset to something else once something has been grown from it. As such,
we have used defvar to avoid having the *intereeting-ntmbere* information reset if the file is
loaded a second time. It is true that the two calls to define-interesting-number here would
be reprocessed, but if there were additional calls in another file, they would not be and that
information would be lost. On the other hand, consider the following code:

(defparameter *default-beep-count* 3)
(defun beep &optional (n *default-beep-count*))

(dotines (i n) (si:Xbeep 1000. 100000.) (sleep 0.1)))

Here we could easily imagine editing the code to change the initial value of *default-beep-count+,
and then reloading the file to pick up the new value. In order to make value updating easy, we
have used defparameter .

On the other hand, there is potential value to using defvar in this situation. For example, sup
pose that someone had predefined an alternate value for *default-beep-count+, or had loaded
the file and then manually changed the value. In both cases, if we had used defvar instead of
defparameter, those user preferences would not be overridden by (re)loading the file.

The choice of whether to use defparameter or defvar has visible consequences to programs, but
is nevertheless often made for subjective reasons.

Side Effects:
If a defvar or defparameter form appears as a top level form, the compiler must recognize that
the name has been proclaimed special. However, it must neither evaluate the initial-value form
nor assign the dynamic variable named name at compile time.

There may be additional (implementation-defined) compile-time or run-time side effects, as long
as such effects do not interfere with the correct operation of conforming programs.

Affected By:
defvar is affected by whether name is already bound.

See Also:
declaim, defconstant, documentation, Section 3.2 (Compilation)

Notes:
It is customary to name dynamic variables with an asterisk at the beginning and end of the
name. e.g., *foe+ is a good name for a dynamic variable, but not for a lezical variable; foe is
a good name for a lezical variable, but not for a dynamic variable. This naming convention
is observed for all defined names in Common Lisp; however, neither conforming programs nor
conforming implementations are obliged to adhere to this convention.

Data and Control Flow 5-27

ANSI X3.226-1994 Programming Language-Common Lisp

The &ent of the permission for additional side effects ia to allow implementations to do normal
“bookkeeping” that accompanies definitions. For example, the macro expansion of a defvar or
defparameter form might include code that arranges to record the name of the source file in
which the definition occurs.

defparameter and deTvar might be defined as follows:

(defmacro defparmeter (name initial-value
&optional (documentation nil docmentation-p))

‘(progn (declati (special .naae))
(eetf (sybol-value ‘,nme) .initial-value)
#(when documentation-p

‘(setf (docuaentation ‘,naae ‘variable) ‘,documentation))
’ ,naae))

(defracro defvar (naae &optional
Unitial-value nil initial-value-p)
(docwentation nil documentation-p))

‘(pro@ (declaia (special ,name))
.(uhen initial-value-p

‘(unleea (bouadp ‘,neme)
(setf (eymbol-value ‘,neme) .initial-value)))

.(ehen documentation-p
‘(eetf (documentation ‘,nane ksriable) ‘,documentation))

’ .name) 1

destructuring-bind

Syntax:
destrncturing-bind lambda-list expression {declaration}* {form}*

Arguments and Values:
lambda-list-a destructwing lambda list.

expression-a form.

declaration-a declare expression; not evaluated.

forms-an implicit progn.

results-the values returned by the forms.

Description:
destructuring-bind binds the variables specified in lambda-list to the corresponding values in
the tree structure resulting from the evaluation of expre&n; then destructuring-bind evaluatea
forms.

The lambda-list supports deatructuring as described in Section 5.4.6 (De&u&ring Lambda
Lists).

Examples:

(defun iota (n) (loop for i frog 1 to n collect i)) i he&par

5-28 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(destructuring-bind ((a &optional (b ‘bee)) one two three)
‘((alpha) ,Q(iota 3))

(list a b three two one)) + (ALPHA BEE 3 2 1)

Exceptional Situations:
If the result of evaluating the expression does not match the destructuring pattern, an error of
type error should be signaled.

See Also:
macrolet, defmacro

let, let* Special Operator

Syntax:
let ({vsf 1 (var [kit-form])}*) {declaration}* {form}* -b {result}*

let* ({var 1 (var [hit-form])}*) {declaration}* {form}* + {result}*

Arguments and Values:
var-a symbol.

init-form-8 form.

declaration-a declare ezpression; not evaluated.

form-a form.

results-the values returned by the forms.

Description:
let and let* create new variable bindings and execute a series of forms that use these bindings.
let performs the bindings in parallel and let* does tbem sequentially.

The form

(let ((varl init-form-l)
(vad hit-form-2)
. . .
(varm init-form-m))

declara tionl
declara tion2
,..
declarationp
form1
form2
..*
formn)

first evaluates the expressious hit-form-l, init-fprrn-2, and so on, in that order, saving the reault-
ing values. Then all of the variables v~rj are hound to the correponding valuee; each bindipg b

Data and Control Flow 5-29

ANSI X3.226-1994 Programming Language-Common Lisp

lexical unless there is a special declaration to the contrary. The expressions form& are then evalu-
ated in order; the values of all but the last are discarded (that is, the body of a let is an implicil
PWfl)*

let* is similar to let, but the bindings of variables are performed sequentially rather than in
parallel, The expression for the hit-form of a var can refer to vars previously bound in the let*.

The form

(let* ((varl hit-form-l 1
(var2 init-form-2)
. . .
(varm init-form-m))

declaration1
declara tion2
. . .
declara tionp
form1
form2
,..
form&

first evaluates the expression init-form-l , then binds the variable varl to that value; then it
evaluates hit-form-2 and binds var2, and so on. The expressions formj are then evaluated in
order; the values of all but the last are discarded (that is, the body of let* is an implicit progn).

For both let and let*, if there is not an init-form associated with a var, var is initialized to nil.

The special form let has the property that the scope of the name binding does not, include any
initial value form. For let*, a variable’s scope also includes the remaining initial value forms for
subsequent variable bindings.

Examples:

(setq a 'top) -, TOP
(defun dummy-function 0 a) + DDH?lY-PUIKTIOB
(let ((a 'inside) (b a))

(format nil "'3 3 23" a b (dummy-function))) -+ "INSIDE TOP TDP”
(let.* ((a 'inside) (b a))

(format nil ""3 3 'S" a b (dummy-function))) ‘-, "IHSIDE INSIDE TOP"
(let ((a 'inside) (b a))

(declare (special a))
(format nil "3 3 23" a b (dummy-function))) -+ "IBSIDE TOP IIPSIDE"

The code

(let (10
(declare (integer x1)
(setq x (gcd y 2))
. . . 1

is incorrect; although x is indeed set before it is used, and is set, to a value of the declared type
infeger, nevertheless x initially takes on the value nil in violation of the type declaration.

See Also:
progv

5-30 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

P=Wv Special Operator

Syntax:
progv symbols values {form}* + {result}*

Arguments and Values:
symbols-a list of symbols; evaluated.

values-a list of objects; evaluated.

forms-an implicit progn.

results--the values returned by the forms.

Description:
progv creates new dynamic variable bindings and executes each form using those bindings. Each
form is evaluated in order.

progv allows binding one or more dynamic variables whose names may be determined at run
time. Each form is evaluated in order with the dynamic variables whose names are in symbols
bound to corresponding values. If too few values are supplied, the remaining symbols are bound
and then made to have no value. If too many values are supplied, the excess values are ignored.
The bindings of the dynamic variables are undone on exit from progv.

Examples:

(setq *x* 1) - 1
(progv ‘(*XI*) ‘(2) *x*) -+ 2
x + 1

Assuming *x* is not globally special,

(let ((Lx+ 3))
(progv ‘(*x*1 ‘(4)

(list *x* (symbol-value ‘*x*1))) + (3 4)

See Also:
let, Section 3.1 (Evaluation)

Notes:
Among other things, progv is useful when writing interpreters for languages embedded in Lisp; it
provides a handle on the mechanism for binding dynamic variables.

setq Special Form

Syntax:
setq {Ipair}* + result

pair:.=var form

Data and Control Flow 5-31

ANSI X3.226-1994 Programming Language-Common Lisp

Pronunciation:
[‘set,kyii]

Arguments and Values:
var-a symbol naming a variable other than a constant variable.

form--a form.

result-the primary value of the last form, or nil if no pairs were supplied.

Description:
Assigns values to variables.

(oetq varl foml var.9 form2 . . .) is the simple variable assignment statement of Lisp. First
form1 is evaluated and the result is stored in the variable varl, then form2 is evaluated and the
result stored in var2, and so forth. setq may be used for assignment of both lexical and dynamic
variables.

If any var refers to a binding made by symbol-macrolet, then that var is treated as if setf (not
setq) had been used.

Examples:

;; A simple use of SETQ to establish values for variables.
(setq a 1 b 2 c 3) -+ 3
a+1
b-+2
c-3

;; Use of SETQ to update values by sequential assigaaent.
(setq a (l+ b) b Cl+ a) c (+ a b)) -+ 7
a+3
b-4
c+7

;; This illustrates the use of SETQ on a symbol macro.
(let ((x (list 10 20 30)))

(spbol-racrolet ((y (car x)) (z (cadr x)))
(setq y Cl+ 2) 2 Cl+ y))
(list x y 2)))

+ ((21 22 30) 21 22)

Side Effects:
The primary value of each form is assigned to the corresponding var.

See Also:
psetq, set, setf

Syntax:
psetq {ipair}* + nil

pair::= var form

5-32 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Pronunciation:
psetq: [:p~ ’ set, kfi]

Arguments and Values:
var-a symbol naming a variable other than a consfant variable.

form-a fawn .

Description:
Assigns values to variables.

This is just like setq, except that the assignments happen “in parallel.” That is, first all of the
forms are evaluated, and only then are the variables set to the resulting values. In this way, the
assignment to one variable does not affect the value computation of another in the way that
would occur with setq’s sequential assignment.

If any var refers to a binding made by symbol-macrolet, then that var is treated as if psetf (not
psetq) had been used.

Examples:

;; A simple use of PSETQ to establish values for variables.
;; As a matter of style, IMY prograuers would prefer SKTQ
;; in a simple situation like this share parallel assignnent
;; is not needed, but the two have equivalant effect.
(psetq a 1 b 2 c 3) + BIL
a+1
b-2
c--*3 '

;; Use of PSETQ to update values by parallel assignueut.
;; The effect here is very different than if SETQ had been used.
(psetq a Cl+ b) b Cl+ a) c (+ a b)) + BIL
a+3
b--r2
c+3

;; Use of PSETQ on a symbol macro.
(let ((x (list 10 20 30)))

(symbol-racrolet ((y (car x)) (z (cadr x)1)
(psetq y Cl+ 2) 2 Cl+ y))
(list x y 2)))

+ ((21 11 30) 21 11)

;; Use of parallel assignment to soap values of A and B.
(let ((a 1) (b 2))

(psetq a b b a)
(values a b))

--) 2, 1

Side Effects:
The values of forms are assigned to vars.

See Also:
psetf, setq

Data and Control Flow 5-33

-

ANSI X3.226-1994 Programming Language-Common Lisp

block Special Operator

Syntax:
block name form* + {redt}*

Arguments and Values:
name-a symbol.

form-a form.

results-the values of the forms if a normal return occurs, or else, if an ezplicit return occurs, the
values that were transferred.

Description:
block establishes a block named name and then evaluates forms as an implicit progn.

The special operators block and return-from work together to provide a structured, lexical, non-
local exit facility. At any point lexically contained within forms, return-from can be used with
the given name to return control and values from the block form, except when an intervening
block with the same name has been established, in which case the outer block is shadowed by the
inner one.

The block named name has lezical scope and dynamic eztent.

Once established, a block may only be exited once, whether by normal return or ezplicit return.

Examples:

(block empty) * IIL
(block shocares (values 1 2) (values 3 4)) + 3, 4
(let ((x 1))

(block stop (setq x 2) (return-from stop) (setq x 3))
x) -+ 2

(block early (return-from early (values 1 2)) (values 3 4)) -+ 1, 2
(block outer (block inner (return-from outer 1)) 2) + 1
(block twin (block toin (return-from tvin 1)) 2) -) 2
;; Contrast behavior of this example vith corresponding example of CATCH.
(block b

(flet ((bl 0 (return-froa b 1)))
(block b (bl) (print 'unreachable))
2)) 4 1

See Also:
return, return-from, Section 3.1 (Evaluation)

.-

Special Operator

Syntax:
catch tag {form} * + { few/t} *

5-34 Data and Control Flow

Programming Language- Common Lisp ANSI X3.226-1994

Arguments and Values:
tag-a catch tag; evaluated.

forms-an implicit progn.

results-if the forms exit normally, the values returned by the forms; if a throw occurs to the tag,
the values that are thrown.

Description:
catch is used as the destination of a non-local control transfer by throw. Tags are used
to find the catch to which a throw is transferring control. (catch ‘foe form) catches a
(throw 'foe form) but not a (throw 'bar form).

The order of execution of catch follows:

1. Tag is evaluated. It serves as the name of the catch.

2. Forms are then evaluated as an implicit progn, and the results of the last form are
returned unless a throw occurs.

3. if a throw occurs during the execution of one of the forms, control is transferred to the
catch form whose tag is eq to the tag argument of the throw and which is the most
recently established catch with that tag. No further evaluation of forms occurs.

4. The tag estabiished by catch is disestablished just before the results are returned.

If during the execution of one of the forms, a throw is executed whose tag is eq to the catch tag,
then the values specified by the throw are returned as the result of the dynamically most recently
established catch form with that tag.

The mechanism for catch and throw works even if throw is not within the lexical scope of catch.
throw must occur within the dynamic extent of the evaluation of the body of a catch with a
corresponding tag.

Examples:

(catch 'dummy-tag 1 2 (throw 'dummy-tag 3) 4) -+ 3
(catch ‘d-y-tag 1 2 3 4) -+ 4
(defun throv-back (tag) (throw tag t)) -+ THROW-BACK
(catch 'dummy-tag (throw-back 'dummy-tag) 2) + T

;; Contrast behavior of this example with corresponding example of BLOCK.
(catch 'c

(flet ((cl 0 (throo 'c 1)))
(catch 'c (cl) (print 'unreachable))
2)) - 2

Exceptional Situations:
An error of type control-error is signaled if throw is done when there is no suitable catch tag.

See Also:
throw, Section 3.1 (Evaluation)

Notes:
It is customary for symbols to be used as tags, but any object is permitted. However, numbers
should not be used because the comparison is done using eq.

Data and Control Flow 5-35

ANSI X3.2261994 Programming LanguaghCommon Lisp

catch differs from block in that catch tags have dynamic scope while block names have lexical
scope.

go Special Operator

Syntax:
go tag -4

Arguments and Values:
tag-a go lag.

Description:
go transfers control to the point in the body of an enclosing tagbody form labeled by a tag eql to
tag. If there is no such tag in the body, the bodies of lexically containing tagbody forms (if any)
are examined as well. If several tags are eql to tag, control is transferred to whichever matching
tag is contained in the innermost tagbody form that contains the go. The consequences are
undefined if there is no matching tag lexically visible to the point of the go.

The transfer of control initiated by go is performed as described in Section 5.2 (Transfer of
Control to an Exit Point).

Examples:

(tagbody
(aetq val 2)
(go lp)
(incf val 3)
lp (illcf val 4)) * BIL

val+ 6

The following is in error because there is a normal exit of the tagbody before the go is executed.

(let ((a nil))
(tagbody t (setq a *'(lambda 0 (go t))))
(funcall a))

The following is in error because the tagbody is passed over before the go form is executed,

(funcall (block nil
(tagbody a (return #*(lambda 0 (go a))))))

See Also:
tagbody

5-36 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

return-from Special Operator

Syntax:
return-fkom name [rcsulf] 4

Arguments and Values:
name-a block tag; not evaluated.

result-a form; evaluated. The default is nil.

Description:
Returns control and multiple ualuesz from a lexically enclosing block.

A block form named nrme must lexically enclose the occurrence of return-from; any values
yielded by the eualuation of result are immediately returned from the innermost such lexically
enclosing block.

The transfer of control initiated by return-from is performed as described in Section 5.2 (Ttans-
fer of Control to an Exit Point).

Examples:

(block alpha (return-from alpha) 1) + HIL
(block alpha (return-fron alpha 1) 2) + 1
(block alpha (return-from alpha (values 1 2)) 3) -+ 1, 2
(let ((a 0))

(dotties (i 10) (incf a) (when Coddp i) (return)))
a) -+ 2

(defun temp (x)
(if x (return-from temp ‘dummy))
44) -* TEHP

(temp nil) * 44
(tamp t) + DUHHY
(block out

(flet ((exit (n) (return-from out II)))
(block out (exit 1)))

2) + 1
(block nil

(unvind-protect (return-from nil 1)
(return-from nil 2)))

+2
(dolist (flag ‘(nil t))

(blotk nil
(let ((x 5))

(declare (special x)1
(uuvind-protect (return-from nil)

(print x)) 1)
(print ‘here))

05

DHERE

DS

DHFJLE

+ UIL

Data and Control Flow 5-37

- -. .._.____ --.--- .~- -I.--_- --- _-__ ._ _.. .-- ------i- I- _.

ANSI X3.226-1994 Programming Language-Common Lisp

(dolist (flag '(nil t))
(block nil

(let ((1 5))
(declare (epcial x))
(unwind-protect

(if flag (return-fro8 nil))
(print x1)))

(print 'here))
D5

DEERE

OS

DHERF#

-* HIL

The following has undefined consequences because the block form exits normally before the
return-from form is attempted.

(funcall (block nil #'(labda () (return-from nil)))) is an error.

See Also:
block, return, Section 3.1 (Evaluation)

return Macro

Syntax:
return [result] 4

Arguments and Values:
result-a form; evaluated. The default is nil.

Descr iption:
Returns, as if by return-from, from the block named nil.

Examples:

(block nil (return) 1) -+ NIL
(block nil (return 1) 2) -+ 1
(block nil (return (values 1 2)) 3) 4 1, 2
(block nil (block alpha (return 1) 2)) - 1
(block alpha (block nil (return 1)) 2) -+ 2
(block nil (block nil (return 1) 2)) + 1

See Also:
block, return-from, Section 3.1 (Evaluation)

Notes:

(return) 5 (return-from nil)
(return form) E (return-from nil form)

The implicit blocks established by macros such as do are often namednil,sothatreturn can be
used to ex it from such forms.

5-38 Data and Control F low

Programming Language-Common Lisp ANSI X3.226-1994

tagbody Special Operator

Syntax:
tagbody {tag 1 statement}* + nil

Arguments and Values:
tag-a go tug; not evaluated.

statement-a compound form; evaluated as described below.

Description:
Executes zero or more statements in a leticol environment that provides for control transfers to
labels indicated by the tags.

The statements in a tagbody are evaluated in order from left to right, and their values are
discarded. If at any time there are no remaining statements, tagbody returns nil. However, if
(go tag) is evaluated, control jumps to the part of the body labeled with the tag. (Tags are
compared with eql.)

A tag established by tagbody has lea&l scope and has dynamic eztent. Once tagbody has
been exited, it is no longer valid to go to a tag in its body. It is permissible for go to jump to
a tagbody that is not the innermost tagbody containing that go; the tags established by a
tagbody only shadow other tags of like name.

The determination of which elements of the body are tags and which are statements is made prior
to any macro ezpansion of that element. If a statement is a macro form and its macro ezpansion
is an atom, that atom is treated as a statement, not a tag.

Examples:

(let (val)
(tagbody

(setq val 1)
(go point-a)
(incf val 16)

point-c
(incf val 04)
(go point-b)
(incf val 32)

point-a
(incf val 02)
(go point-c)
(incf val 64)

point-b
(incf val 08))

val)
-+ 15

(defun fl (flag)
(let ((n 1))

(tagbody
Csetq n (f2 flag %‘(lahda 0 (go out))))

out
(prinl n))))

- Fl

Data and Control Flow 5-39

ANSI X3.226-1994 Programming Language-Common Lisp

(defun f2 (flag escape)
(if flag (funcall escape) 2))

+ F2
(fl nil)

02
+ IiIL

(fl t>
01
+ #IL

See Also:
go

Notes:
The macros in Figure 5-10 have implicit tagbodies.

d0 do-external-symbols
do* desymbols
do-all-symbols dolist

Figure 5-10. Macros that have implicit tagbodies.

dotimes
Pro6
prog*

-

throw Special Operator

Syntax:
throw tag result-form 4

Arguments and Values:
tag-a catch tag; evaluated.

result-form-a form; evaluated as described below.

Description:
throw causes a non-local control transfer to a catch whose tag is eq to tag.

Tag is evaluated first to produce an object called the throw tag; then result-form is evaluated, and
its results are saved. If the result-form produces multiple values, then all the values are saved. The
most recent outstanding catch whose tag is eq to the throw tag is exited; the saved results are
returned as the value or values of catch.

The transfer of control initiated by throw is performed as described in Section 5.2 (Transfer of
Control to an Exit Point).

Examples:

(catch ‘result
betq i 0 j 0)
(loop (incf j 3) (incf i)

(if (= i 3) (throv ‘result (values i j))))) -+ 3, 9

5-40 Data and Control Flow

Progmmming Languagdmmon Lisp ANSI X3.226-1994

(catch nil
(unwind-protect (throw nil 1)

(throw nil 2))) + 2

The consequences of the following are undefined because the catch of b is passed over by the first
throw, hence portable programs must assume that its dynamic eztenl is terminated. The binding
of the cafch tag is not yet disestablished and therefore it is the target of the second throw.

(catch ‘a
(catch ‘b

(unwind-protect (throw ‘a 1)
(throw ‘b 2))))

The following prints “me inner catch returns :SECCMD-THFW and then returns :outer-catch

(catch ‘foe
(format t “The inner catch returns -a.-%”

(catch ‘foe
(unwind-protect (throw ‘foe :first-throw)

(throw ‘foo :second-throw))))
:outer-catch)

D The inner catch returns :SECOND-THROW
--) :OUTER-CATCH

Exceptional Situations:
If there is no outstanding catch tag that matches the throw tag, no unwinding of the stack
is performed, and an error of iype control-error is signaled. When the error is signaled, the
dynamic environment is that which was in force at the point of the throw.

See Also:
block, catch, return-from, unwind-protect, Section 3.1 (Evaluation)

Notes:
catch and throw are normally used when the ezit point must have dynamic scope (e.g., the
throw is not lexically enclosed by the catch), while block and return are used when lezical scope
is sufficient.

unwind-protect Special Operator

Syntax:
unwind-protect protected-form {cleanup-form}* -+ {result}*

Arguments and Values:
protected-form-a form.

cleanup-form-a form.

results-the values of the protected-form.

Description:
unwind-protect evaluates protected-form and guarantees that cleanup-forms are executed before
unwind-protect exits, whether it terminates normally or is aborted by a control transfer of some

Data and Control Flow 5-41

ANSI X3.226-1994 Programming Language-Common Lisp

kind. unwind-protect is intended to be used to make sure that certain side effects take place
after the evaluation of protected-form.

If a non-local e& occurs during execution of cleanup-forms, na special action is taken. The
cleanup-forms of unwind-protect are not protected by that unwind-protect.

unwind-protect protects against all attempts to exit from protected-form, including go,
handler-case, ignore-errors, restart-case, return-from, throw, and with-simple-restart.

Undoing of handler and restart bindings during an exit happens in parallel with the undoing
of the bindings of dynamic variables and catch tags, in the reverse order in which they were
established. The effect of this is that cleanup-form stxa the same handler and restart bindings, as
well as dynamic variable bindings and eateb tags, as were visible when the unwind-protect was
entered.

Examples:

(tagbody
(let ((x 3))

(unwind-protect
(if (nusberp xt) (go out.))
(print x1))

out
.*.)

When go is executed, the call to print is executed first, and then the transfer of control to the tag
out is completed.

(defun dummy-function (x)
(s&q state 9unning>
6mless (numberp x) (throw ‘abort ‘not-a-number))
(setq state (l+ x)1) + DIJHHY-FUNCTION

(catch ‘abort (dumsy-function 1)) + 2
state -+ 2
(catch ‘abort (dummy-function ‘trash)) * NOT-I-NDHEER
state + RDNNING
(catch ‘abort (unvind-protect (dummy-function ‘trash)

(setq state ‘aborted))) + NOT-A-NlJHBER
state -P ABORTED

The following code is not correct:

(unwind-protect
(progn (incf *access-count*)

(perform-access))
(decf *access-count+))

If an exit occurs before completion of incf, the deaf form is executed anyway, resulting in an
incorrect value for *access-count*. The correct way to code this is as follows:

(let ((old-count *access-count*))
(unwind-protect

(progn (incf *access-count*)
(perform-access))

(setq *access-count* old-count)))

5-42 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

; ; ; The following returns 2.
(block nil

(unvind-protect (return 1)
(return 2)))

; : ; The f ollooiug has undef iued consequences.
(block a

(block b
(uuvind-protect (return-fror a 1)

(return-fron b 2))))

; ; ; The folloving returns 2.
(catch nil

(unwind-protect (throo nil 1)
(throo nil 2)))

; ; ; The folloving has undefined consequences because the catch of B is
; ; ; passed over by the first MROY. hence portable prograns rust assune
;;; its dynanic extent is terninated. The binding of the catch tag is not
;:; yet disestablished and therefore it is the target of the second throo.

(catch ‘a
(catch ‘b

(unwind-protect (throw ‘a 1)
(throw ‘b 2))))

; ; : The follosing prints ‘*The inner catch returns :SECOHD-THROW”
;;; and then returns :OIJTER-CATCH.

(catch If00
(fornat t “The inner catch returns -8.-X”

(catch ‘foe
(unwind-protect (throw ‘foe :first-throw)

(throv ‘foe :second-throv))))
:outer-catch)

;;; The following returns 10. The inner CATCg of A is passed over, but
; ; ; because that CATCH is disestablished before the TliROY to A is executed,
:;; it isn’t seen.

(catch ‘a
(catch ‘b

(unwind-protect (l+ (catch ‘a (throo ‘b 1)))
(throv ‘a 10))))

;;; The following has undefined consequences because the extent of
;;; the (CATCH ‘BAR . ..) exit ends vhen the (THROW ‘FOO . ..)
;;; commences.

(catch ‘foe
(catch ‘bar

(unwind-protect (throv ‘foe 3)
(throw ‘bar 4)
(print ‘xxx))))

Data and Control Flow 5-43

ANSI X3.226-1994 Programming Language-Common Lisp

;;; The following returns 4; XXX is not printed.
;;; The (MRCIY ‘FOO . ..I hae no effect on the scope of the BAR
;;; catch tag or the extent of the (CATCH 'BAR . ..) exit.

(catch 'bar
(catch 'foe

(unvind-protect (throv ‘foe 3)
(throv 'bar 4)
(print ‘xxx)) 1)

::; The follosing prints 5.
(block nil

(let ((x 5))
(declare (special x1)
(unvind-protect (return)

(print x1)))

See Also:
catch, go, handler-case, restart-case, return, return-from, throw, Section 3.1 (Evaluation)

nil Constant Variable

Constant Value:
nil.

Description:
nil represents both boolean (and generalized boolean) false and the empty list.

Examples:

nil + BIL

See Also:
t

Function

Syntax:
got x 4 boolean

Arguments and Values:
x-a generalized boolean (i.e., any object).

boolean-a boolean.

Description:
Returns t if x is false; otherwise, returns nil.

5-44 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Examples:
(not nil) -+ T
hot '0) + T
(not (integarp 'sss)) - T
(not (integerp 1)) -+ YIL
(not 3.7) -+ IIL
(not ‘apple) 4 NIL

See Also:
null

Notes:
not is intended to be used to invert the ‘truth value’ of a boolean (or generalized boolean) whereas
null is intended to be used to test for the emply list. Operationally, not and null compute the
same result; which to use is a matter of style.

t Constant Variable

Constant Value:
t.

Description:
The boolean representing true, and the canonical generalized boolean representing true. Although
any object other than nil is considered true, t is generally used when there is no special reason to
prefer one such object over another.

The symbol t is also sometimes used for other purposes as well. For example, as the name of a
class, as a designator (e.g., a stream designator) or as a special symbol for some syntactic reason
(e.g., in case and typecese to label the othe~kcc/ause).

Examples:
t+T
(eq t 't) + true
(find-class 't) + t<CLASS T 610703333>
(case 'a (a 1) (t 2)) - 1
kasa 'b (a 1) (t 2)) + 2
(prinl 'hello t)

D HELLO
- HELLO

See Also:
Ilil

Data and Control Flow 5-45

ANSI X3.226-1994 Programming Language-Common Lisp

eq Function

Syntax:
eq x y + generalized-boolean

Arguments and Values:
x-au objeci .

y-au object.

generalized-boolean-a generalized boolean.

Description:
Returns true if its arguments are the same, identical object; otherwise, returns false.

Examples:

(eq ‘a ‘b) + false
(eq ‘a ‘a) 4 true
(eq 3 3)

+ true
2 false

(eq 3 3.0) + false
(eq 3.0 3.0)

+ true
2 false

(eq *c(3 -4) tc(3 -4))
-* true
2 false

(eq *cc3 -4.0) Ik(3 -4)) + false
(eq (cons ‘a ‘b) (cons ‘a ‘~1) + false
(eq (cons ‘a ‘b) (cons *a ‘b)) -* false
(eq ‘(a . b) ‘(a . b))

+ true
4 false

(progn (setq x (cons ‘a ‘b)) (eq x x)1 + true
(progn (setq x ‘(a . b)) (eq x xx)) + true
(eq *\A #\A)

-+ true
25 false

(let ((x “Foe”)) (eq x x)1 + he
(eq “Foe” “Foe”)

+ true
4 false

(eq “Foe” (copy-seq “Foe”)) + false
(eq “FOO” “foe”) -+ false
(eq “string-seq” (copy-seq “string-8eq”)) - false
(let ((x 5)) (eq x x)>

+ frue
2 false

See Also:
eq4 equ& =dP, =, Section 3.2 (Compilation)

5-46 Data and Control Flow

Programming Language-Common Lisp ANSI x3.226-1994

Notes:
Object that appear the same when printed are not necessarily eq to each other. Symbols that
print the same usually are eq to each other because of the use of the intern function. However,
numbers with the same value need not be eq, and two similar lists are usually not identical.

An implementation is permitted to make “copies” of characters and numbers at any time. The
effect is that Common Lisp makes no guarantee that eq is true even when both its arguments are
“the same thing” if that thing is a character or number.

Most Common Lisp operators use eql rather than eq to compare objects, or else they default to
eql and only use eq if specifically requested to do so. However, the following operators are defined
to use eq rather than eql in a way that cannot be overridden by the code which employs them:

catch
get
get-properties

getf
remf
remprop

throw

Figure 5-11. Operators that always prefer EQ over EQL

Function

Syntax:
eql x y -+ generalized-boolean

Arguments and Values:
x-an object.

y-an object.

generalized-boolean-a generalized boolean.

Description:
The value of eql is true of two objects, x and y, in the folowing cases:

1. If x and y are eq.
2. If x and y are both numbers of the same type and the same value.
3. If they are both characters that represent the same character.

Otherwise the value of eql is false.

If an implementation supports positive and negative zeros as distinct values, then (eql 0.0 -0.0)
returns false. Otherwise, when the syntax -0.0 is read it is interpreted as the value 0.0, and so
(eql 0.0 -0.0) returns irue.

Examples:

(eql ‘a ‘b) + false
(eql ‘a ‘a) + true
(eql 3 3) 4 true
(eql 3 3.0) + false
(eql 3.0 3.0) -+ true
(eql #cc3 -4) *c(3 -4)) - true

Data and Control Flow 547

ANSI X3.226-1994 Programming Language-Common Lisp

(eql Sc(3 -4.0) tc(3 -4)) + false
(eql (cons ‘a ‘b) (cons ‘a ‘cl) -+ false
(eql (cons ‘a ‘b) (cons *a ‘b)) e false
(eql ‘(a . b) ‘(a . b))

+ true
Z f&e

(progn (setq x (cons ‘a ‘b)) (eql x x)) -* tr?M
(progn (setq x ‘(a . b)) (eql x x0) - trfif!
(eql t\A #\A) -+ he
(eql “Foe” “Foe”)

-, true
Z false

(eql l’Foo” (copy-seq “FOOT’)) + fake
(eql ‘*FOO” “foe”) + fake

Normally (eql 1.0~0 1.0dO) is false, under the assumption that 1.0~0 and l .OdO are of distinct
data types. However, implementations that do not provide four distinct floating-point formats
are permitted to “collapse” the four formats into some smaller number of them; in such an
implementation (eql 1. oso 1. OdO) might be true.

See Also:
eq, equal, equalp, =, char=

Notes:
eql is the same as eq, except that if the arguments are characters or numbers of the same type
then their values are compared. Thus eql tells whether two objects are conceptually the same,
whereas eq tells whether two objects are implementationally identical. It is for this reason that
eql, not eq, is the default comparison predicate for operators that take sequences as arguments.

eql may not be true of two j7oats even when they represent the same value. = is used to compare
mathematical values.

Two complex numbers are considered to be eql if their real parts are eql and their imaginary
parts are eql. For example, (eql ~(4 5) ~(4 5)) is true and (eql t~(4 5) W4.o 5.0)) is
false. Note that while (eql ~~(5.0 0.0) 5.0) is false, (eql ~(5 O) 5) is true. In the case of
(eql tC(5.0 0.0) 5.0) the two arguments are of different types, and so cannot satisfy eql. In the
case of (eql #CC5 01 51, ~(5 O) is not a complez number, but is automatically reduced to the
integer 5.

equal Function

Syntax:
equal x y + generalized-boolean

Arguments and Values:
x-an object.

y-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if x and y are structurally similar (isomorphic) objects. Objects are treated as
follows by equal.

5-48 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Symbols, Numbers, and Characters

equal is true of two objects if they are symbols that are eq, if they are numbers that are
eql, or if they are characters that are eql.

Conses

For conses, equal is defined recursively as the two cars being equal and the two cdrs
being equal.

Arrays

Two arrays are equal only if they are eq, with one exception: strings and bit vectors
are compared element-by-element (using eql). If either x or y has a fill pointer, the fill
pointer limits the number of elements examined by equal. Uppercase and lowercase
letters in strings are considered by equal to be different.

Pathnames

Two pathnames are equal if and only if all the corresponding components (host, device,
and so on) are equivalent. Whether or not uppercase and lowercase letters are considered
equivalent in strings appearing in components is implementation-dependent. pathnames
that are equal should be functionally equivalent.

Other (Structures, hash-tables, instances, . . .)

Two other objects are equal only if they are eq.

equal does not descend any objects other than the ones explicitly specified above. Figure 5-12
summarizes the information given in the previous list. In addition, the figure specifies the priority
of the behavior of equal, with upper entries taking priority over lower ones.

Tn=
number
character
cons
bit vector
string
pathname
structure
Other array
hash table
Other object

Behavior
uses eql
uses eql
descends
descends
descends
“functionally equivalent”
uses-4
u=eQ
UseSW

Figure 5-12. Summary and priorities of behavior of equal

Any two objects that are eql are also equal.

equal may fail to terminate if x or y is circular.

Examples:

(equal ‘a ‘b) + false
(equal ‘a ‘a) + true
(equal 3 3) -+ true
(equal 3 3 .O) -+ false
(equal 3.0 3.0) + true
(equal *cc3 -4) #cc3 -4)) d true

Data and Control Flow !549

ANSI X3.226-1994 Programming Language-Common Lisp

(equal #cc3 -4.0) tc(3 -4)) --) fafse

(equal (cona 'a 'b) (cons 'a 'cl) + fahe

(equal (cons 'a 'b) (cons 'a 'b)) * frUe
(equal *\A *\A) + irUe

(equal #\A *\a) --) ffk?
(equal "Foe @I t*Foo*a) -+ true
(equal vSFoo" (copy-seq "Foe")) + true
(equal "FOO" "foe") + false
(equal Vhis-string" "Tbia-string") -+ lrue
(equal "This-string" "this-string") 4 fake

See Also:

Notes:

eq, eql, equalp, =, string=, string-equal, char=, char-equal, tree-equal

Object equality is not a concept for which there is a uniquely determined correct algorithm. The
appropriateness of an equality predicate can be judged only in the context of the needs of some
particular program. Although these functions take any type of argument and their names sound
very generic, equal and equalp are not appropriate for every application.

A rough rule of thumb is that two objects are equal if and only if their printed representations are
the same.

Function

syntax:
equalp x y -+ generalized-boolean

Arguments and Values:
x-an object.

y-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if x and y are equal, or if they have components that are of the same type as each
other aud if those components are equalp; specifically, equalp returns true in the following cases:

Characters

If two characters are char-equal.

Numbers

If two numbers are the same under =.

Conses

If the two cars in the conses are equalp and the two cdrs in the conses are equalp.

5-50 Data and Control Flow

Programming Language-Common Lisp ANSI x3.226-1994

If two arrays have the same number of dimensions, the dimensions match, and the
corresponding active elements are equalp. The types for which the amrys are specialized
need not match; for example, a string and a general array that happens to contain the
same characters are equalp. Because equalp performs element-by-element comparisons
of strings and ignores the case of characters, case distinctions are ignored when equalp
compares strings.

structures

If two structures Sl and S? have the same class and the value of each slot in Sl is the
same under equalp as the value of the corresponding slot in S2.

Hash Tables

equalp descends hash-tables by first comparing the count of entries and the :test func-
tion; if those are the same, it compares the keys of the tables using the : teat function
and then the values of the matching keys using equalp recursively.

equalp does not descend any objects other than the ones explicitly specified above. Figure 5-13
summarizes the information given in the previous list. In addition, the figure specifies the priority
of the behavior of equalp, with upper entries taking priority over lower ones,

I Type Behavior
number
character
cons
bit vector
string
pathname
structure
Other array
hash table
Other object

uses=
uses char-equal
descends
descends
descends
same as equal
descends, as described above
descends
descends, as described above
uses eq

Figure 5-13. Summary and priorities of behavior of equalp

Examples:

(equalp ‘a ‘b) --) fake
(equalp ‘a ‘a) 4 true
(equalp 3 3) -b true
(equalp 3 3.0) --* true
(equalp 3.0 3.0) -+ true
(equalp tc(3 -4) ltc(3 -4)) -+ true
(equalp #cc3 -4.0) *cc3 -4)) + true
(equalp (cons ‘a ‘b) (cons ‘a ‘13) -P fake
(equalp (cons ‘a ‘b) (cons ‘a ‘b)) + true
(equalp *\A *\A) + true
(equalp *\A *\a) * true
(equalp “Foe” “Foe”) + true
(equalp “Foe” (copy-seq “Foe”)) -+ true
(equalp “FOO” “foe”) + true

Data and Control Flow 5-51

ANSI X3.226-1994 Programming Language-Common Lisp

(setq array1 (rake-array 6 :eleuent-type ‘integer
:initial-contents ‘(1 1 13 5 7)))

- X(1 1 1 3 5 7)
(eetq array2 (uake-array 8 :eleuent-type ‘integer

:initial-contents ‘(1 1 1 3 5 7 2 6)
:fill-pointer 6))

+ #Cl 1 1 3 5 7)
(equalp array1 array21 -+ true
(setq vector1 (vector 1 1 1 3 5 7)) + *(l 1 1 3 5 7)
(equalp array1 vectorl) -* true

See Also:

Notes:

eq, eql, equal, =, string=, string-equal, char=, char-equal

Object equality is not a concept for which there is a uniquely determined correct algorithm. The
appropriateness of an equality predicate can be judged only in the context of the needs of some
particular program. Although these functions take any type of argument and their names sound
very generic, equal and equalp are not appropriate for every application.

identity Function

Syntax:
identity object + object

Arguments and Values:
object-an object.

Description:
Returns its argument object.

Examples:

(identity 101) + 101
(napcan *‘identity (list (list 1 2 3) ‘(4 5 6))) + (1 2 3 4 5 6)

Notes:
identity is intended for use with functions that require a function as an argument.

(eql x (identity x)) returns true for all possible values of x, but (eq x (identity x1) might
return false when x is a number or character.

identity could be defined by

(defun identity (x) x)

5-52 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226- 1994

complement Function

Syntax:
complement function + complement-function

Arguments and Values:
function-a function.

complement-function-a function.

Description:
Returns a function that takes the same arguments as function, and has the same side-effect
behavior as function, but returns only a single value: a generalized boolean with the opposite
truth value of that which would be returned as the primary value of function. That is, when the
function would have returned true as its primary value the complement-function returns false, and
when the function would have returned false as its primary value the complement-function returns
true.

Examples:

(funcall (corpleaent *‘zeropI 1) + true
(funcall (corpleaent t’characterp) #\A) + false
(funcall (complement #‘member) ‘a ‘(a b c)) -+ false
(funcall (complement #‘member) ‘d ‘(a b c)) -* ff%t!

See Also:
not

Notes:

(complement 21 E t’(laabda @rest argu8ent.e) (not (apply t argunents)))

In Common Lisp, functions with names like “zxx-if-not” are related to functions with names like
“zax+if” in that

(222if-not f . arguments) Z (zzr-if (coqlement jJ . arguments)

For example,

(find-if-not *‘zerop '(0 0 3)) E
(find-if ko=plement t’zerop) ‘(0 0 3)) -+ 3

Note that since the “zaz-if-not” functions and the :test-not arguments have been deprecated,
uses of “zzr-if” functions or :test arguments with complement are preferred.

constantly Function

Syntax:
constantly value -* function

Data and Control Flow 5-53

ANSI X3.226-1994 Programming Language-Common Lisp

Arguments and Values:
value-an object.

function-a function.

Description:
constantly returns a function that accepts any number of arguments, that has no side-effects, and
that always returns value.

Examples:

(mapcar (constantly 3) ‘(a b c d)) + (3 3 3 3)
(defmacro vith-vars (vars &body forms)

‘((lambda .vars .Oforms) ,O(mapcar (constantly nil) vars)))
+ WITH-VAR3

(macroexpand ‘(vith-vars (a b) (setq a 3 b (* a a)) (list a b)))
--c ((LAMEDA (A B) (SETQ A 3 B (* A A)) (LIST A B)) IIL BIL) , true

See Also:
identity

Notes:
constantly could be defined by:

(defun constantly (object)
*‘(lamMa (&rest arguments) object))

every, some, notevery, notany Function

Syntax:
every predicate &rest sequences+ -+ generalized-boolean

some predicate trest sequences+ + result

notevery predicate &rest sequences+ -+ generalized-boolean

notany predicate trest sequences+ + generalized-boolean

Arguments and Values:
predicate-a designator for a function of as many arguments as there are sequences.

sequence-a sequence.

result-an object.

generalized-boolean-a generalized boolean.

Description:
every, some, notevery, and notany test elements of sequences for satisfaction of a given pred-
icate. The first argument to predicate is an element of the first sequence; each succeeding argu-
ment is an element of a succeeding sequence.

5-54 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Predicate is first applied to the elements with index o in each of the sequences, and possibly then
to the elements with index 1, and so on, until a termination criterion is met or the end of the
shortest of the sequences is reached.

every returns false as soon as any invocation of predicate returns fake. If the end of a sequence is
reached, every returns true. Thus, every returns true if and only if every invocation of predicate
returns true.

some returns the first non-nil value which is returned by an invocation of predicate. If the end of
a sequence is reached without any invocation of the predicate returning true, some returns false.
Thus, -me returns true if and only if some invocation of predicate returns true.

notany returns false as soon as any invocation of predicate returns true. If the end of a sequence
is reached, notany returns true. Thus, notany returns true if and only if it is not the case that
any invocation of predicate returns true.

notevery returns true as soon as any invocation of predicate returns false. If the end of a se-
quence is reached, notevery returns false. Thus, notevery returns true if and only if it is not the
case that every invocation of predicate returns true.

Examples:

(every X’cbaracterp “abc”) -+ true
(some t’= ‘(1 2 3 4 5) ‘(5 4 3 2 1)) + true
(notevery X2< ‘(1 2 3 4) ‘(5 6 7 8) ‘(9 10 11 12)) -+ fake
botany S’> ‘(1 2 3 4) ‘(5 6 7 8) ‘(9 10 11 12)) + true

Exceptional Situations:
Should signal type-error if its first argument is neither a symbol nor a function or if any subse-
quent argument is not a proper sequence.

Other exceptional situations are possible, depending on the nature of the predicate.

See Also:
and, or, Section 3.6 (Traversal Rules and Side Effects)

Notes:

botany predicate {sequence)*) E (not (some predicate {sequence)*))
(notevery predicate {sequence}*) s (not (every predicate {sequence}*))

and Macro

syntax:
and {form}* -c {result}*

Arguments and Values:
form--a form.

results-the values resulting from the evaluation of the last form, or the symbols nil or t.

Data and Control Flow 5-55

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
The macro ami evaluates each form one at a time from left to right. As soon as any form eval-
uates to, nil, aud returns nil without evaluating the remaining forms. If all forms but the last
evaluate to true values, and returns the results produced by evaluating the last form.

If no forms are supplied, (and) returns t.

and passes back multiple values from the last subform but not from subforms other than the last.

Examples:

(if (and (>- n 0)
(< n (length rsinple-vector))
(eq (elt a-sinple-vector n) ‘foe))

(print ‘Too ! “1)

The above expression prints Foo! if element n of a-simple-vector is the symbol foo, provided also
that n is indeed a valid index for a-sinpla-vector. Because and guarantees left-to-right testing of
its parts, elt is not called if n is out of range.

(setq tamp1 1 tempt 1 temp3 1) -+ 1
(and (incf tamp11 (incf temp2) (incf tempf)) -P 2
(and (eql 2 templ) (eql 2 temp2) (eql 2 tamp311 + lrue
(decf temp3) + 1
(and (decf templ) (dad teap2) (eq temp3 'nil) (decf tempt)) -+ PIL
(and (eql tamp1 templ) (eqltemp2 temp3)) + true
(and) + T

See Also:
cond, every, if, or, when

Notes:

(and form) i (let 0 form)
(and form1 form2 . . .) P (when form1 (and form2 . . .I)

cond Macro

Syntax:
cond {lc/ause}* + {result}*

clause:.=(test-form {form)*)

Arguments and Values:
test-form-a fem.

forms-an implicit progn.

results-the values of the forms in the first clause whose test-form yields true, or the primary
value of the test-form if there are no forms in that clause, or else nil if no test-form yields true.

Description:
cond allows the execution of forms to be dependent on test-form.

5-56 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Test-forms are evaluated one at a time in the order in which they are given in the argument list
until a test-form is found that evaluates to true.

If there are no forms in that clause, the primary value of the test-form is returned by the cond
form. Otherwise, the forms associated with this test-form are evaluated in order, left to right, as
an implicit progn, and the values returned by the last form are returned by the cond form.

Once one test-form has yielded true, no additional test-forms are evaluated. If no test-form yields
true, nil is returned.

Examples:

(defun select-options 0
(cond ((= a 1) (setq a 2))

CC= a 2) betq a 3))
((and (= a 3) (floor a 2)))
(t (floor a 3)))) -) SELECT-OPTIOUS

betq a 1) + 1
(select-options) -k 2
a--r2
(select-options) + 3
a-+3
(select-options) + 1
(setq a 5) -+ 5
(select-options) + 1, 2

See Also:
if, case.

if Special OpeTatOT

syntax:
if test-form then-form [e/se-form] + {result}*

Arguments and Values:
Test-form-a form.

Then-form-a form.

Else-form-a form. The default is nil.

results-if the test-form yielded true, the values returned by the then-form; otherwise, the values
returned by the else-form.

Description:
if allows the execution of a form to be dependent on a single test-form.

First test-form is evaluated. If the result is true, then then-form is selected; otherwise else-form is
selected. Whichever form is selected is then evaluated.

Examples:

(if t 1) -+ 1
(if nil 1 2) -+ 2

Data and Control Flow 5-57

ANSI X3.226-1994 Programming Language-Common Lisp

(defun test 0
(dolist (truth-value '(t nil 1 (a b c)))

(if truth-value (print 'true) (print 'fdlae))
(prinl truth-value))) -+ TEBT

(test)
DTBUET
D FALSE BIL
0-i
D TBUE (A B C)
--c BIL

See Also:
cond, unleea, when

Notes:

(if test-form then-form else-form)
2 (cond (test-form then-form) (t eke-form) 1

Or Macro

Syntax:
or {form}* * { n?sdts}*

Arguments and Values:
form-a form.

results-the values or primay value (see below) resulting from the evaluation of the last form
executed or nil.

Description:
or evaluates each form, one at a time, from left to right. The evaluation of all forms terminates
when a form evaluates to true (i.e., something other than nil).

If the evaluation of any form other than the lest returns a primary value that is true, or imme-
diately returns that value (but no additional values) without evaluating the remaining forms. If
every form but the last returns false as its primary value, or returns all values returned by the
last form. If no forms are supplied, or returns nil.

Examples:

(or) -+ HIL
(setq tempo nil te8pl 10 tamp2 20 tempt 30) + 30
(or tempo te8pl (setq te8p2 37)) - 10
temp2 -+ 20
(or (incf te8pl) (incf templ) (incf temp3)) 4 11
templ -+ 11
temp2 -+ 20
temp3 - 30
(or (values) templ) + 11
(or (values teapl templ) tempt) + 11
(or tenp0 (values tarp1 templ)) + 11. 20

5-58 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(or (values tamp0 templ) (values tamp2 taps)) + 20, 30

See Also:
and, some, unless

when, unless Macro

Syntax:
when test-form {form}* + {ra~/t}*

unless test-form {form}* -+ {result}*

Arguments and Values:
test-form-a form.

forms-an implicit progn .

results-the values of the forms in a when form if the test-form yields true or in an unless fom

if the test-form yields false; otherwise nil.

Description:
when and unless allow the execution of forms to be dependent on a single test-form.

In a when form, if the test-form yields true, the forms are evaluated in order from left to right
and the values returned by the forms are returned from the when form. Otherwise, if the test-

form yields false, the forms are not evaluated, and the when form returns nil.

In an unless form, if the test-form yields false, the forms are evaluated in order from left to
right and the values returned by the forms are returned from the unless form. Otherwise, if the
test-form yields false, the forms are not evaluated, and the unIeas form returns nil.

Examples:

(when t 'hello) -+ HELLO
(unless t 'hello) + UIL
Cohen nil 'hello) + NIL
(unless nil 'hello) -+ HELLO
(when t) + NIL
(unless nil) + NIL
(when t (prinl 1) (prinl 2) (prinl 3))

D 123
-43

(unless t (prinl 1) (prinl 2) (prinl 3)) + NIL
(vhen nil (prinl 1) (prinl 2) (prinl 3)) + NIL
bless nil (prinl 1) (prinl 2) (prinl 3))

D 123
--,3

Data and Control Flow 5-59

ANSI X3.226-1994 Programming Language-Common Lisp

(let ((x 3))
(list (when (oddp x) (incf x) (list x))

(when (oddp XI) (incf x) (list x1)
(unless (oddp I) (incf x) (list x1)
(unless (oddp x) (incf x1 (list x))
(if (oddp x) (incf x) (list x))
(if (oddp xt) (incf x) (list x))
(if (not (oddp x)1 (incf x) (list x))
(if (not (oddp x)1 (incf x) (list XI))))

4 ((4) HIL (5) IIL 6 (6) 7 (7))

See Also:
and, cond, if, or

Notes:

(when test (form}’) I (and test (progn (form}+ > 1
(when test {form)+) P (cond (test {form)+) 1
(when test {form}+) E (if test (progn {fofm)+) nil)
(when test {form}+) Z bnle86 (not test) {fwm}+)
(unless test (form}+) Z (cond ((not test) (form)+))
bnless test {form}+) I (if test nil (progn {form}+) 1
(unless test {form}+) 3 (when (not test) {fofm}+)

case, cease, ecase Macro

Syntax:
case key&m { 1 nofmaCclause}* [~othcfwiscclausc] -) {result}*

cease keyplace { Jnormal-clause}* * {result)*

ecase key-form { Jnormal-c/awe}* -+ {result}*

normal-c/auser:=(keys {form)*)

otherwistclause::=({othcrrvise 1 t} {form}*)

clause::=normaCclause 1 otherwise-clause

Arguments and Values:
keyform-a form; evaluated to produce a test-key.

keypiace-a form; evaluated initially to produce a test-key. Possibly also used later as a place if
no keys match.

test-key-an object produced by evaluating key-form or keyplace.

keys-a designator for a list of objects. In the case of case, the symbols t and otherwise may not
be used as the keys designator. To refer to these symbols by themselves as keys, the designators
(t) and (otherwise), respectively, must be used instead.

5-60 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

forms-an implicit pmgn.

results-the values returned by the forms in the matching clause.

Description:
These macros allow the conditional execution of a body of forms in a clause that is selected by
matching the test-key on the basis of its identity.

The keyform or keyplace is evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key is the same as any key for
that clause, the forms in that clause are evaluated as an implicit progn, and the values it returns
are returned as the value of the case, cease, or ecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:

If no normal-clause matches, and there is an otherwistclause, then that otherwistclause
automatically matches; the forms in that clause are evaluated as an implicit progn, and
the values it returns are returned as the value of the case.

If there is no otherwise-clause, case returns nil.

cease

If no normaLclause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(member key1 key2 . . .). The store-value restart can be used to correct the error.

If the store-value restart is invoked, its argument becomes the new test-key, and is stored
in keyplace as if by (setf keyplace test-key). Then cease starts over, considering each
clause anew.

The subforms of keyplace might be evaluated again if none of the cases holds.

ecase

If no normal-clause matches, a non-correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(neaber key1 key2 . ..).

Note that in contrast with cease, the caller of ecase may rely on the fact that ecase does
not return if a normal-clause does not match.

Examples:

(dolist (k '(1 2 3 :four X\v 0 t 'other))
(format t "'S "

(case k ((1 2) 'clausel)
(3 'clause2)
(nil ‘no-keys-so-never-seen)
((nil) 'nilslot)
((:fou.r t\v) 'clause41
c(t) 'tslot)
(otherwise 'others))))

P CLAUSE1 CLAUSE1 CLAUSE2 CLAUSE4 CLAUSE4 NILSLOT TSLOT OTHERS
+ NIL

(defun add-em (XI) (apply #'+ (mapcar *'decode x)))
4 ADD-EM

Data and Control Flow 5-61

ANSI X3.226-1994 Programming Language-Common Lisp

(defun decode (XI)
(cease x

((i uno) 1)
((ii dos) 2)
((iii tres) 3)
((iv cuatro) 4)))

+ DECODE
(add-em ‘(uno iii)) -+ 4
(add-a ’ (uno iiii))

P Error: The value of Ii, 1X11, is not I, UBD, 11, DOS, III,
P TRES. IV, or CUATRD.
P 1: Supply a value to use instead.
P 2: Return to Lisp Toplevel.
P Debug> :CORTI!lDE 1
P Value to evaluate and use for I: ‘IV -
--+5

Side Effects:
The debugger might be entered. If the store-value restart is invoked, the value of keyplace might
be changed.

Affected By:
cease and ecase, since they might signal an error, are potentially affected by existing handlers and
debug-io.

Exceptional Situations:
cease and ecase signal an error of type type-error if no normal-clause matches.

See Also:
cond, typecase, setf, Section 5.1 (Generalized Reference)

Notes:

(case test-key
{(({key}*) {form}*)}*)

=
(let ((tl=#:gOOOl test-key))

(cond {((rerber #1X ‘({key}*)) {form}*)}*))

The specific error message used by ecase and cease can vary between implementations. In
situations where control of the specific wording of the error message is important, it is better to
use case with an otherwise-clause that explicitly signals an error with an appropriate message.

typecase, ctypecase, etypecase Macro

Syntax:
typecase keybrm { inorma/-clause}* [lotherwiscclause] + {result)*

ctypecase keyplace { JnormaCclause}* + {result)*

etypecase keyform { inormal-clause}* + {result}*

5-62 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

normal-c/ause::=(type {form}*)

otherwiscc/ausc::=({otherwise 1 t} {form}*)

clause::=normal-clause 1 otherwise-clause

Arguments and Values:
keyform-a form; evaluated to prodplce a test-key.

keyplace-a form; evaluated initially to produce a test-key. Possibly also used later as a place if
no types match.

test-key-an object produced by evaluating keyform or keyplace.

type-a type specifier.

forms-an implicit progn.

results-the values returned by the forms in the matching clause.

Description:
These macros allow the conditional execution of a body of forms in a clause that is selected by
matching the test-key on the basis of its type.

The keyform or keyplace is evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key is of the type given by
the clauses’s type, the forms in that clause are evaluated as an implicit progn, and the values it
returns are returned as the value of the typecase, ctypecase, or etypecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:

typecase

If no normal-clause matches, and there is an otherwise-clause, then that otherwiscclause
automatically matches; the forms in that clause are evaluated as an implicit progn, and
the values it returns are returned as the value of the typecase.

If there is no otherwise-clause, typecase returns nil.

ctypecase

If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(or type1 type2 . . .). The store-value restad can be used to correct the error.

If the store-value restart is invoked, its argument becomes the new test-key, and is stored
in keyplace as if by (setf keyplace test-key). Then ctypecase starts over, considering
each clause anew.

If the store-value restart is invoked interactively, the user is prompted for a new test-key
to use.

The subforms of keyplace might be evaluated again if none of the cases holds.

etypecase

If no normal-clause matches, a non-correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(or type1 type2 . . .).

Data and Control Flow 5-63

___. - .-_. _ -_-.

ANSI X3.226-1994 Programming Language-Common Lisp

Note that in contrast with ctypecase, the caller of etypecase may rely on the fact that
etypecase does not return if a normal-clause does not match.

In all three cases, is permissible for more than one clause to specify a matching type, particularly
if one is a subtype of another; the earliest applicable clause is chosen.

Examples:

;;; (liote that the parts of this example which use TTPE-OF
;;; are tiplerentation-dependent.)

(defun what-is-it (x)
(forrat t ‘9-S is -A.?!"

x (typacaae x
(float ‘Ia float”)
(null “a symbol. boolean false. or the enpty list”)
(list “a list”)
(t (format nil “a(n) '('A')" (type-of x1)))))

+ UBAT-IS-IT
(rap ‘nil s’vhat-ia-it ‘(nil (a b) 7.0 7 box))

b HIL is a synbol, boolean false, or the empty list.
0 (A B) is a list.
0 7.0 is a float.
D 7 is a(n) integer.
D BOX is a(n) spbol.
+ NIL

(eetq x l/3)
+ l/3

(ctypecaae x
(integer (* x 4))
(syabol (syabol-value xl))

D Error: The value of X, l/3, is neither an integer nor a syabol.
D To continue, type :COliTIBUE follosed by an option nuaber:
D 1: Specify a value to use instead.
D 2: Return to Lisp Toplevel.
D Debug> :COHTIlWE 1
D Use VdlUe: 3.7

D Error: The Value of X, 3.7, is neither an integer nor a synbol.
D To continue, type :COUTIliUE followed by an option nuaber:
D 1: Specify a value to use instead.
D 2: Return to Lisp Toplevel.
D Debug> :CClNTIliUE 1
D Use VdlUe: 12

-* 48
x + 12

Affected By:
ctypecase and etypecase, since they might signal an error, are potentially affected by existing
handitrs and *debug-io*.

Exceptional Situations:
ctypecase and etypecaee signal an error of type type-error if no normal-clause matches.

The compiler may choose to issue a warning of type style-warning if a clause will never be
selected because it is completely shadowed by earlier clauses.

See Also:
case, cond, s&f, Section 5.1 (Generalized Reference)

5-64 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Notes:

(typecaee test-key
{(type {form}*))*)

1
(let ((*13:gOOOl test-key))

(cond {((typep #it ‘type) {form}*))*))

The specific error message used by etypecase and ctypecase can vary between implementations.
In situations where control of the specific wording of the error message is important, it is better
to use typecase with an otherwise-clause that explicitly signals an error with an appropriate
message.

multiple-value-bind

Syntax:
multiple-value-bind ((var}‘) values-form (declaration)* (form}*

+ {result}*

Arguments and Values:
var-a symbol naming a variable; not evaluated.

values-form-a form; evaluated.

declaration-a declare ezpression; not evaluated.

forms-an implicit progn .

results-the values returned by the forms.

Description:
Creates new variable bindings for the vars and executes a series of forms that use these bindings.

The variable bindings created are lexical unless special declarations are specified.

Values-form is evaluated, and each of the vars is bound to the respective value returned by that
form. If there are more vars than values returned, extra values of nil are given to the remaining
vars. If there are more values than vars, the excess values are discarded. The vars are bound to
the values over the execution of the forms, which make up an implicit progn. The consequences
are unspecified if a type declaration is specified for a var, but the value to which that var is bound
is not consistent with the type declaration.

The scopes of the name binding and declarations do not include the values-form.

Examples:

(multiple-value-bind (f r)
(floor 130 11)

(list f r)) + (11 9)

See Also:
let, multiple-value-call

Data and Control Flow 5-65

____ __,- _I.-----. __)L. .- .-.~-- .-

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:

(multiple-value-bind ({vN}*) vahes-form (fwm}*)
1 (multiple-value-call #*(lsnbda &optional {var}* &rest *lN:ignore)

(declare (ignore #Cl*))

multiple-value-call Special Operator

Syntax:
multiple-value-call function-form form* --) {result}*

Arguments and Values:
function-form-a form; evaluated to produce function.

function-a function designator resulting from the evaluation of function-form.

form-a fo77n.

results-the values returned by the function.

Description:
Applies function to a list of the objects collected from groups of multiple voluesz.

multiple-value-call first evaluates the function-form to obtain function, and then evaluates each
form. All the values of each form are gathered together (not just one value from each) and given
as arguments to the function.

Examples:

(sultiple-value-call*'list 1 '/ (values 2 3) '/ (values) '/ (floor 2.5))
+ (1 / 2 3 / / 2 0.5)

(+ (floor 5 3) (floor 19 4)) s (+ 1 4)
-+5

(multiple-value-call t'+ (floor 5 3) (floor 19 4)) E (+ 1 2 4 3)
+ 10

See Also:
multiple-value-list, multiple-value-bind

5-66 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

multiple-value-list

Syntax:
multiple-value-list form -+ list

Arguments and Values:
form-a form; evaluated as described below.

list-a list of the values returned by form.

Description:
multiple-due-list evaluates form and creates a list of the multiple values2 it returns.

Examples:

hultiple-value-list (floor -3 4)) --) C-1 1)

See Also:
values-list, multiple-value-call

Notes:
multiple-value-list and dues-list are inverses of each other.

(multiple-vslue-list form) E (multiple-value-call #‘list ford

multiple-value-progl Special Operator

Syntax:
multiple-value-progl first-form { fofm}* -* first-form-results

Arguments and Values:
first-form-a form; evaluated as described below.

form-a form; evaluated as described below.

first-form-results-the values resulting from the evaluation of first-form.

Description:
multiple-value-progl evaluates first-form and saves all the values produced by that form. It then
evaluates each form from left to right, discarding their values.

Examples:

betq temp ‘(1 2 3)) -+ (1 2 3)
(multiple-value-progl

(values-list temp)
(setq temp nil)
(values-list temp)) + 1, 2, 3

Data and Control Flow 5-67

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
prowl

multiple-value-setq Macro

Syntax:
multipl*valu~setq vars form - result

Arguments and Values:
vars-a list of symbols that are either variable names or names of symbol macros.

form-a form.

result-The primary value returned by the form.

Description:
multiple-value-setq assigns values to van.

The foim is evaluated, and each var is assigned to the corresponding value returned by that form.
If there are more vars than ualues returned, nil is assigned to the extra van. If there are more
values than vars, the extra values are discarded.

If any var is the name of a symbbl macw, then it is assigned as if by eetf. Specifically,

(multiple-value-setq (symbol1 . . . symboL,) value-producing-form)

is defined to always behave in the same way as

(values (setf (values symbol1 . . . symbol,,) value-producing-form))

in order that the rules for order of evaluation and side-effects be consistent with those used by
setf. See Section 5.1.2.3 (VALUES Forms as Places).

Examples:

(multiple-value-setq (quotient remainder) (truncate 3.2 2)) + 1
quotient --) 1
remainder --L 1.2
(multiple-value-setq (a b c> (values 1 2)) + 1
a-1
b--r2
c + NIL
(multiple-value-setq (a b) (values 4 5 6)) - 4
a-+4
b-+5

See Also:
setq, symbol-macrolet

5-68 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Accessor

Syntax:
vahes tieat object + {object}*

(setf (values &rest place) new-values)

Arguments and Values:
object-an object.

place-a place.

new-value-an object.

Description:
values returns the objects as multiple valuesz.

setf of vdues is used to store the multiple valuesz new-values into the places. See Section 5.1.2.3
(VALUES Forms as Places).

Examples:

(values) + (no values)
(values 1) -+ 1
(values 1 2) - 1, 2
(values 1 2 3) -+ 1, 2. 3
(values (values 12 3) 4 5) + 1, 4. 5
(defun polar (x y)

(valuea (aqrt (+ (* x x) (* y y))) (atan J 11)) -* POUR
(multiple-value-bind (r theta) (polar 3.0 4.0)

(vector r theta))
--) S(5.0 0.927295)

Sometimes it is desirable to indicate explicitly that a function returns exactly one value. For
example, the function

(defun foo (x y)
(floor (+ x y) y) 1 -+ FOO

returns two values because floor returns two values. It may be that the second value makea no
sense, or that for efficiency reasons it is desired not to compute the second value. values is the
standard idiom for indicating that only one value is to be returned:

(defun foo (x y)
(values (floor (+ x y) ~1)) -+ FOO

This works because values returns exactly one value for each of args; as for any function call, if
any of argr produces more than one value, all but the first are discarded.

See Also:
values-list, multiple-value-bind, multiple-values-limit, Section 3.1 (Evaluation)

Data and Control Flow 549

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
Since values is a function, not a macro or special form, it receives as arguments only the primary
values of its argument forms.

values-list Function

Syntax:
values-list list d { e/ement}*

Arguments and Values:
list-a list.

elements-the elements of the list.

Description:
2

If&urns the elements of the list as multiple valuesz.

Examples:

(values-list nil)
(values-list 9 (1) jc(Y” va’ues)
(values-list ‘(1 2)) + 1, 2
(values-list ‘(1 2 3)) + 1. 2, 3

Exceptional Situations:
Should signal type-error if its argument is not a proper list.

See Also:
multiple-value-bind, multiple-value-list, multiple-values-limit., values

Notes:

(values-list list) t (apply #‘values list)

(equal X (multiple-vslue-list (values-list x))) returns true for all lists x.

multiple-values-limit Constant Variable

Constant Value:
An integer not smaller than 20, the exact magnitude of which is implementation-dependent.

Description:
The upper exclusive bound on the number of values that may be returned from a function, bound
or assigned by multiple-value-bind or multiple-value-setq, or passed as a first argument to
nth-value. (If these individual limits might differ, the minimum value is used.)

See Also:
lambda-parameters-limit, call-arguments-limit

5-70 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Notes:
Implementors are encouraged to make this limit as large as possible.

nt h-value Macro

Syntax:
nth-value n form + object

Arguments and Values:
n-a non-negative integer; evaluated.

form-a form; evaluated as described below.

object-an objeci.

Description:
Evaluates n and then form, returning as its only value the nth value yielded by form, or nil if n
is greater than or equal to the number of values returned by form. (The first returned value is
numbered 0.)

Examples:

(nth-value 0 (values ‘a ‘b)) + A
(nth-value 1 (values ‘a ‘b)) 4 B
(nth-value 2 (values ‘a ‘b)) -+ BIL
(let* ((x 83927472397238947423879243432432432)

(y 32423489732)
(a (nth-value 1 (floor x y)))
(b (rod x y)))

(values a b (= a b)))
+ 3332987528, 3332987528, true

See Also:
multiple-value-list, nth

Notes:
Operationally, the following relationship is true, although nth-value might be more efficient in
some implementations because, for example, some consing might be avoided.

(nth-value n form) 3 (nth n (multiple-value-list form))

Data and Control Flow 5-71

~._ . _- - --II .-- ----.- -- -

ANSI X3.226-1994 Programming Language-Common Lisp

Macro

syntax:
prog ({vaf 1 (war [init-form]))*) {declaration}* {tag 1 statement}*

+ {result}*

prop ({ var 1 (var [in&form])}*) {declaration}* (tag 1 statement}*
-) {few/t}*

Arguments and Values:
var-variable name.

hit-form-a form.

declaration-a declare ezpression; not evaluated.

tag-a go tug; not evaluated.

statement-a compound form; evaluated as described below.

results-nil if a normal return occurs, or else, if an ezplicit return occurs, the values that were
transferred.

Description:
Three distinct operations are performed by prog and prog*: they bind local variables, they
permit use of the return statement, and they permit use of the go statement. A typical prog
looks like this:

(prog (varl var2 (var3 init-form-31 var4 (var5 init-form-S))
{dec/aration}*
statement1

tag1
statement2
statement3
statement4

tag2
statement5
. . .
)

For prog, hit-forms are evaluated first, in the order in which they are supplied. The vats are then
bound to the corresponding values in parallel. If no hit-form is supplied for a given var, that var
is bound to nil.

The body of prog is executed ss if it were a tagbody form; the go statement can be used to
transfer control to a tag. Tags label statements.

prog implicitly establishes a block named nil around the entire prog form, so that return can be
used at any time to exit from the prog form.

The difference between prog* and prog is that in prop the binding and initialization of the van
is done sequeniially, so that the hit-forin for each one can use the values of previous ones.

5-72 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(prog* ((y 2) (x (car ~1))
(return xx))

returns the car of the value of z.

(setq a 1) * 1
(prog ((a 2) (b a)) (return (if (= a b) '= '/=)ll * /=
(prog* ((a 2) (b a)) (return (if (= a b) '= '/=))) -+ =
(prog 0 'no-return-value) + HIL

(defun king-of-confusion (v)
"Take a cons of two lists and rake a list of conses.

Think of this function as being like a zipper."
(prog (x y 2) ;Initialize x, y, z to NIL

(setq y (car v) 2 (cdr 0))
loop

(cond ((null y) (return x)1
((nullz) (go err)))

rejoin
(setq x (cons (cons (car y) (car 2)) XI))
(setq y (cdr y) 2 (cdr 2))
(go loop)

err
(terror 'Will self-pair extraneous itens"

'Wisaatch - gleep! 'S" y)
(setq 2 y)
(go rejoin))) -+ KING-OF-CONFUSION

This can be accomplished more perspicuously as follows:

(defun prince-of-clarity (u)
"Take a cons of too lists and rake a list of conses.

Think of this function as being like a zipper."
(do ((y (car v) (cdr y))

(2 (cdr li) (cdr 2))
(x '0 (cons (cons (car y) (car z)) xl))

((null y) x)
(vhen (null z)

(terror "Will self-pair extraneous items"
"Hisnatch - gleep! 73" y)

(setq z y)))) + PRINCE-OF-CLARITY

See Also:
block, let, tagbody, go, return, Section 3.1 (Evaluation)

Notes:
prog can be explained in terms of block, let, and tagbody as follows:

(prog variable-list declaration . body)
E (block nil (let variable-list declaration (tagbody . body)))

Data and Control Flow 5-73

ANSI X3.226-1994 Programming Language-Common Lisp

Pro&Pro@ Macro

syntax:
progl first-form (form}* -b result-l

prog2 first-form second-form {form}* + result-2

Arguments and Values:
first-form-a form; evaluated as described below.

second-form--a form; evaluated as described below.

forms-an implicit progn; evaluated as described below.

result-l -the primary value resulting from the evaluation of first-form.

result-2-the primary value resulting from the evaluation of second-form.

Description:
progI evaluates first-form and then forms, yielding as its only value the primary value yielded by
first-form.

prog2 evaluates first-form, then second-form, and then forms, yielding as its only value the pri-
mary value yielded by first-form.

Examples:

(setq tamp 1) -+ 1
(progl teup (print tenp) (incf teup) (print tenp))

Dl
02
--rl

(progl tenp (setq te8p nil)) -, 2
temp + BIL
(progl (vdlues 1 2 3) 4) -+ 1
(setq tenp (list ‘a ‘b ‘cl)
(progl (car teup) (setf (car tenp) ‘alpha)) -+ A
tenp + (ALPHA B C)
(flat ((soap-synbol-values (x y)

(setf (syubol-value x1
(progl (symbol-value y)

(setf (synbol-value y) (synbol-value x1 1) 1))
(let ((*foe* 1) (*bar* 2))

(declare (special *foe+ *bar+))
(auap-syubol-values ‘+foo+ **bar+)
(values *foe+ *bar+)))

+ 2. 1
(setq tenp 1) + 1
(prog2 (incf trap) (incf te8p) (incf teup)) - 3
teup + 4
(prog2 1 (values 2 3 4) 5) --) 2

See Also:
multiple-value-progl, progn

5-74 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

Notes:
progl and progt are typically used to evaluate one or more forms with side effects and return
value that must be computed before some or all of the side effects happen.

(progl {form}*) E (values (multiple-value-progl {form}*))
(prog2 form1 {form}*) 1 (let 0 form1 (progl {form}*))

PvF Special Operator

syntax:
progn {form}* -* {result}*

Arguments and Values:
forms-an implicit progn.

results--the values of the jonns.

Description:
progn evaluates forms, in the order in which they are given.

The values of each form but the last are discarded.

If progn appears as a top level form, then all forms within that progn are considered by the
compiler to be top level forms.

Examples:

(pro& + NIL
(progn 1 2 3) - 3
(progn (values 1 2 3)) --+ 1, 2. 3
(setq a 1) + 1
(if a

(progn (setq a nil) ‘here)
(progn (setq a t) ‘there)) + HERE

a 4 PIL

See Also:
progl, progt, Section 3.1 (Evaluation)

Notes:
Many places in Common Lisp involve syntax that uses implicit progns. That is, part of their
syntax allows many jomas to be written that are to be evaluated sequentially, discarding the
results of all forms but the last and returning the results of the last jonn. Such places include,
but are not limited to, the following: the body of a lambda ezpression; the bodies of various
control and conditional forms (e.g., case, catch, progn, and when).

Data and Control Flow 5-745-75

--- .- --

ANSI X3.226-1994 Programming Language-Common Lisp

define-modify-macro

syntax:
define-modify-macro name lambda-list function [documenbtion] + name

Arguments and Values:
name-a symbol.

lambda-list-a define-modify-macro lambda list

function-a symbol.

documentation-a string; not evaluated.

Description:
define-modify-macro defines a macro named name to read and write a place.

The arguments to the new macro are a place, followed by the arguments that are supplied in
lambda-list. Macros defined with define-modify-macro correctly pass the environment parameter
to get-setf-expansion.

When the macro is invoked, function is applied to the old contents of the place and the lambda-list
arguments to obtain the new value, and the place is updated to contain the result.

Except for the issue of avoiding multiple evaluation (see below), the expansion of a
define-modify-macro is equivalent to the following:

(defsacro name (reference . lambda-list)
documentation
‘(setf .reference

(function , ref erence , argl , arg2 . . .) 1)

where argl, arg2, are the parameters appearing in lambda-list; appropriate provision is made
for a rest parameter.

The subforms of the macro calls defined by define-modify-macro are evaluated as specified in
Section 5.1.1.1 (Evaluation of Subforms to Places).

Documentation is attached as a documentation string to name (as kind function) and to the
macro function.

If a define-modify-macro form appears as a top level form, the compiler must store the macro
definition at compile time, so that occurrences of the macro later on in the file can be expanded
correctly.

Examples:

(define-modify-macro appendf &rest args)
append “Append onto list”) -+ APPEHDF

(setqx ‘(abc) yx) -+ (ABC)
(appendf x ‘(de f) ‘(1 2 3)) -c (A B C DE F 1 2 3)
x-+(ABCDEFl23)
y + (A B C)
(define-modify-macro new-incf (&optional (delta 1)) +)
(define-modify-macro unionf (other-set &rest keywords) union)

5-76 Data and Control Flow

Programming Language-Common Lisp ANSI x3.226-1994

Side Effects:
A macro definition is assigned to name.

See Also:
defsetf, define-setf-expander, documentation, Section 3.4.11 (Syntactic Interaction of Documen-
tation Strings and Declarations)

defsetf

Syntax:
The “short form”:

defsetf access-fn updatcfn [documentation]
+ access-fn

The “long form” :

defsetf accass-fn lambda-list ({ store-variab/e}*) I[{ dec/aration}* 1 documentation] {form}*
- access-fn

Arguments and Values:
access-f-a symbol which names a function or a macro.

update-fn-a symbol naming a function or macro.

lambda-list-a defsetf lambda list.

stowvariable-a symbol (a variable name).

declaration-a declare expression; not evaluated.

documentation-a shag; not evaluated.

form-a form.

Description:
defsetf defines how to setf a place of the form (access+ . . . 1 for relatively simple cases. (See
de&m-setf-expander for more general access to this facility.) It must be the case that the
function. or macro named by access-fn evaluates all of its arguments.

defsetf may take one of two forms, called the “short form” and the “long form,” which are
distinguished by the type of the second argument.

When the short form is used, updatcfn must name a function (or macro) that takes one more
argument than access-fn takes. When setf is given a place that is a call on accass-fn, it expands
into a call on updata-fn that is given all the arguments to accass-fn and also, as its last argument,
the new value (which must be returned by updatcfn as its value).

The long form defsetf resembles defmacro. The lambda-list describes the arguments of access-
fn. The storcvariablas describe the value or values to be stored into the place. The body must
compute the expansion of a setf of a call on access-fn. The expansion function is defined in the
same lexical environment in which the defsetf form appears.

During the evaluation of the forms, the variables in the lambda-list and the stora-variabks are
bound to names of temporary variables, generated as if by gensym or gentemp, that will be
bound by the expansion of setf to the values of those subforms. This binding permits the forms

Data and Control Flow 5-77

ANSI X3.226-1994 Programming Language-Common Lisp

to be written without regard for order-of-evaluation issues. defsetf arranges for the temporary
variables to be optimized out of the final result in cases where that is possible.

The body code in defsetf is implicitly enclosed in a block whose name is access-fn

defsetf ensures that subforms of the place are evaluated exactly once.

Documentation is attached to access-fn as a documeniaiion string of kind s&f.

If a defsetf form appears as a fop level form, the compiler must make the seff ezpander avail-
able so that it may be used to expand calls to s&f later on in the file. Users must ensure that
the forms, if any, can be evaluated at compile time if the access-fn is used in a place later in
the same file. The compiler must make these seff ezpanders available to compile-time calls to
get-setf-expansion when its environment argument is a value received as the environmenf param-
efer of a macro.

Examples:
The effect of

(defsetf synbol-value set)

is built into the Common Lisp system. This causes the form (setf (symbol-value fool fu) to
expand into (set foo fu).

Note that

(defsetf car rplaca)

would be incorrect because rplaea does not return its last argument.

(defun middleguy (I) (nth (truncate Cl- (list-length x)) 2) x)) * HIDDLEGUY
(defun set-niddleguy (x v)

ble8s (null x)
(rplaca (nthcdr (truncate Cl- (list-length x)) 2) x) v))

v) + SEY-HIDDLEGUY
(defsetf niddleguy set-niddleguy) + HIDDLEGDY
(setq a (list 'a 'b 'c 'd)

b (list 'x)
c (list 1 2 3 (list 4 5 6) 7 8 9)) + (1 2 3 (4 5 6) 7 8 9)

(setf (niddleguy a) 3) + 3
(setf (middleguy b) 7) + 7
(setf (niddleguy (niddleguy c)) 'niddleguy-synbol) 3 HIDDLEGW-SYHKIL
a + (A 3 C D)
b - (7)
c -+ (1 2 3 (4 IIDDLEGW-SYIBOL 6) 7 8 9)

An example of the use of the long form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace .sequence .neu-sequence

:startl ,start :endl ,end)
,neo-sequence)) -+ SDDSEQ

(defvar +xy* (nake-array '(10 10)))
(defun xy (&key ((x XI) 0) ((y y) 0)) (aref *xy* x y)) + XY
(defun set-xy (nev-value &key ((x x) 0) ((y y) 0))

(setf (aref l xy* x y) nev-value)) + SET-XY
(defsetf xy (&key ((x x) 0) ((y y) 0)) (store)

‘(set-xy ,store 'x .x 'y ,y)) + XY

5-78 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(get-setf-expansion ’ (xy a b) 1
+ ct:to #:tl).

(a b),
(t:store),
((lambda &key ((x #:I[)) ((y *:y)))

(set-xy #:store ‘x #:x ‘y *:y))
#:tO #:tl),

(xy #:tO #:tl)
(xy ‘x 1) * NIL
(setf (xy ‘x 1) 1) + 1
(xy ‘x 1) + 1
(let ((a ‘x) (b ‘y))

(setf (xy a 1 b 2) 3)
(setf (xy b 5 a 9) 14))

+ 14
(xy ‘y 0 ‘x 1) + 1
(xy ‘x 1 ‘y 2) --) 3

See Also:
documentation, setf, define-setf-expander, get-setf-expansion, Section 5.1 (Generalized Ftefer-
ence), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

Notes:
forms must include provision for returning the correct value (the value or values of store-~&b/e).
This is handled by forms rather than by defsetf because in many cases this value can be returned
at no extra cost, by calling a function that simultaneously stores into the plcce and returns the
correct value.

A setf of a call on access-fn also evaluates all of access-fn’s arguments; it cannot treat any of them
specially. This means that defsetf cannot be used to describe how to store into a generalized
reference to a byte, such as (ldb field reference). define-&f-expander is used to handle
situations that do not fit the restrictions imposed by defsetf and gives the user additional control.

define-setf-expander Macro

Syntax:
define-setf-expander access-fn lambda-list

[{declaration}* 1 documentation] {form}*

+ access-fn

Arguments and Values:
access-fn-a symbol that names a function or macro.

lambda-list - macro lambda list.

declaration-a declare expression; not evaluated.

documentation-a string; not evaluated.

forms-an implicit progn.

Data and Control Flow 5-79

ANSI X3.226-1994 Programming Language-Common Lisp :

Description:
define-s&f-expander specifies the means by which setf updates a place that is referenced by
access-fn.

When setf is given a place that is specified in terms of access-fn and a new value for the place, it
is expanded into a form that performs the appropriate update.

The lambda-list supports destructuring. See Section 3.4.4 (Macro Lambda Lists).

Documentation is attached to access-fn as a documentation string of kind s&f.

Forms constitute the body of the setf expander definition and must compute the self expansion
for a call on setf that references the place by means of the given accass-fn. The setf expander
function is defined in the same lexical environment in which the define-&f-expander form
appears. While forms are being executed, the variables in lambda-list are bound to parts of
the place form. The body forms (but not the lambda-list) in a define-setf-expander form are
implicitly enclosed in a block whose name is accass-fn.

The evaluation of forms must result in the five values described in Section 5.1.1.2 (Setf Expan-
sions) .

If a define-setf-expander form appears as a top level form, the compiler must make the self ex-
pander available so that it may be used to expand calls to s&f later on in the file. Programmers
must ensure that the forms can be evaluated at compile time if the accass-fn is used in a place
later in the same file. The compiler must make these setf expanders available to compile-time
calls to get-s&f-expansion when its environment argument is a value received as the environment
parameter of a macro.

Examples:

(defun lastguy (x) (car (last x))) + LASTGUT
(define-setf-expander lastguy (x Lenvironment env)

"Set the last element in a list to the given value."
(nultiple-value-bind (dunuies vals nevval setter getter)

(get-setf-expansion x env)
(let ((store (gensym)))

(values dumsies
vals
‘ (,store)
‘(progn (rplaca (last ,getter) ,store) ,store)
‘(lastguy ,getter))))) + LASTGUY

(setq a (list 'a 'b 'c 'd)
b (list 'x1()
c (list 1 2 3 (list 4 5 6))) -+ (1 2 3 (4 5 6))

(setf (lastguy a) 3) 3 3
(setf (lastguy b) 7) - 7
(setf (lastguy (lastguy c)) 'lastguy-symbol) -* LASTGW-SYHBOL
a -N (A B C 3)
b - (7)
c - (1 2 3 (4 5 LASTGW-SYHBOL))

5-80 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

;;; Setf expander for the form (LBB bytespec int).
;;; Recall that the int form must itself be suitable for SETF.

(define-setf-expander ldb (bytespec int kenvironment env)
(multiple-value-bind (temps vdls stores

store-form access-form)
(get-setf-expansion int env);Get satf expansion for int.

(let ((btemp (gensym)) ;Teap var for byte specifier.
(store (gensym)) ;Temp var for byte to store.
(stemp (first stores))) ;Temp var for int to store.

(if (cdr stores) (error "Can't expand this."))
;;; Return the setf expansion for LBB as five values.

(values (cons btemp temps) ;Temporary variables.
(cons bytespec vals) ;Value forms.
(list store) ;Store variables.
‘(let ((,stemp (dpb ,store .btemp ,access-form)))

,store-form
,store) ;Storing form.

‘(ldb ,btemp *access-form) ;Accessing form.
))))

See Also:
setf, defsetf, documentation, get-setf-expansion, Section 3.4.11 (Syntactic Interaction of
Documentation Strings and Declarations)

Notes:
define-setf-expander differs from the long form of defsetf in that while the body is being exe-
cuted the variables in lambda-list are bound to parts of the place form, not to temporary vari-
ables that will be bound to the values of such parts. In addition, definesetf-expander does not
have defsetf’s restriction that access-fn must be a function or a function-like macro; an arbitrary
defmacro destructuring pattern is permitted in Iambda-list.

get-setf-expansion Function

Syntax:
get-setf-expansion place &optional environment

---$ vars. vals. store-vars, writer-form. reader-form

Arguments and Values:
place-a place.

environment-an environment object.

vars, vals. store-vars. writer-form, reader-form-a setf expansion.

Description:
Determines five values constituting the setf expansion for place in environment; see Section 5.1.1.2
(Setf Expansions).

If environment is not supplied or nil, the environment is the null lexical environment.

Data and Control Flow 5-81

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(get-setf-expansion ‘1)
+ NIL, IIL. (#:GOOOl), (SETQ X #:GOOOl), X

;:; This macro is like POP

(defracro xpop (place Lenvironrent env)
(multiple-value-bind (duties vale new setter getter)

(get-setf-expansion place env)
‘(let* (.O(mapcar #‘list durrmies vals) (,(car nev) ,getter))

(if (cdr new) (error “Can3 expand this.“))
(progl (car ,(car nev))

(setq ,(carnev) (cdr .(car new)))
.setter))))

(defsetf frob (x1 (value)
‘(setf (car ,x1 ,value)) + PROB

; ; ; The f ollouing is an error: an error right be signaled at macro expansion tire
(flet ((frob (x1 (cdr x1)) ;Invalid

(xpop (frob ~1))

See Also:
defsetf, define-setf-expander, setf

Notes:
Any compound form is a valid place, since any compound form whose operator f has no setf
ezpander are expanded into a call to (setf f 1.

setf, psetf Macro

Syntax:
setf {ipair}* --) {result}*

psetf {ipair}* + nil

pair::=placc newvalue

Arguments and Values:
place-a place.

newvalue-a form.

results--the multiple values2 returned by the storing form for the last place, or nil if there are no
pairs.

Description:
setf changes the value of place to be newvalue.

(setf place newvalue) expands into an update form that stores the result of evaluating newvalue
into the location referred to by place. Some place forms involve uses of accessors that take

5-82 Data and Control Flow

Programming Language-Common Lisp ANSI x3.226-1994

optional arguments. Whether those optional arguments are permitted by setf, or what their use
is, is up to the setf expander function and is not under the control of s&f. The documentation
for any junction that accepts &optional, &rest, or tkey arguments and that claims to be usable
with setf must specify how those arguments are treated.

If more than one pair is supplied, the pairs are processed sequentially; that is,

(setf place-l nevvalue-1
place-2 newalue-2
. . .
place-l nevvalue-l)

is precisely equivalent to

(progn (setf place-l nevvalue-I)
(setf place-2 nevvalue-2)
. . .
(eetf place-l nevvalue-I?))

For psetf, if more than one pair is supplied then the assignments of new values to places are done
in parallel. More precisely, all subforms (in both the place and newvalue forms) that are to be
evaluated are evaluated from left to right; after all evaluations have been performed, all of the
assignments are performed in an unpredictable order.

For detailed treatment of the expansion of setf and psetf, see Section 5.1.2 (Kinds of Places).

Examples:

(setq x (cons ‘a ‘b) y (list 1 2 3)) + (1 2 3)
(setf (car x) ‘x (cadr y> (car x) (cdr x) y) --) (1 X 3)
x -) (X 1 x 3)
y * (1 x 3)
(setq x (cone ‘a ‘b) y (list 1 2 3)) --) (1 2 3)
(psetf (car x1 ‘x (cadr y> (car x> (cdr x1 y) -+ NIL
x --+ (X 1 A 3)
y -) (1 A 3)

Affected By:
define-setf-expander , defsetf, *macroexpand-hook*

See Also:
define-setf-expander, defsetf, macroexpand-1, rotatef, shiftf, Section 5.1 (Generalized Refer-
ence)

shiftf Macro

Syntax:
shiftf {place}+ newvalue -+ old-value-l

Arguments and Values:
place-a place.

newvalue-a form; evaluated.

old-value-l-an object (the old value of the first place).

Data and Control Flow 5-33

ANSI X3.226-1994 Programming Language-Common Lisp :

Description:
shiftf modifies the values of each p/ace by storing ncwvalue into the last p/ace, and shifting the
values of the second through the last place into the remaining places.

If newvalue produces more values than there are store variables, the extra values are ignored. If
newvalue produces fewer values than there are store variables, the missing values are set, to nil.

In the form (shiftf place1 place% . . . platen newvalue), the values in place1 through platen
are read and saved, and newvalue is evaluated, for a total of n+l values in all. Values 2 through
n+l are then stored into place1 through platen, respectively. It is as if all the p/aces form a shift
register; the newvalue is shifted in from the right, all values shift over to the left one place, and
the value shifted out of place1 is returned.

For information about the evaluation of subformS of p/aces, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq x (list 1 2 3) y ‘trash) - TRASH
(shiftf y x (cdr x) ’ (hi there)) + TRASH
x 4 (2 3)
y + (I HI THERE)

(setq x (list ‘a ‘b ‘c)) -+ (A B C)
(shiftf (cadr x1 ‘2) * B
x -* (A Z C)
(shiftf (cadr x) (cddr x> ‘q) + Z
x - (A (C) . 9)
(setq n 0) * 0
(setq x (list ‘a ‘b ‘c ‘d)) + (A B C D)
(shiftf (nth (setq n (+ n 1)) x) ‘z) -+ B
x -, (A Z C D)

Affected By:
define-setf-expander, defsetf, *macroexpand-hook*

See Also:
setf, rotatef, Section 5.1 (Generalized Reference)

Notes:
The effect of (shiftf place1 place2 . . . platen newvalue) is roughly equivalent to

(let ((varl place1)
(var2 place2)
. . .
(varn platen)
(var0 newvalue) >

(setf place1 var2)
(setf place2 var3)
. . .
(setf placen ver0)
varl)

except that the latter would evaluate any subforms of each place twice, whereas shiftf evaluates
them once. For example,

(setq n 0) -+ 0
(setq x (list ‘a ‘b ‘c ‘d)) - (A B C D)

5-84 Data and Control Flow

Programming Language-Common Lisp ANSI X3.226-1994

(progl (nth (setq n (+ n 1)) XI)
(setf (nth (setq II (+ n 1)) I[) ‘z)) -+ B

x * (A B Z D)

rotatef Macro

Syntax:
rotatef {p/ace}* -4 nil

Arguments and Values:
place-a place.

Description:
rotatef modifies the values of each p/ace by rotating values from one place into another.

If a p/ace produces more values than there are store variables, the extra values are ignored.
p/ace produces fewer values than there are store variables, the missing values are set to nil.

In the form (rotatef place1 place2 . . . placed, the values in place1 through platen are read
and written. Values 2 through n and value 1 are then stored into place1 through platen. It is as
if all the places form an end-around shift register that is rotated one place to the left, with the
value of place1 being shifted around the end to platen.

If a

For information about the evaluation of subforms of places, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(let ((n 0)
(x (list ‘a ‘b ‘c ‘d ‘e *f ‘g)))

(rotatef (nth (incf n) x1
(nth (incf n) x1
(nth (incf n) x1)

x) + (A C D B E F G)

See Also:
define-setf-expander, defsetf, setf, shiftf, *macroexpand-hook*, Section 5.1 (Generalized
Reference)

Notes:
The effect of (rotatef place1 place2 . . . platen) is roughly equivalent to

(psetf place1 p/ace2
place2 place3
. . .
platen place1 1

except that the latter would evaluate any subfoms of each place twice, whereas rotatef evaluates
them once.

Data and Control Flow 5-85

. -_ - _ L .___ . - . i

A N S I X 3 . 226 - 1994 P r o g m m m i n g L a n g u a g e - C o m m o n L isp :

con tro l-e r ro r C o n d i tio n Type

Class P r e c e dence List:
cont ro l -e r ro r , e r ro r , se r ious-cond i t ion , cond i t ion, t

Descr ip t ion :
T h e type cont ro l -e r ro r consists of e r ro r cond i t i ons that resu l t f r om inva l id dynam ic t ransfers of
cont ro l i n a p r og r am. T h e e r ro rs that resu l t f r om g iv ing th row a tag that is no t act ive o r f r om
g iv ing g o o r re tu rn - f rom a tag that is n o l o nge r dynamica l l y ava i l ab l e a r e of fype cont ro l -e r ro r .

p r og r am-e r r o r C o n d i tio n Type

Class P r e c e dence List:
p rog ram-e r r o r , e r ro r , se r ious-cond i t ion , cond i t ion, t

Descr ip t ion :
T h e type p r og r am-e r r o r consists of e r ro r cond i t i ons re la ted to incor rect p r o g r am syntax. T h e
e r ro rs that resu l t f r om n a m i n g a g o tag o r a b lock tag that is no t lex ical ly a ppa r en t a r e of type
p rog ram-e r r o r .

u n d e fin e d - fu n c tio n
-.

C o n d i tio n Type

Class P r e c e dence List:
undef lned - func t ion , ce l l -er ror , e r ro r , se r ious-cond i t ion , cond i t ion, t

Descr ip t ion :
T h e type unde f i ned - func t i on consists of e r ro r cond i t i ons that r ep resen t a t tempts to r e a d the
def in i t ion of a n unde f i n ed funct ion.

T h e n a m e of the cel l (see ce l l -e r ro r) is the funct ion n a m e wh i ch was f unbound .

S e e A lso:
ce l l - e r r o r - name

5 - 8 6 Da ta a n d Cont ro l F l ow

ANSI X3.226-1994

Programming Language-Common Lisp

6. Iteration

ANSI X3.226-1994 Programming Language-Common Lisp

ii Iteration

Programming Language-Common Lisp ANSI X3.226-1994

6.1 The LOOP Facility

6.1.1 Overview of the Loop Facility
The loop macro performs iteration.

6.1.1.1 Simple vs Extended Loop

loop forms are partitioned into two categories: simple loop forms and extended loop forms.

6.1.1.1.1 Simple Loop

A simple loop form is one that has a body containing only compound forms. Each form is
evaluated in turn from left to right. When the last form has been evaluated, then the first form is
evaluated again, and so on, in a never-ending cycle. A simple loop form establishes an implicit
block named nil. The execution of a simple loop can be terminated by explicitly transfering
control to the implicit block (using return or return-from) or to some exit point outside of the
block (e.g., using throw, go, or return-from).

6.1.1.1.2 Extended Loop

An extended loop form is one that has a body containing atomic expressions. When the loop
macro processes such a form, it invokes a facility that is commonly called “the Loop Facility.”

The Loop Facility provides standardized access to mechanisms commonly used in iterations
through Loop schemas, which are introduced by loop keywords.

The body of an extended loop form is divided into loop clauses, each which is in turn made up of
loop keywords and forms.

6.1.1.2 Loop Keywords

Loop keywords are not true keywordsl; they are special symbols, recognized by name rather than
object identity, that are meaningful only to the loop facility. A loop keyword is a symbol but is
recognized by its name (not its identity), regardless of the packages in which it is accessible.

In general, loop keywords are not external symbols of the COHHON-LISP package, except in the
coincidental situation that a symbol with the same name as a loop keyword was needed for some
other purpose in Common Lisp. For example, there is a symbol in the COHHON-LISP package whose
name is WNLESS" but not one whose name is 'W?TIL~4.

If no loop keywords are supplied in a loop form, the Loop Facility executes the loop body repeat-
edly; see Section 6.1.1.1.1 (Simple Loop).

6.1.1.3 Parsing Loop Clauses

The syntactic parts of an extended loop form are called clauses; the rules for parsing are deter-
mined by that clause’s keyword. The following example shows a loop form with six clauses:

(loop for i from 1 to (compute-top-value) ; first clause
vhile (not (unacceptable i)) ; second clause
collect (square i) ; third clause
do (format t "Working on 'D nov" i) ; fourth clause
vhen (evenp i) ; fifth clause

do (format t "- D is a non-odd number" i)
finally (format t "About to exit!")) ; sixth clause

iteration 6-l

~ - - - _ i l . . ~ , - . - _ .

A N S I X 3 .2 2 6 -1 9 9 4 P ro g ra m m i n g L a n g u a g e -C o m m o n L i s p

E a c h l o o p k e y w o rd i n tro d u c e s e i th e r a c o m p o u n d l o o p c l a u s e o r a s i m p l e l o o p c l a u s e th a t c a n c c
s i s t o f a l o o p k e y w o rd fo l l o w e d b y a s i n g l e fo rm . T h e n u m b e r o f fo rm s i n a c l a u s e i s d e te rm i n e d
b y th e l o o p k e y w o rd th a t b e g i n s th e c l a u s e a n d b y th e a u x i l i a ry k e y w o rd s i n th e c l a u s e . T h e
k e y w o rd s d o , d o i n g , i n i ti a l l y , a n d fi n a .U y a re th e o n l y l o o p k e y w o rd s th a t c a n ta k e a n y n u m b e r
o f fo rm s a n d g ro u p th e m a s a n i m p l i c i t p ro g n .

L o o p c l a u s e s c a n c o n ta i n a u x i l i a ry k e y w o rd s , w h i c h a re s o m e ti m e s c a l l e d p re p o s i ti o n s . F o r
e x a m p l e , th e fi rs t c l a u s e i n th e c o d e a b o v e i n c l u d e s th e p re p o s i ti o n s fro m a n d to , w h i c h m a rk th e
v a l u e fro m w h i c h s te p p i n g b e g i n s a n d th e v a l u e a t w h i c h s te p p i n g e n d s .

F o r d e ta i l e d i n fo rm a ti o n a b o u t l o o p s y n ta x , s e e th e m a c ro l o o p .

6 .1 .1 .4 E x p a n d i n g L o o p F o rm s

A l o o p m a c ro fo rm e x p a n d s i n to a fo rm c o n ta i n i n g o n e o r m o re b i n d i n g fo rm s (th a t e s ta b l i s h
b i n d i n g s o f l o o p v a ri a b l e s) a n d a b l o c k a n d a ta g b o d y (th a t e x p re s s a l o o p i n g c o n tro l s tru c tu re).
T h e v a ri a b l e s e s ta b l i s h e d i n l o o p a re b o u n d a s i f b y l e t o r l a m b d a .

Im p l e m e n ta ti o n s c a n i n te rl e a v e th e s e tti n g o f i n i ti a l v a l u e s w i th th e b i n d i n g s . H o w e v e r, th e
a s s i g n m e n t o f th e i n i ti a l v a l u e s i s a l w a y s c a l c u l a te d i n th e o rd e r s p e c i fi e d b y th e u s e r. A v a ri a b l e
i s th u s s o m e ti m e s b o u n d to a m e a n i n g l e s s v a l u e o f th e c o rre c t ty p e , a n d th e n l a te r i n th e p ro l o g u e
i t i s s e t to th e tru e i n i ti a l v a l u e b y u s i n g s e tq . O n e i m p l i c a ti o n o f th i s i n te rl e a v i n g i s th a t i t
i s i m p l e m e n ta ti o n -d e p e n d e n t w h e th e r th e l e x i c a l e n v i ro n m e n t i n w h i c h th e i n i ti a l v a l u e fo rm s
(v a ri o u s l y c a l l e d th e fo rm 1 , fo rm 2 , fo rm 3 , s te p -fu n , v e c to r, h a s h -ta b l e , a n d p a c k a g e) i n a n y fo r-
a s -s u b c l a u s e , e x c e p t fo r-a s -e q u a l s -th e n , a re e v a l u a te d i n c l u d e s o n l y th e l o o p v a ri a b l e s p re c e d i n g
th a t fo rm o r i n c l u d e s m o re o r a l l o f th e l o o p v a ri a b l e s ; th e fo rm 1 a n d fo rm 2 i n a fo r-a s -e q u a l s -th e n
fo rm i n c l u d e s th e l e x i c a l e n v i ro n m e n t o f a l l th e l o o p v a ri a b l e s .

A fte r th e fo rm i s e x p a n d e d , i t c o n s i s ts o f th re e b a s i c p a rts i n th e ta g b o d y : th e l o o p p ro l o g u e , th e
l o o p b o d y , a n d th e l o o p e p i l o g u e .

L o o p p ro l o g u e

T h e l o o p p ro l o g u e c o n ta i n s fo rm s th a t a re e x e c u te d b e fo re i te ra ti o n b e g i n s , s u c h a s
a n y a u to m a ti c v a ri a b l e i n i ti a l i z a ti o n s p re s c ri b e d b y th e v a ri a b l e c l a u s e s , a l o n g w i th a n y
i n i ti a l l y c l a u s e s i n th e o rd e r th e y a p p e a r i n th e s o u rc e .

L o o p b o d y

T h e l o o p b o d y c o n ta i n s th o s e fo rm s th a t a re e x e c u te d d u ri n g i te ra ti o n , i n c l u d i n g
a p p l i c a ti o n -s p e c i fi c c a l c u l a ti o n s , te rm i n a ti o n te s ts , a n d v a ri a b l e s te p p i n g l .

L o o p e p i l o g u e

T h e l o o p e p i l o g u e c o n ta i n s fo rm s th a t a re e x e c u te d a fte r i te ra ti o n te rm i n a te s , s u c h a s
fi n a l l y c l a u s e s , i f a n y , a l o n g w i th a n y i m p l i c i t re tu rn v a l u e fro m a n a c c u m u l a ti o n c l a u s e
o r a n te rm i n a ti o n -ta s t c l a u s e .

S o m e c l a u s e s fro m th e s o u rc e fo rm c o n tri b u te c o d e o n l y to th e l o o p p ro l o g u e ; th e s e c l a u s e s m u s t
c o m e b e fo re o th e r c l a u s e s th a t a re i n th e m a i n b o d y o f th e l o o p fo rm . O th e rs c o n tri b u te c o d e
o n l y to th e l o o p e p i l o g u e . A l l o th e r c l a u s e s c o n tri b u te to th e fi n a l tra n s l a te d fo rm i n th e s a m e
o rd e r g i v e n i n th e o ri g i n a l s o u rc e fo rm o f th e l o o p .

E x p a n s i o n o f th e l o o p m a c ro p ro d u c e s a n i m p & l b l o c k n a m e d n i l u n l e s s n a m e d i s s u p p l i e d . T h u s ,
re tu rn -fro m (a n d s o m e ti m e s re tu rn) c a n b e u s e d to re tu rn v a l u e s fro m l o o p o r to e x i t l o o p .

6 -2 Ite ra ti o n

Programming Language-Common Lisp ANSI X3.226-1994

I 6.1.1.5 Summary of Loop Clauses

Loop clauses fall into one of the following categories:

6.1.1.5.1 Summary of Variable Initialization and Stepping Clauses

The for and as constructs provide iteration control clauses that establish a variable to be initial-
ized. for and as clauses can be combined with the loop keyword and to get parallel initialization
and steppingl. Otherwise, the initialization and stepping1 are sequential.

The vith construct is similar to a single let clause. vith clauses can be combined using the loop
keyword and to get parallel initialization.

For more information, see Section 6.1.2 (Variable Initialization and Stepping Clauses).

6.1.1.5.2 Summary of Value Accumulation Clauses

The collect (or collecting) construct takes one form in its clause and adds the value of that
fern to the end of a list of values. By default, the list of values is returned when the loop
finishes.

The append (or appending) construct takes one form in its clause and appends the value of that
form to the end of a list of values. By default, the list of values is returned when the loop
finishes.

The nconc (or nconcing) construct is similar to the append construct, but its list values are
concatenated as if by the function nconc. By default, the list of values is returned when the loop
finishes.

The SUIP (or summing) construct takes one form in its clause that must evaluate to a number and
accumulates the sum of all these numbers. By default, the cumulative sum is returned when the
loop finishes.

The count (or counting) construct takes one form in its clause and counts the number of times
that the form evaluates to true. By default, the count is returned when the loop finishes.

The minimize (or minimizing) construct takes one form in its clause and determines the minimum
value obtained by evaluating that form. By default, the minimum value is returned when the
loop finishes.

The maximize (or maximizing) c0nstruc.t takes one form in its clause and determines the maximum
value obtained by evaluating that form. By default, the maximum value is returned when the
loop finishes.

For more information, see Section 6.1.3 (Value Accumulation Clauses).

6.1.1.5.3 Summary of Termination Test Clauses

The for and as constructs provide a termination test that is determined by the iteration control
clause.

The repeat construct causes termination after a specified number of iterations. (It uses an
internal variable to keep track of the number of iterations.)

The vhile construct takes one form, a test, and terminates the iteration if the test evaluates to
false. A vhile clause is equivalent to the expression (if (not test) (loop-finish)).

The until construct is the inverse of while; it terminates the iteration if the test evaluates to any
non-nil value. An until clause is equivalent to the expression (if test (loop-finish)).

Iteration 6-3

ANSI X3.226-1994 Programming Language--Common Lisp

The alvays construct takes one form and terminates the loop if the form ever evaluates to f
in this case, the loop form returns nil. Otherwise, it provides a default return value oft.

The never construct takes one form and terminates the loop if the form ever evaluates to Irue; in
this case, the loop form returns nil. Otherwise, it provides a default return value of t.

The thereis construct takes one form and terminates the loop if the form ever evaluates to a
non-nil object; in this case, the loop form returns that object. Otherwise, it provides a default
return value of nil.

If multiple termination test clauses are specified, the loop form terminates if any are satisfied.

For more information, see Section 6.1.4 (Termination Test Clauses).

6.1.1.5.4 Summary of Unconditional Execution Clauses

The do (or doing) construct evaluates all forms in its clause.

The return construct takes one form, Any values returned by the form are immediately returned
by the loop form. It is equivalent to the clause do (return-from block-name value), where block-
name is the name specified in a named clause, or nil if there is no named clause.

For more information, see Section 6.1.5 (Unconditional Execution Clauses).

6.1.1.5.5 Summary of Conditional Execution Clauses

The if and vhen constructs take one form as a test and a clause that is executed when the test
yields true. The clause can be a value accumulation, unconditional, or another conditional clause;
it can also be any combipation of such clauses connected by the loop and keyword.

The loop unless construct is similar to the loop vhen construct except that it complements t’
test result.

The loop else construct provides an optional component of if, vhen, and unless clauses that is
executed when an if or vhen test yields false or when an unless test yields Irue, The component
is one of the clauses described under if.

The loop end construct provides an optional component to mark the end of a conditional clause.

For more information, see Section 6.1.6 (Conditional Execution Clauses).

6.1.1.5.6 Summary of Miscellaneous Clauses

The loop named construct gives a name for the block of the loop.

The loop initially construct causes its forms to be evaluated in the loop prologue, which
precedes all loop code except for initial settings supplied by the constructs pith, for, or as.

The loop finally construct causes its forms to be evaluated in the loop epilogue after normal
iteration terminates.

For more information, see Section 6.1.7 (Miscellaneous Clauses).

6-4 Iteration

Programming Language--Common Lisp ANSI x3.226-1994

6.1.1.6 Order of Execution
With the exceptions listed below, clauses are executed in the loop body in the order in which
they appear in the source. Execution is repeated until a clause terminates the loop or until a
return, go, or throw form is encountered which transfers control to a point outside of the loop.
The following actions are exceptions to the linear order of execution:

l All variables are initialized first, regardless of where the establishing clauses appear in the
source. The order of initialization follows the order of these clauses.

l The code for any initially clauses is collected into one progn in the order in which the
clauses appear in the source, The collected code is executed once in the loop prologue
after any implicit variable initializations.

l The code for any finally clauses is collected into one progn in the order in which the
clauses appear in the source. The collected code is executed once in the loop epilogue
before any implicit valuea from the accumulation clauses are returned. Explicit returns
anywhere in the source, however, will exit the loop without executing the epilogue code.

l A vith clause introduces a variable binding and an optional initial value. The initial
values are calculated in the order in which the vith clauses occur.

l Iteration control clauses implicitly perform the following actions:

- initialize variables;

- step variables, generally between each execution of the loop body;

- perform termination tests, generally just before the execution of the loop body.

6.1.1.7 Destructuring

The d-type-spec argument is used for destructuring. If the d-type-spcc argument consists solely
of the type fixnum, float, t, or nil, the of-type keyword is optional. The of-type construct is
optional in these cases to provide backwards compatibility; thus, the following two expressions are
the same:

;;; This expression uses the old syntax for type specifiers.
(loop for i fixnum upfrom 3 . ..)

*. * This expression uses the nev syntax for type specifiers. 1,.

(loop for i of-type fixrnrm upfrom 3 ..,)

;; Declare X and Y to be of type VECTDB apd FIXW respectively.
($00~ #or (x y) of-type (vector fixnum)

ip 1 do . . .I

A type specifier for a destructuring pattern is a tree of type specifiers with the same shape as the
tree of variable names, with the following exceptions:

s When aligning the trees, an atom in the tree of type specifiers that matches a cons in the
variable tree declares the same type for each variable in the subtree rooted at the cons.

l A cons in the tree of type specifiers that matches an atom in the tree of variable names is
a compound type specifer.

Destructurjng allows binding of a set of variables to a corresponding set of values anywhere that
a value can normally be hound to a single variable. During loop expansion, each variable in

Iteration 6-5

ANSI X3.226-1994 Programming Language-Common Lisp

the variable list is matched with the values in the values list. If there are more variables in the
variable list than there are values in the values list, the remaining variables are given a value or
nil. If there are more values than variables listed, the extra values are discarded.

To assign values from a list to the variables a, b, and c, the for clause could be used to bind the
variable nudlist to the car of the supplied form, and then another for clause could be used to
bind the variables a, b, and c sequentially.

;; Collect values by using FOR constructs.
(loop for numlist in '((1 2 4.0) (5 6 8.3) (8 9 10.4))

for a of-type integer = (first numlist)
and b of-type integer = (second numlist)
and c of-type float = (third numlist.)
collect (list c b a))

+ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

Destructuring makes this process easier by allowing the variables to be bound in each loop
iteration. Types can be declared by using a list of type-spec arguments. If all the types are the
same, a shorthand destructuring syntax can be used, as the second example illustrates.

;; Destructuring simplifies the process.
(loop for (a b c) of-type (integer integer float) in

'((1 2 4.0) (5 6 8.3) (8 9 10.4))
collect (list c b a))

+ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;; If all the types are the same, this vay is even simpler.
(loop for (a b c) of-type float in

'((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))
collect (list c b a))

--* ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If destructuring is used to declare or initialize a number of groups of variables into types, the loop
keyword and can be used to simplify the process further. ii Initialize and declare variables
in parallel by using the AND construct.

(loop with (a b) of-type float = '(1.0 2.0)
end (c d) of-type integer = '(3 4)
and (e f)
return (list a b c d e f))

+ (1.0 2.0 3 4 NIL NIL)

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) = '(1 2 3)
do (return (list a b)))

- (1 3)

Note that dotted lists can specify destructuring.

(loop for (x . y) = '(1 . 2)
do (return y))

-+2
(loop for ((a . b) (c . d)) of-type ((float . float) (integer . integer)) in

'(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))
collect (list a b c d))

4 ((1.2 2.4 3 4) (3.4 4.6 5 6))

An error of type program-error is signaled (at macro expansion time) if the same variable is

6-6 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

bound twice in any variable-binding clause of a single loop expression. Such variables include
local variables, iteration control variables, and variables found by destructuring.

6.1.1.8 Restrictions on Side-Effects

See Section 3.6 (Traversal Rules and Side Effects).

6.1.2 Variable Initialization and Stepping Clauses

6.1.2.1 Iteration Control
Iteration control clauses allow direction of loop iteration. The loop keywords for and as designate
iteration control clauses. Iteration control clauses differ with respect to the specification of
termination tests and to the initialization and stepping1 of loop variables. Iteration clauses by
themselves do not cause the Loop Facility to return values, but they can be used in conjunction
with value-accumulation clauses to return values.

All variables are initialized in the loop prologue. A variable binding has lexical scope unless it is
proclaimed special; thus, by default, the variable can be accessed only by forms that lie textually
within the loop. Stepping assignments are made in the loop body before any other forms are
evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A destructuring list
is a iree whose non-nil atoms are variable names. See Section 6.1.1.7 (Destructuring).

The iteration control clauses for, as, and repeat must precede any other loop clauses, except
initially, with, and named, since they establish variable bindings. When iteration control clauses
are used in a loop, the corresponding termination tests in the loop body are evaluated before any
other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable initialization and stepping1
occur sequentially by default. The and construct can be used to connect two or more iteration
clauses when sequential binding and stepping1 are not necessary. The iteration behavior of clauses
joined by and is analogous to the behavior of the macro do with respect to do*.

The for and as clauses iterate by using one or more local loop variables that are initialized to
some value and that can be modified or stepped1 after each iteration. For these clauses, iteration
terminates when a local variable reaches some supplied value or when some other loop clause
terminates iteration. At each iteration, variables can be stepped1 by an increment or a decrement
or can be assigned a new value by the evaluation of a form). Destructuring can be used to assign
values to variables during iteration.

The for and as keywords are synonyms; they can be used interchangeably. There are seven
syntactic formats for these constructs. In each syntactic format, the type of var can be supplied
by the optional type-spcc argument. If var is a destructuring list, the type supplied by the type-
spec argument must appropriately match the elements of the list. By convention, for introduces
new iterations and as introduces iterations that depend on a previous iteration specification.

6.1.2.1.1 The for-as-arithmetic subclause

In the for-as-arithmetic subclause, the for or as construct iterates from the value supplied by
form1 to the value supplied by form2 in increments or decrements denoted by form3. Each
expression is evaluated only once and must evaluate to a number. The variable var is bound to
the value of form1 in the first iteration and is stepped1 by the value of form3 in each succeeding
iteration, or by 1 if form3 is not provided. The following loop keywords serve as valid prepositions
within this syntax. At least one of the prepositions must be used; and at most one from each line
may be used in a single subclause.

Iteration 6-7

ANSI X3.226-1994 Programming Language-Common Lisp ,

from I dormfrom I upfror

to i dovnto I upto I below I above

The prepositional phrases in each subclause may appear in any order. For example, either
“from x by y" or “by y from x” is permitted. However, because left-to-right order of evalua-
tion is preserved, the effects will be different in the case of side effects. Consider:

(let ((x 1)) (loop for i from x by (incf x) to 10 collect i))
-* (1 3 5 7 9)
(let ((x 1)) (loop for i by (incf x) from x to 10 collect i))
-L (2 4 6 8 10)

The descriptions of the prepositions follow:

from

The loop keyword from specifies the value from which stepping1 begins, as supplied by
forml. Stepping1 is incremental by default. If decremental stepping1 is desired, the
preposition dovnto or above must be used with form2. For incremental stepping 1, the
default from value is 0.

dovnfror, upfrom

The loop keyword downfrom indicates that the variable var is decreased in decrements
supplied by form3; the loop keyword upfrom indicates that var is increased in increments
supplied by form3.

to \ _

The loop keyword to marks the end value for stepping1 supplied in form2. Stepping1 is
incremental by default. If decremental stepping1 is desired, the preposition dounfrommust
be used with forml, or else the preposition dounto or above should be used instead of to
with form2.

dormto, upto

The Ioop keyword dovnto specifies decremental stepping; the loop keyword upto specifies
incremental stepping. In both cases, the amount of change on each step is specified by
form3, and the loop terminates when the variable var passes the value of forml. Since
there is no default for form1 in decremental steppingr, a form1 value must be supplied
(using from or downfrom) when dounto is supplied.

beloo, above

The loop keywords below and above are analogous to upto and dounto respectively. These
keywords stop iteration just before the value of the variable var reaches the value supplied
by form:!; the end value of form2 is not included. Since there is no default for form1 in
decremental steppingl, a form1 value must be supplied (using from or dovnfrom) when
above is supplied.

The loop keyword by marks the increment or decrement supplied by form3. The value oc
form3 can be any positive number. The default value is I.

In an iteration control clause, the for or as construct causes termination when the supplied limit
is reached. That is, iteration continues until the value var is stepped to the exclusive or inclusive

6-8 Iteration

Programming Language-Common Lisp ANSI x3.226-1994

limit supplied by form2. The range is exclusive if form3 increases or decreases var to the value of
form2 without reaching that value; the loop keywords belov and above provide exclusive limits.
An inclusive limit allows var to attain the value of form2; to, dounto, and upto provide inclusive
limits.

6.1.2.1.1.1 Examples of for-as-arithmetic subclause

;; Print some numbers.
(loop for i from 1 to 3

do (print i))
01

02
03
+ NIL

;; Print every third number.
(loop for i from 10 dounto 1 by 3

do (print i))
D 10
D7
04
D 1
+ NIL

;; Step incrementally from the default starting value.
(loop for i belov 3

do (print i))
Do
D 1
D2
-+ NIL

6.1.2.1.2 The for-as-in-list subclause

In the for-as-in-list subclause, the for or as construct iterates over the contents of a list. It checks
for the end of the list as if by using endp. The variable var is bound to the successive elements
of the list in form1 before each iteration. At the end of each iteration, the function step-fun is
applied to the list; the default value for step-fun is cdr. The loop keywords in and by serve as
valid prepositions in this syntax. The for or as construct causes termination when the end of the
list is reached.

6.1.2.1.2.1 Examples of for-as-in-list subclause

;; Print every item in a list.
(loop for item in '(1 2 3) do (print item))

Dl
D2
D3
- NIL

;; Print every other item in a list.
(loop for item in ‘(1 2 3 4 5) by #'cddr

do (print item))
01
D3

Iteration 6-9

ANSI X3.226-1994 Programming Language-Common Lisp

05
+ BIL

;; Destructure a list, and suu the x values using fixnum arithmetic.
(loop for (item . x1 of-type (t . fixnum) in '((A . 1) (B . 2) (C . 3))

unless (sq item ‘B) sum x)
44

6.1.2.1.3 The for-as-on-lit subclause

In the for-as-on&2 subclause, the for or as construct iterates over a list. It checks for the end of
the list as if by using atom. The variable var is bound to the successive tails of the list in forml.
At the end of each iteration, the function step-fun is applied to the list; the default value for step-
fun is cdr. The loop keywords on and by serve as valid prepositions in this syntax. The for or as
construct causes termination when the end of the list is reached.

6.1.2.1.3.1 Examples of for-as-on-list subclause

;; Collect successive tails of a list.
(loop for sublist on '(a b c d)

collect sublist)
+ ((A B C D) (B C D) (C D) CD))

;; Print a list by using destructuring vith the loop keyvord ON.
(loop for (item) on '(1 2 3)

do (print item))
Dl

02
D3
* NIL

6.1.2.1.4 The for-as-equals-then subclause

In the for-as-equals-then subclause the for or as construct initializes the variable var by setting it
to the result of evaluating form1 on the first iteration, then setting it to the result of evaluating
form2 on the second and subsequent iterations. If form2 is omitted, the construct uses form1 on
the second and subsequent iterations. The loop keywords = and then serve as valid prepositions in
this syntax. This construct does not provide any termination tests.

6.1.2.1.4.1 Examples of for-as-equals-then subclause

;; Collect some numbers.
(loop for item = 1 then (+ item 10)

for iteration from 1 to 5
collect item)

+ (1 11 21 31 41)

6.1.2.1.5 The for-as-across subclause

In the for-as-across subclause the for or as construct binds the variable var to the value of each
element in the array vector. The loop keyword across marks the array vector; across is used ae
preposition in this syntax. Iteration stops when there are no more elements in the supplied ar
that can be referenced. Some implementations might recognize a the special form in the vector
form to produce more efficient code.

6-10 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

6.1.2.1.5.1 Examples of for-as-across subclause

(loop for char across (the simple-string (find-message channel))
do (write-char char stream))

6.1.2.1.6 The for-as-hash subclause

In the for-as-hash subclause the for or as construct iterates over the elements, keys, and values of
a hash-table. In this syntax, a compound preposition is used to designate access to a hash table.
The variable war takes on the value of each hash key or hash value in the supplied hash-tab/e. The
following loop keywords serve as valid prepositions within this syntax:

being

The keyword being introduces either the Loop schema hash-key or hash-value.

each, the

The loop keyword each follows the loop keyword being when hash-key or hash-value is
used, The loop keyword the is used with haah-keys and hash-values only for ease of
reading. This agreement isn’t required.

hash-key, hash-keys

These loop keywords access each key entry of the hash table. If the name hash-value is
supplied in a using construct with one of these Loop schem&, the iteration can optionally
access the keyed value. The order in which the keys are accessed is undefined; empty slots
in the hash table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash table. If the name hash-key is
supplied in a using construct with one of these Loop schemas, the iteration can optionally
access the key that corresponds to the value. The order in which the keys are accessed is
undefined; empty slots in the hash table are ignored.

using

The loop keyword using introduces the optional key or the keyed value to be accessed.
It allows access to the hash key if iteration is over the hash values, and the hash value if
iteration is over the hash keys.

in, of

These loop prepositions introduce hash-tab/e.

In effect

being {each 1 the} {hash -value 1 hash-values 1 hash-key 1 hash-keys} {in 1 of)

is a compound preposition.

Iteration stops when there are no more hash keys or hash values to be referenced in the supplied
hash-table.

Iteration 6-11

ANSI X3.226-1994 Programming Language-Common Lisp

6.1.2.1.7 The for-as-package subclause

In the for-as-package subclause the for or as construct iterates over the symbols in a package, In
this syntax, a compound preposition is used to designate access to a package. The variable var
takes on the value of each symbol in the supplied package. The following loop keywords serve as
valid prepositions within this syntax:

being

The keyword being introduces either the Loop schema symbol, present-symbol, or
external-spbol.

each, the

The loop keyword each follows the loop keyword being when symbol, present-symbol, or
external-symbol is used. The loop keyword the is used with symbols, present-spbols,
and external-symbols only for ease of reading. This agreement isn’t required.

present-symbol,present-symbols

These Loop schemas iterate over the symbols that are present in a package. The package
to be iterated over is supplied in the same way that package arguments to f ind-package
are supplied. If the package for the iteration is not supplied, the current package is used.
If a package that does not exist is supplied, an error of type package-error is signaled.

symbol, symbols
0

These Loop schemas iterate over symbols that are accessible in a given package. The
package to be iterated over is supplied in the same way that package arguments to
And-package are supplied. If the package for the iteration is not supplied, the cur-
rent package is used. If a package that does not exist is supplied, an error of type
package-error is signaled.

external-symbol, external-symbols

These Loop schemas iterate over the ezternal symbols of a package. The package to be
iterated over is supplied in the same way that package arguments to And-package are
supplied. If the package for the iteration is not supplied, the current package is used. If a
package that does not exist is supplied, an error of type package-error is signaled.

in, of

These loop prepositions introduce package.

In effect

being {each 1 the} {symbol 1 symbols 1 p resent-symbol 1 present-symbols 1 external-symbol I
external-symbols} {in 1 of}

is a compound preposition.

Iteration stops when there are no more symbols to be referenced in the supplied package.

6-12 Iteration

Programming Language-Common Lisp ANSI x3.226-1994

6.1.2.1.7.1 Examples of for-as-package subclause

6.1.2.2

(let ((*package* (make-package Y%ST-PACKAGE-l”)))
;; For effect, intern some syvbols
(read-from-string “(THIS IS A TEST)“)
(export (intern “THIS”))
(loop for x being each present-symbol of *package*

do (print xt)))
DA

D TEST
D T’IiIS

D 1s

+ NIL

Local Variable Initializations
When a loop form is executed, the local variables are bound and are initialized to some value.
These local variables exist until loop iteration terminates, at which point they cease to exist.
Implicit variables are also established by iteration control clauses and the into preposition of
accumulation clauses.

The vith construct initializes variables that are local to a loop. The variables are initialized
one time only. If the optional type-spec argument is supplied for the variable var, but there
is no related expression to be evaluated, var is initialized to an appropriate default value for
its type. For example, for the types t, number, and float, the default values are nil, 0, and
0.0 respectively. The consequences are undefined if a ty~cspcc argument is supplied for var
if the related expression returns a value that is not of the supplied type. By default, the vith
construct initializes variables sequentially; that is, one variable is assigned a value before the
next expression is evaluated. However, by using the loop keyword and to join several vith clauses,
initializations can be forced to occur in parallel; that is, all of the supplied forms are evaluated,
and the results are bound to the respective variables simultaneously.

Sequential binding is used when it is desireable for the initialization of some variables to depend
on the values of previously bound variables. For example, suppose the variables a, b, and c are to
be bound in sequence:

(loop vith a * 1
vith b = (+ a 2)
vith c = (+ b 3)
return (list a b c))

- (1 3 6)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let* ((a 1)

(b (+ a 2))
(c (+ b 3)))

(tagbody
(next-loop (return (list a b c))

(go next-loop)
end-loop))))

If the values of previously bound variables are not needed for the initialization of other local
variables, an and clause can be used to specify that the bindings are to occur in parallel:

Iteration 6-13

ANSI X3.226-1994 Programming Language-Common Lisp

(loop vith a - 1
andb=2
audc=3
return (list a b c))

-) (1 2 3)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let ((a 1)

(b 2)
(c 3))

(tagbody
(next-loop (return (list a b c))

(go next-loop)
end-loop))))

6.1.2.2.1 Examples of WITH clause

;; These bindings occur in sequence.
(loop vith a = 1

vith b = (+ a 2)
vith c = (+ b 3)
return (list a b c))

+ (1 3 6)

;; These bindings occur in parallel.
(setq a 5 b 10)

+ 10
(loop vith a = 1

andb= (+ a 2)
andc=(+b3)
return (list a b c))

* (1 7 13)

;; This example shovs a shorthand vay to declare local variables
:; that are of different types.

(loop vith (a b c) of-type (float integer float)
return (format nil "-A 'A -A" a b c))

+ "0.0 0 0.0"

;; This example shops a shorthand vay to declare local variables
;; that are the same type.

(loop vith (a b c) of-type float
return (format nil "'A ‘A ‘A” a b c))

+ "0.0 0.0 0.0"

6.1.3 Value Accumulation Clauses
The constructs collect, collecting, append, appending, nconc, nconcing, connt, counting, razimize,
maximizing, minimize, minimizing, snz, and snzzing, allow values to be accumulated in a loop.

The constructs collect, collecting, append, appending, nconc, and nconcing, designate clauses
that accumulate values in MS and return them. The constructs count, counting, razizize,
maximizing, minimize, minimizing, sum, and snzzing designate clauses that accumulate and return
numerical values.

6-14 Iteration

Programming LanguageCommon Lisp ANSI X3.226-1994

During each iteration, the constructs collect and collecting collect the value of the supplied
form into a list. When iteration terminates, the list is returned. The argument var is set to the
list of collected values; if var is supplied, the loop does not return the final list automatically. If
var is not supplied, it is equivalent to supplying an internal name for var and returning its value
in a finally clause. The var argument is bound as if by the construct with. No mechanism is
provided for declaring the lype of var; it must be of type list.

The constructs append, appending, nconc, and nconcing are similar to collect except that the
values of the supplied form must be lists.

l The append keyword causes its list values to be concatenated into a single list, as if they
were arguments to the function append.

l The nconc keyword causes its list values to be concatenated into a single list, as if they
were arguments to the function nconc.

The argument var is set to the list of concatenated values; if var is supplied, loop does not
return the final list automatically. The var argument is bound as if by the construct with. A type
cannot be supplied for var; it must be of type list. The construct nconc destructively modifies its
argument lists.

The count construct counts the number of times that the supplied form returns true. The ar-
gument var accumulates the number of occurrences; if var is supplied, loop does not return the
final count automatically. The var argument is bound as if by the construct with to a zero of the
appropriate type. Subsequent values (including any necessary coercions) are computed as if by
the function I+. If into var is used, a type can be supplied for var with the typcspec argument;
the consequences are unspecified if a nonnumeric type is supplied. If there is no into variable, the
optional type-spec argument applies to the internal variable that is keeping the count. The default
type is implementation-dependent; but it must be a supertype of type Bxnum.

The maximize and minimize constructs compare the value of the supplied form obtained during
the first iteration with values obtained in successive iterations. The maximum (for maximize) or
minimum (for minimize) value encountered is determined (as if by the function max for maximize
and as if by the fundion min for minimize) and returned. If the maximize or minimize clause
is never executed, the accumulated value is unspecified. The argument var accumulates the
maximum or minimum value; if var is supplied, loop does not return the maximum or minimum
automatically. The var argument is bound as if by the construct vith. If into var is used, a
type can be supplied for var with the type-spec argument; the consequences are unspecified if a
nonnumeric type is supplied. If there is no into variable, the optional type-spec argument applies
to the internal variable that is keeping the maximum or minimum value. The default type is
implementation-dependent; but it must be a supertype of type real.

The sum construct forms a cumulative sum of the successive primary values of the supplied
form at each iteration. The argument var is used to accumulate the sum; if var is supplied, loop
does not return the final sum automatically. The var argument is bound as if by the construct
vith to a zero of the appropriate type. Subsequent values (including any necessary coercions)
are computed as if by the function +. If into var is used, a type can be supplied for var with
the type-spcc argument; the consequences are unspecified if a nonnumeric type is supplied. If
there is no into variable, the optional type-spec argument applies to the internal variable that is
keeping the sum. The default type is implementation-dependent; but it must be a supertype of
type number.

If into is used, the construct does not provide a default return value; however, the variable is
available for use in any finally clause.

Certain kinds of accumulation clauses can be combined in a loop if their destination is the
same (the result of loop or an into var) because they are considered to accumulate conceptually
compatible quantities. In particular, any elements of following sets of accumulation clauses can be

Iteration 6-15

.._-- _._- _-._ _....^ --- - -- ~. - _ -_ x..

ANSI X3.226-1994 Programming Language-Common Lisp

mixed with other elements of the same set for the same destination in a loop form:

l collect, append,nconc

l snm. count

l maximize, minimize

;; Collect every none and the k ids in one list by using
;; COLLECT and APPEND.
(loop for name in ‘(fred sue alice joe june)

for k ids in '((bob ken) 0 0 (k r is sunshine) 0)
collect name
append k ids)

-* (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

Any two c lauses that do not accumulate the same type of object can coexist in a loop only if each
c lause accumulates its values into a different variable.

6.1.3.1 Examples of COLLECT c lause

; ; Collect all the symbols in a list.
(loop for i in ’ (bird 3 4 turtle (1 . 4) horse cat)

when (symbolp i) collect i)
-) (BIRD TURTLE HORSE CAT)

;; Collect and return odd numbers.
(loop for i from 1 to 10

if (oddp i) collect i)
- (1 3 5 7 9)

;; Collect items into local variable, but don’t return them.
(loop for i in ‘(a b c d) by X’cddr

collect i into ny-list
finally (print my- list))

D (A c)

+ NIL

6.1.3.2 Examples of APPEND and NCONC c lauses

;; Use APPEND to concatenate some sublists.
(loop for x in ' ((a) (b) ((c)1)

append x1
- (A B (C)j

;; NCONC some sublists together. Note that only lis ts made by the
;; call to LIST are modified.

(loop for i upfrom 0
as x in '(a b cc))
nconc (if (evenp i) (list x) nil))

- (A (C)j

6-16 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

6.1.3.3 Examples of COUNT clause

(loop for i in '(a b nil c nil d e)
count i)

-5

6.1.3.4 Examples of MAXIMIZE and MINIMIZE clauses

(loop for i in '(2 1 5 3 4)
maximize i)

-+5
(loop for i in '(2 1 5 3 4)

minimize i)
--,l

;; In this example, FIXNUM applies to the internal variable that holds
;; the maximum value.

(setq series '(1.2 4.3 5.7))
+ (1.2 4.3 5.7)

(loop for v in series
maximize (round v) of -type f iznum)

+6

;; In this example, FIXNUH applies to the variable RESULT.
(loop for v of-type float in series

minimize (round v) into result of-type fiznum
finally (return result))

+l

6.1.3.5 Examples of SUM clause

(loop for i of-type fixnum in '(1 2 3 4 5)
sum i)

--) 15
(setq series '(1.2 4.3 5.7))

+ (1.2 4.3 5.7)
(loop for v in series

sum (* 2.0 v))
* 22.4

6.1.4 Termination Test Clauses
The repeat construct causes iteration to terminate after a specified number of times. The loop
body executes n times, where n is the value of the expression form. The form argument is evalu-
ated one time in the loop prologue. If the expression evaluates to 0 or to a negative number, the
loop body is not evaluated.

The constructs always, never, thereis, while, until, and the macro loop-finish allow conditional
termination of iteration within a loop.

The constructs alvays, never, and thereis provide specific values to be returned when a loop
terminates. Using alvays, never, or thereis in a loop with value accumulation clauses that are
not into causes an error of lype program-error to be signaled (at macro expansion time). Since
alvays, never, and thereis use the return-from special operator to terminate iteration, any

Iteration 6-17

ANSI X3.226-1994 Programming Language-Common Lisp ,

finally clause that is supplied is not evaluated when exit occurs due to any of these constructs
In all other respects these constructs behave like the vhile and until constructs.

The alvays construct takes one form and terminates the loop if the form ever evaluates to nil;
in this case, it returns nil. Otherwise, it provides a default return value of t. If the value of the
supplied form is never nil, some other construct can terminate the iteration.

The never construct terminates iteration the first time that the value of the supplied form is
non-nil; the loop returns nil. If the value of the supplied form is always nil, some other construct
can terminate the iteration. Unless some other clause contributes a return value, the default value
returned is t.

The thereis construct terminates iteration the first time that the value of the supplied form
is non-nil; the loop returns the value of the supplied form. If the value of the supplied form is
always nil, some other construct can terminate the iteration. Unless some other clause contributes
a return value, the default value returned is nil.

There are two differences between the thereis and until constructs:

l The until construct does not return a value or nil based on the value of the supplied
form.

l The until construct executes any finally clause. Since thereis uses the return-from
special operator to terminate iteration, any finally clause that is supplied is not evalu-
ated when exit occurs due to thereis.

The vhile construct allows iteration to continue until the supplied form evaluates to false. The
supplied form is reevaluated at the location of the vhile clause.

The until construct is equivalent to vhile (not form). . . . If the value of the supplied form is
non-nil, iteration terminates.

Termination-test control constructs can be used anywhere within the loop body. The termination
tests are used in the order in which they appear. If an until or vhile clause causes termination,
any clauses that precede it in the source are still evaluated. If the until and vhile constructs
cause termination, control is passed to the loop epilogue, where any finally clauses will be
executed.

There are two differences between the never and until constructs:

l The until construct does not return t or nil based on the value of the supplied form.

l The until construct does not bypass any finally clauses. Since never uses the
return-from special operator to terminate iteration, any finally clause that is supplied is
not evaluated when exit occurs due to never.

In most cases it is not necessary to use loop-finish because other loop control clauses terminate
the loop. The macro loop6nish is used to provide a normal exit from a nested conditional inside
a loop. Since loop-finish transfers control to the loop epilogue, using loop-tiish within a finally
expression can cause infinite looping.

6-18 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

6.1.4.1 Examples of REPEAT clause

(loop repeat 3
do (foraat t "-What I say three times is true.

D Uhat 1 say three times is true.
D Vhat 1 say three times is true.
D vhat 1 say three times is true.
- NIL

(loop repeat -15
do (format t "What you see is vhat you expect'%"))

- NIL

‘%“I 1

6.1.4.2 Examples of ALWAYS, NEVER, and THEREIS clauses

;; Nake sure I is alvays less than 11 (too vays).
;; The FOR COnstNCt terminates these loops.

(loop for i from 0 to 10
alvays (< i 11))

-+T
(loop for i from 0 to 10

never 0 i 11))
-+T

;; If I exceeds 10 return I; othervise, return NIL.
;; The TIEREXS construct terainates this loop.

(loop for i from 0
thereis (vhen (> i 10) i))

- 11

;;; The FINALLY clause is not evaluated in these examples.
(loop for i from 0 to 10

alvays (< i 9)
finally (print "you von't see this"))

+ NIL
(loop never t

finally (print "you von't see this"))
+ NIL

(loop thereis 'Were is my value"
finally (print "you von't see this"))

-+ "Here is my value"

:; The FOR construct terainates this loop, so the FINALLY clause
;; is evaluated.

(loop for i from 1 to 10
thereis (> i 11)
finally (prinl 'got-here))

D GOT-HERE
+ NIL

Iteration 6-19

ANSI X3.226-1994 Programming Language-Common Lisp

:; If this code could be used to find a counterexanple to Fernat’s
;; last theorem, it would still not return the value of the
; ; counterexanple because all of the TEEEEIS clauses in this example
;; only return T. But if Fernat is right, that uon ‘t matter
;; because this won’t tenainate.

(loop for x upfrom 2
thereis

(loop for n upfrom 3 below (log x 2)
thereis

(loop for x below z
thereis

(loop for y below z
thereis (= (+ (expt x n) (expt y n))

(expt 2 n))))))

6.1.4.3 Examples of WHILE and UNTIL clauses

(loop vhile (hungry-p) do (eat))

;; UNTIL NDT is equivalent to WILE.
(loop until (not (hungry-p)) do (eat))

;; Collect the length and the items of STACK.
(let ((stack ‘(a b c d e f)))

(loop for itea = (length stack) then (pop stack)
collect iten
vhile stack))

+(6ABCDEF)

;; Use WHILE to terninate a loop that othervise wouldn’t terminate.
;; Note that WHILE occurs after the YEEN.

(loop for i fixnum from 3
when Coddp i) collect i
while (C i 5))

- (3 5)

6.1.5 Unconditional Execution Clauses
The do and doing constructs evaluate the supplied forms wherever they occur in the expanded
form of loop. The form argument can be any compound form. Each form is evaluated in every
iteration. Because every loop clause must begin with a loop keyword, the keyword do is used when
no control action other than execution is required.

The return construct takes one form. Any values returned by the form are immediately returned
by the loop form. It is equivalent to the clause do (return-from block-name value), where block-
name is the name specified in a naned clause, or nil if there is no named clause.

6-20 Iteration

Programming LanguageCommon Lisp ANSI X3.226-1994

6.1.5.1 Examples of unconditional execution

;; Print. numbers and their squares.
:; The DO construct applies to multiple forms.

(loop for i from 1 to 3
do (print i)

(print (* i i)))
Dl

Dl
D2
D4

D3

D9
* NIL

6.1.6 Conditional Execution Clauses
The if, vhen, and unless constructs establish conditional control in a loop. If the test passes, the
succeeding loop clause is executed. If the test does not pass, the succeeding clause is skipped, and
program control moves to the clause that follows the loop keyword else. If the test does not pass
and no else clause is supplied, c.ontrol is transferred to the clause or construct following the entire
conditional clause.

If conditional clauses are nested, each else is paired with the closest preceding conditional clause
that has no associated else or end.

In the if and vhen clauses, which are synonymous, the test passes if the value of form is true.

In the unless clause, the test passes if the value of form is false.

Clauses that follow the test expression can be grouped by using the loop keyword and to produce
a conditional block consisting of a compound clause.

The loop keyword it can be used to refer to the result of the test expression in a clause. Use the
loop keyword it in place of the form in a return clause or an accumulation clause that is inside a
conditional execution clause. If multiple clauses are connected with and, the it construct must be
in the first clause in the block.

The optional loop keyword end marks the end of the clause. If this keyword is not supplied, the
next loop keyword marks the end. The construct end can be used to distinguish the scoping of
compound clauses.

6.1.6.1 Examples of WHEN clause

;: Signal an exceptional condition.
(loop for item in ‘(1 2 3 a 4 5)

vhen (not (nuaberp item))
return (terror “enter nev value” “non-rumeric value: -5” item))

Error: non-numeric value: A

;; The previous example is equivalent to the folloving one.
(loop for item in ‘(1 2 3 a 4 5)

vhen (not (numberp iten))
do (return (terror “Enter nev value” “non-numeric value: -8” item)))

Error: non-numeric value: A

Iteration 6-21

ANSI X3.226-1994 Programming Language-Common Lisp

;; This eranple parses a simple printed string representation from
;; BUFFER (vhich is itself a string) and returns the index of the
;; closing double-quote character.

(let ((buffer "\"a\" \"b\""))
(loop initially (unless (char= (char buffer 0) S*')

(loop-finish))
for i of-type fixnum from I belov (length (the string buffer))
vhen (char= (char buffer i) X\")

return i))
42

;; The collected value is returned.
(loop for i fror 1 to 10

when (> i 5)
collect i

finally (prinl 'got-here))
D GOT-HERE
+ (6 7 8 9 10)

;; Return both the count of collected nunbers and the nunbers.
(loop for i from 1 to 10

when 0 i 5)
collect i into nunber-list
and count i into nunber-count

finally (return (values number-count number-list)))
+ 5. (6 7 8 9 10)

6.1.7 Miscellaneous Clauses

6.1.7.1 Control Transfer Clauses

The named construct establishes a name for an implicii block surrounding the entire loop so that
the return-from specinl operaior can be used to return values fromorto exit loop. Only one
name per loop form can be assigned. If used, the named construct must be the first clause in the
loop expression.

The return construct takes one form. Any values returned by the form are immediately returned
by the loop form. This construct is similar to the return-from special operator and the return
macro. The return construct does not execute any finally clause that the loop form is given.

6.1.7.1.1 Examples of NAMED clause

;; Just name and return.
(loop named mar

for i from 1 to 10
do (print i)
do (return-from rax 'done))

01
--, DONE

6-22 Iteration

Programming Language--Common Lisp ANSI X3.226-1994

6.1.7.2 Initial and Final Execution

The initidlly and finally constructs evaluate forms that occur before and after the loop body.

The initially construct causes the supplied compound-forms to be evaluated in the loop pro-
logue, which precedes all loop code except for initial settings supplied by constructs with, for, or
as. The code for any initially clauses is executed in the order in which the clauses appeared in
the loop.

The finally construct causes the supplied compound-forms to be evaluated in the loop epilogue
after normal iteration terminates. The code for any finally clauses is executed in the order in
which the clauses appeared in the loop. The collected code is executed once in the loop epilogue
before any implicit values are returned from the accumulation clauses. An explicit transfer of
control (e.g., by return, go, or throw) from the loop body, however, will exit the loop without
executing the epilogue code.

Clauses such as return, alvays, never, and thereis can bypass the finally clause. return (or
return-from, if the named option was supplied) can be used after finally to return values from
a loop. Such an explicit return inside the finally clause takes precedence over returning the
accumulation from clauses supplied by such keywords as collect, nconc, append, sum, count,
maximize, and minimize; the accumulation values for these preempted clauses are not returned by
loop if return or return-from is used.

6.1.8 Examples of Miscellaneous Loop Features

(let ((i 0)) ; no loop keyvords are used
(loop (incf i) (if (= i 3) (return i)))) -, 3

(let ((i O)(j 0))
(tagbody

(loop (incf j 3) (incf i) (if (= i 3) (go exit)))
exit)

j) - 9

In the following example, the variable x is stepped before y is stepped; thus, the value of y reflects
the updated value of x:

(loop for x from 1 to 10
for y = nil then x
collect (list x y))

----) ((1 NIL) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) (10 10))

In this example, x and y are stepped in parallel:

(loop for x from 1 to 10
and Y = nil then x
collect (list x y))

- ((1 NIL) (2 1) (3 2) (4 3) (5 4) (6 5) (7 6) (8 7) (9 8) (10 9))

Iteration 6-23

ANSI X3.226-1994 Programming Language-Common Lisp

6.1.8.1 Examples of clause grouping

;; Group conditional clauses.
(loop for i in '(1 324 2345 323 2 4 235 252)

when (oddp i)
do (print i)
and collect i into odd-numbers
and do (terpri)

else : I is even.
collect i into even-numbers

finally
(return (values odd-numbers even-numbers)))

01
D
D 2345
D

D 323
D
D 235
* (1 2345 323 2351, (324 2 4 252)

;; Collect numbers larger than 3.
(loop for i in '(I 2 3 4 5 6)

vhen (and (> i 3) i)
collect it)

-+ (4 5 6)
; IT refers to (and (> i 3) i).

;; Find a number in a list.
(loop for i in '(1 2 3 4 5 6)

uhen (aud (> i 3) i)
return it)

44

;: The above example is similar to the following one.
(loop for i in '(1 2 3 4 5 6)

thereis (and (> i 3) i))
+4

;; Nest conditional clauses.
(let ((list '(0 3.0 apple 4 5 9.8 orange banana)))

(loop for i in list
vhen (numbexp i)

vhen (floatp i)
collect i into float-numbers

else ; Uot (floatp i)
collect i into other-numbers

else ; Not (nuaberp i)
vhen (symbolp i)

collect i into symbol-list
else ; Not (symbolp i)

do (error "found a funny value in list -S, value 'S'%" list i)
finally (return (values float-numbers other-numbers symbol-list))))

+ (3.0 9.81, (0 4 5), (APPLE ORANGE BANANA)

6-24 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

;; Without the END preposition, the last AND would apply to the
;; inner IF rather than the outer one.

(loop for x from 0 to 3
do (print x)
if (zerop (mod x 2))

do (print ” a”)
end if (zerop (floor x 2))

do (print ” b")
end

and do (print ” c”))
00 abc
bl
b2 ac
b3
+ NIL

6.1.9 Notes about Loop
Types can be supplied for loop variables. It is not necessary to supply a lype for any variable, but
supplying the type can ensure that the variable has a correctly typed initial value, and it can also
enable compiler optimizations (depending on the implementation).

The clause repeat n . . . is roughly equivalent to a clause such as

(loop for inkmm/-variable dovnfrom (- n 1) to 0 . ..)

but in some implementations, the repeat construct might be more efficient.

Within the executable parts of the loop clauses and around the entire loop form, variables can be
bound by using let.

Use caution when using a variable named IT (in any package) in connection with loop, since it is
a loop keyword that can be used in place of a form in certain contexts.

There is no standardized mechanism for users to add extensions to loop.

Iteration 6-25

ANSI X3.226-1994 Programming Language-Common Lisp

do, do* Macro

Syntax:
do ({ var 1 (var [hit-forfn [step-form]])}*)

(end-test-form {result-form}*)
(declaration}* { tag 1 statement}*

+ {result}*

do* ({ var 1 (var [,+&form [step-form]])}*)
(end-test-form {result-form}*)
(declaration}* (tag 1 statement}*

+ {result}*

Arguments and Values:
var-a symbol.

hit-form-a form.

step-form-a form.

end-test-form-a form.

result-forms-an implicit progn.

declaration-a declare expression; not evaluated.

tag-a go tug; not evaluated.

statement-a compound form; evaluated as described below.

results-if a return or return-from form is executed, the values passed from that form; other-
wise, the values returned by the result-forms.

Description:
do iterates over a group of statements while a test condition holds. do accepts an arbitrary
number of iteration vars which are bound within the iteration and stepped in parallel. An initial
value may be supplied for each iteration variable by use of an hit-form. Step-forms may be used
to specify how the vars should be updated on succeeding iterations through the loop. Step-
forms may be used both to generate successive values or to accumulate results. If the end-test-
form condition is met prior to an execution of the body, the iteration terminates. Tags label
statements.

do* is exactly like do except that the bindings and steppings of the vars are performed sequen-
tially rather than in parallel.

Before the first iteration, ail the hit-forms are evaluated, and each var is bound to the value of its
respective hit-form, if supplied. This is a binding, not an assignment; when the loop terminates,
the old values of those variables will be restored. For do, all of the init-forms are evaluated before
any var is bound. The kit-forms can refer to the bindings of the vars visible before beginning
execution of do. For do*, the first hit-form is evaluated, then the first var is bound to that value
then the second hit-form is evaluated, then the second var is bound, and so on; in general, the
kit-form can refer to the new binding of the jth var if j < k, and otherwise to the old binding of
the jth var.

6-26 Iteration

Programming Language--Common Lisp ANSI x3.226-1994

At the beginning of each iteration, after processing the variables, the end-test-form is evaluated. If
the result is false, execution proceeds with the body of the do (or do*) form. If the result is true,
the result-forms are evaluated in order as an implicit progn, and then do or do* returns.

At the beginning of each iteration other than the first, vars are updated as follows. All the step-
forms, if supplied, are evaluated, from left to right, and the resulting values are assigned to the
respective vars. Any var that has no associated step-form is not assigned to. For do, all the step-
forms are evaluated before any var is updated; the assignment of values to vars is done in parallel,
as if by psetq. Because all of the step-forms are evaluated before any of the vars are altered, a
step-form when evaluated always has access to the old values of all the vam, even if other step-
forms precede it. For do*, the first step-form is evaluated, then the value is assigned to the first
var, then the second step-form is evaluated, then the value is assigned to the second var, and
so on; the assignment of values to variables is done sequentially, as if by setq. For either do or
do*, after the vars have been updated, the end-test-form is evaluated as described above, and the
iteration continues.

The remainder of the do (or do*) form constitutes an implicit tagbody. Tags may appear within
the body of a do loop for use by go statements appearing in the body (but such go statements
may not appear in the variable specifiers, the end-test-form, or the result-forms). When the end
of a do body is reached, the next iteration cycle (beginning with the evaluation of step-forms)
occurs.

An implicit block named nil surrounds the entire do (or do*) form, A return statement may be
used at any point to exit the loop immediately.

/nit-form is an initial value for the var with which it is associated. If hit-form is omitted, the
initial value of var is nil. If a declaration is supplied for a var, bit-form must be consistent with
the declaration.

Declarations can appear at the beginning of a do (or do*) body. They apply to code in the do (or
do*) body, to the bindings of the do (or do*) vars, to the step-forms, to the end-test-form, and to
the result-forms.

Examples:

(do ((temp-one 1 Cl+ temp-one))
(temp-two 0 (l- temp-tvo)))

((> (- temp-one temp-tvo) 5) tamp-one)) -k 4

(do ((temp-one 1 (l+ temp-one))
(tamp-tvo 0 (l+ temp-one)))

((= 3 temp-tvo) temp-one)) --+ 3

(do* ((temp-one 1 cl+ temp-one))
(temp-tvo 0 (l+ temp-one)))

((= 3 temp-too) temp-one)) -+ 2

(do ((j 0 (+ j 1)))

D

D

G

D

(nil) ;Do forever.
(format t “‘%Input 'D: " j)
(let ((item (read)))

(if hull item) (return) :Process items until NIL seen.
(format t "-&Output -D: 3" j item))))

Input 0: banana
output 0: BINANA
Inpat 1: (57 boxes)
Output 1: (57 BOXES)

Iteration 6-27

.-- - .- -.---.

ANSI X3.226-1994 Programming Language-Common Lisp

D Input 2: li&
* NIL

(setq a-vector (vector 1 nil 3 nil))
(do ((i 0 (+ i 1)) ;Sets every null element of a-vector to zero.

(n (array-dimension a-vector 0) 1)
CC= i n))

(when (null (aref a-vector i))
(eetf (aref a-vector i) 0))) -+ NIL

a-vector --* #cl 0 3 0)

(do ((x e (cdr x1)
(oldx x x))

((null x1)
body)

is an example of parallel assignment to index variables. On the first iteration, the value of oldx is
whatever value x had before the do was entered. On succeeding iterations, oldx contains the value
that x had on the previous iteration.

(do ((x foo (cdr x))
(y bar (cdr y))
(2 ’ (1 (cons (f (car x1 (car y)) z)))

((or (null x) (null y))
(nreverse z 1))

does the same thing as (mapcar t’f foo bar). The step computation for z is an example of the
fact that variables are stepped in parallel. Also, the body of the loop is empty.

(defnn list-reverse (list)
(do ((x list (cdr x))

(y ‘0 (cons (car x) y)))
((endp x) y)))

As an example of nested iterations, consider a data structure that is a list of conses. The cat

of each cons is a list of symbols, and the cdr of each cons is a lisi of equal length containing
corresponding values. Such a data structure is similar to an association list, but is divided into
“frames”; the overall structure resembles a rib-cage. A lookup function on such a data structure
might be:

(defnn ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))

((null r) nil)
(do ((s (caar r) (cdr s))

(v (cdar r) (cdr v)))
((null 8))

(when (eq (car s) sym)
(return-from ribcage-lookup (car ~1))))) -+ RIBCAGE-LODKW

See Also:
other iteration functions (dolist, dotimes, and loop) and more primitive functionality (tagbody,
go, block, return, let, and setq)

Notes:
If end-test-form is nil, the test will never succeed. This provides an idiom for “do forever”: the
body of the do or do* is executed repeatedly. The infinite loop can be terminated by the use o’
return, return-from, go to an outer level, or throw.

A do form may be explained in terms of the more primitive forms block, return, let, loop,

6-28 Iteration

Programming Language-Common Lisp ANSI x3.226-1994

tagbody, and psetq as follows:

(block nil
(let ((varl initl)

(var2 init
. . .
(varn initn))

declarations
(loop (when end-test (return (progn . result)))

(tagbody . tagbody)
(psetq vari step1

var2 step2
. . .
varn stepn) 1) 1

do* is similar, except that let* and setq replace the let and psetq, respectively.

dot imes Macro

Syntax:
dotimes (var count-form [result-form]) {declaration)* {tag 1 statement}*

* {result} *

Arguments and Values:
var-a symbol.

count-form-a form.

result-form-a form.

declaration-a declare ezpression; not evaluated.

tag-a go tag; not evaluated.

statement-a compound form; evaluated as described below.

results-if a return or return-from form is executed, the values passed from that form; other-
wise, the values returned by the result-form or nil if there is no result-form.

Description:
dotimes iterates over a series of integers.

dotimes evaluates count-form, which should produce an integer. If count-form is zero or negative,
the body is not executed. dotimes then executes the body once for each integer from 0 up to but
not including the value of count-form, in the order in which the tags and statements occur, with
var bound to each integer. Then result-form is evaluated. At the time result-form is processed, var
is bound to the number of times the body was executed. Tags label statements.

An implicit block named nil surrounds dotimes. return may be used to terminate the loop
immediately without performing any further iterations, returning zero or more values.

The body of the loop is an implicit tagbody; it may contain tags to serve as the targets of go
statements. Declarations may appear before the body of the loop.

The scope of the binding of var does not include the count-form, but the result-form is included.

Iteration 6-29

ANSI X3.226-1994 Programming Language-Common Lisp

It is implementation-dependent whether dotimes establishes a new binding of war on each iter.
tion or whether it establishes a binding for war once at the beginning and then assigns it on any
subsequent iterations.

Examples:

(dotimes (temp-one 10 temp-one)) + 10
(setq temp-tvo 0) --+ 0
(dotires (temp-one 10 t) (incf temp-tvo)) -+ T
temp-tvo + 10

Here is an example of the use of dotimes in processing strings:

;;; True if the specified subsequence of the string is a
;;; palindrome (reads the same forvards and backvards).

(defun palindromep (string &optional
(start 0)
(end (length string)))

(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))

(char string (- end k 1)))
(returnnil))))

(palindromep "Able vas I ere I sav Elba") + T
(palindromep "A man, a plan, a canal--Panama!") + NIL
(remove-if-not #'alpha-char-p ;Remove punctuation.

"A man. a plan, a canal--Panama!")
+ "AmanaplanacanalPanamaM

(palindromep
(remove-if-not #'alpha-char-p

"A man, a plan, a canal--Panama!")) -+ T
(palindromep

(remove-if-not
#'alpha-char-p
'Wnremarkable vas I ere I sav Elba Kramer, nu?")) -+ T

(palindromep
(remove-if-not
#'alpha-char-p
"A man, a plan, a cat, a ham, a yak,

a yam, a hat, a canal--Panama!")) + T

See Also:
do, dolist, tagbody

Not es:
go may be used within the body of dotimes to transfer control to a statement labeled by a tag.

Macro

Syntax:
dolist (war list-form [result-form]) {declaration}* {tag 1 statement}*

--, {resu/t}*

6-30 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
var-a symbol.

list-form-a form.

result-form-a form.

declaration-a declare expression; not evaluated.

tag-a go iag; not evaluated.

statement-a compound form; evaluated as described below.

results-if a return or return-from form is executed, the valves passed from that form; other-
wise, the values returned by the result-form or nil if there is no result-form.

Description:
dolist iterates over the elements of a list. The body of dolist is like a tagbody. It consists of a
series of tags and statements.

dolist evaluates Ii&form, which should produce a list. It then executes the body once for each
element in the list, in the order in which the tags and statements occur, with var bound to the
element. Then result-form is evaluated. tags label statements.

At the time resuk-form is processed, var is bound to nil.

An implicit block named nil surrounds dolist. return may be used to terminate the loop immedi-
ately without performing any further iterations, returning zero or more values.

The scope of the binding of var does not include the list-form, but the result-form is included.

It is implementation-dependent whether dolist establishes a new binding of var on each iteration
or whether it establishes a binding for var once at the beginning and then assigns it on any
subsequent iterations.

Examples:

(setq temp-tvo ‘0 1 -) NIL
(dolist (temp-one '(1 2 3 4) temp-tvo) (push temp-one temp-tvo)) -+ (4 3 2 1)

(setq temp-tvo 0) -+ 0
(dolist (temp-one '(1 2 3 4)) (incf tamp-too)) -+ NIL
temp-too --+ 4

(dolist (x '(a b c d)) (prinl x) (print " "1)
DABCD
+ NIL

See Also:
do, dotimes, tagbody, Section 3.6 (Traversal Rules and Side Effects)

Notes:
go may be used within the body of dolist to transfer control to a statement labeled by a tag.

Iteration 6-31

ANSI x3.226-1994 Programming Language-Common Lisp

loop Macro

Syntax:
The “simple” loop form:

loop { compound-fCw?7} * + {result} *

The “extended” loop form:

loop [~nam~clause] {Jvariab/tc/ause)* { imain-clause)* + {result}*

name-c/ause::=named name

variab/tc/ause::= 1 with-clause 1 JinitiaCfinal 1 1 for-as-clause

with-clause ::=vith vafl [typspcc] [= forml] {and var2 [type-spec] [= form2]}*

main-clause::=1 unconditional 1 Jaccumulation 1 1 conditional 1 1 termination-test I linitial-final

initial-fina/::=initially {compound-form}+ I finally {compound-form}+

unconditiona/::={do I doing} {compound-form}+ 1 return {form I it}

accumulation::=1 list-accumulation I 1 numeric-accumulation

list-accumu/ation::={collect I collecting I append I appending I nconc I nconcing} {form 1 it'
[into simplcvar]

numeric-accumu/ation::={count I counting I sum I summing I
maximize I maximizing I minimize I minimizing} {form I it}

[into simple-var] [type-spec]

conditiona/::={if I when I unless) form Jselectablcclause {and Jse/ectab/tc/ause)*

(else Iselectable-clause {and lselectable-c/ause}*]

[end1
se/ectab/tc/ause::= 1 unconditional I 1 accumulation I 1 conditional

termination-test ..- ..-while form 1 until form I repeat form I always form 1 never form I thereis form

for-as-clause::={ f or I as} 1 f or-as-subclause {and 1 for-as-subclause}*

for-as-subc/ause::=l for-as-arithmetic I 3 for-as-in-list 1 1 for-as-on-list I 1 for-as-equals-then I

1 for-as-across 1 1 for-as-hash 1 1 for-as-package

for-as-arithmetic..- . . -var [type-spec] 1 for-as-arithmetic-subclause

for-as-arithmetic-subc/ause::=larithmetic-up I iarithmetic-downto I larithmetic-downfrom

arithmetic-up::=[{ from (upfrom} form1 I {to I upto I below} form2 1 by form31+

arithmetic-downto::=[{from forml}’ 1 { {dovnto I above} form2)’] by form31

6-32 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

af;thmctic-downfromr:=8 {dounfrom form1 }’] {to 1 dounto 1 above} form2] by form31

for-as-in-/ist:.=var [type-spec] in form1 [by step-fun]

for-as-on-/& .=var [type-spec] on form1 [by step-fun]

for-as-equals-then::=var [type-spec] = form1 [then form21

for-as-across::=var [type-spec] across vector

for-as-hash:=var [type-spec] being {each 1 the}

{{hash-key 1 hash-keys} {in] of} hash-tab/e

[using (hash-value other-var)]]

{hash-value 1 hash-values} {in 1 of} hash-tab/e

[using (hash-key other-var)]}

for-as-packager:=var [type-spec] being {each I the}

{symbol (symbols 1

present-symbol1 present-symbols I

external-symbol1 external-symbols}

[{in 1 of} package]

typcspec:=1simplttypeqec I ~&structured-type-spec

simple-typtspec::=Axnum I float (t 1 nil

destructured-type-spec..=of-type d-type-spec

d-type-specr:= typtspecifier I Cd-type-spec . d-type-spec>

var::=ld-var-spec

varl ..=ld-var-spec

var2:=1 d-var-spec

other-var::=J d-var-spec

d-var-spec:=simp/e-var I nil I (1 d-var-spec . 1 d-var-spec)

Arguments and Values:
compound-form-a compound form.

name-a symbol.

simple-var-a symbol (a variable name).

form, form1 , form2, form3-a form.

step-fun-a forln. that evaluates to a fvnclion of one argzlment.

vector-a form that, evaluates to a ejector.

hash-table-a form that evaluates to a hash table.

package-a form that evaluates to a package designator.

Iteration 6-33

ANSI X3.226-1994 Programming Language-Common Lisp

typcspecifk-a type specifier. This might be either an atomic type specifier or a compound
type specifier, which introduces some additional complications to proper parsing in the face of
destructuring; for further information, see Section 6.1.1.7 (Destructuring).

result-an object.

Description:
For details, see Section 6.1 (The LOOP Facility).

Examples:

;; An example of the simple form of LOOP.
(defun sqrt-advisor 0

(loop (forrat t “-&Number: “1
(let ((n (parse-integer (read-line) :junk-allowed t)))

(vhen (not n) (return))
(format t ‘I- &The square root of 'D is *D.-X" n (sqrt n)))))

+ SQRT-ADVISOR
(sqrt-advisor)

D Number: &
D The square root of 5 is 2.236068.
D Number: e
D The square root of 4 is 2.
D Number: done@
* NIL

;; An example of the extended form of LOOP.
(def un square-advisor (1

(loop as n = (progn (format t “‘&Number: I’)
(parse-integer (read-line) :junk-alloved t))

vhile n
do (forrat t “-&The square of 'D is 'D. -%" n (* n n))))

+ SQUARE-ADVISOR
(square-advisor)

D Number: e
D The square of 4 is 16.
D Number: e
D The square of 23 is 529.
D Number: done&
3 NIL

;; Another example of the extended form of LOOP.
(loop for n from 1 to 10

vhen (oddp n)
collect n)

-+ (I 3 5 7 9)

See Also:
do, dolist, dotimes, return, go, throw, Section 6.1.1.7 (Destructuring)

Notes:
Except that loop-k&h cannot be used within a simple loop form, a simple loop form is related
to an extended loop form in the following way:

(loop {compound-form)*) 5 (loop do { campound-form}*)

6-34 Iteration

Programming Language-Common Lisp ANSI X3.226-1994

loop-finish Local Macro

Syntax:
loop-finish (no arguments) -1

Description:
The loopfinish macro can be used lexically within an extended loop form to terminate that
form “normally.” That is, it transfers control to the loop epilogue of the lexically innermost
extended loop form. This permits execution of any Anally clause (for effect) and the return of
any accumulated result.

Examples:

;; Terminate the loop, but return the accumulated count.
(loop for i in ‘(1 2 3 stop-here 4 5 6)

when (symbolp i) do (loop-finish)
count i)

-3

;; The preceding loop is equivalent to:
(loop for i in ‘(1 2 3 stop-here 4 5 6)

until (symbolp i)
count i)

-3

;: While LOOP-FINISH can be used can be used in a variety of
; ; situations it is really most needed in a situation vhere a need
;; to exit is detected at other than the loop’s ‘top level’
;; (where UNTIL or WHEN often vork just as veil), or vhere some
;; computation must occur between the point vhere a need to exit is
;; detected and the point where the exit actually occurs. For example:

(defun tokenize-sentence (string)
(macrolet ((add-vord (vvar svar)

‘ (vhen , vvar
(push (coerce (nreverse ,vvar) ‘string) .svar)
(setq ,vvar nil))))

(loop vith vord = ‘0 and sentence = ‘0 and endpos - nil ’
for i belov (length string)
do (let ((char (aref string i)))

(case char
(t\Space (add-vord word sentence))
(X\. (setq endpos Cl+ i)> (loop-finish))
(otherwise (push char vord))))

finally (add-vord vord sentence)
(return (values (nreverse sentence) endpoe)))))

-) TOKENIZE-SENTENCE

(tokenize-sentence “this is a sentence. this is another sentence.“)
* (“this” “is” “a” “sentence”), 19

(tokenize-sentence “this is a sentence”)
-, (“this” “is” “a” “sentence”) NIL 9

Iteration 6-35

ANSI X3.226-1994 Programming Language-Common Lisp

Side Effects:
Transfers control.

Exceptional Situations:
Whether or not loop-finish is fbound in the global environment is implementation-dependent;
however, the restrictions on redefinition and shadowing of loop-finish are the same as for symbols
in the COMMON-LISP package which are fbound in the global environment. The consequences of
attempting to use loop-finish outside of loop are undefined.

See Also:
loop, Section 6.1 (The LOOP Facility)

6-36 Iteration

ANSI X3.226-1994

Programming Language-Common Lisp

7. Objects

ANSI X3.226-1994 Programming Language-Common Lisp

ii Objects

Programming Language-Common Lisp ANSI X3.226-1994

7.1 Object Creation and Initialization
The genetic function make-instance creates and returns a new instance of a class. The first
argument is a class or the name of a class, and the remaining arguments form an initialization
argument list.

The initialization of a new instance consists of several distinct steps, including the following:
combining the explicitly supplied initialization arguments with default values for the unsupplied
initialization arguments, checking the validity of the initialization arguments, allocating storage
for the instance, filling slots with values, and executing user-supplied methods that perform
additional initialization. Each step of make-instance is implemented by a generic function to
provide a mechanism for customizing that step. In addition, make-instance is itself a generic
function and thus also can be customized.

The object system specifies system-supplied primary methods for each step and thus specifies
a well-defined standard behavior for the entire initialization process. The standard behavior
provides four simple mechanisms for controlling initialization:

l Declaring a symbol to be an initialization argument for a slot. An initialization argument
is declared by using the :initarg slot option to defclass. This provides a mechanism for
supplying a value for a slot in a call to make-instance.

l Supplying a default value form for an initialization argument. Default value forms
for initialization arguments are defined by using the :default-initargs class option
to defclass. If an initialization argument is not explicitly provided as an argument
to make-instance, the default value form is evaluated in the lexical environment of
the defclass form that defined it, and the resulting value is used as the value of the
initialization argument.

l Supplying a default initial value form for a slot. A default initial value form for a slot
is defined by using the : initf oxm slot option to defclass. If no initialization argument
associated with that slot is given as an argument to make-instance or is defaulted by
:default-initargs, this default initial value form is evaluated in the lexical environment
of the defclass form that defined it, and the resulting value is stored in the slot. The
: initform form for a local slot may be used when creating an instance, when updating
an instance to conform to a redefined class, or when updating an instance to conform to
the definition of a different class. The : initform form for a shared slot may be used when
defining or redefining the class.

l Defining methods for initialize-instance and shared-initialize. The slot-filling
behavior described above is implemented by a system-supplied primary method
for initialize-instance which invokes shared-initialize. The generic function
shared-initialize implements the parts of initialization shared by these four situations:
when making an instance, when m-initializing an instance, when updating an instance to
conform to a redefined class, and when updating an instance to conform to the definition
of a different class. The system-supplied primary method for shared-initialize directly
implements the slot-filling behavior described above, and initialize-instance simply
invokes shared-initialize.

7.1.1 Initialization Arguments
An initialization argument controls object creation and initialization. It is often convenient to use
keyword symbols to name initialization arguments, but the name of an initialization argument
can be any symbol, including nil. An initialization argument can be used in two ways: to fill a
slot with a value or to provide an argument for an initialization method. A single initialization
argument can be used for both purposes.

Objects 7-l

ANSI X3.226-1994 Programming Language--Common Lisp :

An initialization argument list is a property list of initialization argument names and values. Itt
structure is identical to a property list and also to the portion of an argument list processed for
&key parameters. As in those lists, if an initialization argument name appears more than once
in an initialization argument list, the leftmost occurrence supplies the value and the remaining
occurrences are ignored. The arguments to make-instance (after the first argument) form an
initialization argument list.

An initialization argument can be associated with a slot. If the initialization argument has a
value in the initialization argument list, the value is stored into the slot of the newly created
object, overriding any : initform form associated with the slot. A single initialization argument
can initialize more than one slot. An initialization argument that initializes a shared slot stores
its value into the slrarcd slot, replacing any previous value.

An initialization argument can be associated with a method. When an object is created and
a particular initialization argument is supplied, the generic junctions initialize-instance,
shared-initialize, and allocate-instance are called with that initialization argument’s name
and value as a keyword argument pair. If a value for the initialization argument is not supplied in
the initialization argument list, the method’s lambda list supplies a default value.

Initialization arguments are used in four situations: when making an insfance, when reinitializing
an instance, when updating an instance to conform to a redefined class, and when updating an
instance to conform to the definition of a different class.

Because initialization arguments are used to control the creation and initialization of an instance
of some particular class, we say that an initialization argument is “an initialization argument for”
that class.

7.1.2 Declaring the Validity of Initialization Arguments
Initialization arguments are checked for validity in each of the four situations that use them. An
initialization argument may be valid in one situation and not another. For example, the system-
supplied primary method for make-instance defined for the class standard-class checks the
validity of its initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid in that situation.

There are two means for declaring initialization arguments valid.

l Initialization arguments that fill slots are declared as valid by the : initarg slot option
to defclsss. The :initarg slot option is inherited from superclasses. Thus the set of
valid initialization arguments that fill slots for a class is the union of the initialization
arguments that fill slots declared as valid by that class and its superclasses. Initialization
arguments that fill slots are valid in all four contexts.

l Initialization arguments that supply arguments to methods are declared as valid by
defining those methods. The keyword name of each keyword parameter specified in
the method’s lambda list becomes an initialization argument for all classes for which
the method is applicable. The presence of &allow-other-keys in the lambda list of an
applicable method disables validity checking of initialization arguments. Thus meihod
inheritance controls the set of valid initialization arguments that supply arguments to
methods. The genetic functions for which method definitions serve to declare initializa-
tion arguments valid are as follows:

- Making an instance of a class: allocate-instance, initiaIize-instance, and
shared-initialize. Initialization arguments declared as valid by these methods ar
valid when making an instance of a class.

- &initializing an instance: reinitiaiize-instance and shared-initialize Initializa
tion arguments declared as valid by these methods are valid when m-initializing

7-2 Objects

Programming Language-Common Lisp ANSI x3.226-1994

an instance.

- Updating an instance to conform to a redefined class: update-instance-for-redefined-class
and shared-initialize. Initialization arguments declared as valid by these methods
are valid when updating an instance to conform to a redefined class.

- Updating an instance to conform to the definition of a different class:
update-instance-for-different-class and shared-initialize. Initialization ar-
guments declared as valid by these methods are valid when updating an instance
to conform to the definition of a different class.

The set of valid initialization arguments for a cIoss is the set of valid initialization arguments
that either fill slots or supply arguments to methods, along with the predefined initialization
argument : allow-other-keys. The default value for : allov-other-keys is nil. Validity checking of
initialization arguments is disabled if the value of the initialization argument : allov-other-keys is
true.

7.1.3 Defaulting of Initialization Arguments
A default value form can be supplied for an initialization argument by using the
:def ault-initargs class option. If an initialization argument is declared valid by some particular
class, its default value form might be specified by a different class. In this case :def ault-initargs
is used to supply a default value for an inherited initialization argument.

The : def ault-initargs option is used only to provide default values for initialization argu-
ments; it does not declare a symbol as a valid initialization argument name. Furthermore, the
:default-initargs option is used only to provide default values for initialization arguments when
making an instance.

The argument to the :default-initargs class option is a list of alternating initialization argu-
ment names and forms. Each form is the default value form for the corresponding initialization
argument. The default value form of an initialization argument is used and evaluated only if that
initialization argument does not appear in the arguments to make-instance and is not defaulted
by a more specific class. The default value form is evaluated in the lexical environment of the
defclass form that supplied it; the resulting value is used as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined with defaulted initialization
arguments to produce a defaulted initialization argument list. A defaulted initialization argument
list is a list of alternating initialization argument names and values in which unsupplied initializa-
tion arguments are defaulted and in which the explicitly supplied initialization arguments appear
earlier in the list than the defaulted initialization arguments. Defaulted initialization arguments
are ordered according to the order in the class precedence list of the classes that supplied the
default values.

There is a distinction between the purposes of the :def ault-initargs and the : initf 011 options
with respect to the initialization of slots. The :defatit-initargs class option provides a mech-
anism for the user to give a default value form for an initialization argument without knowing
whether the initialization argument initializes a slot or is passed to a method. If that initialization
argument is not explicitly supplied in a call to make-instance, the default value form is used, just
as if it had been supplied in the call. In contrast, the : initform slot option provides a mechanism
for the user to give a default initial value form for a slot. An :initform form is used to initial-
ize a slot only if no initialization argument associated with that slot is given as an argument t,o
make-instance or is defaulted by :default-initargs.

The order of evaluation of default value forms for initialization arguments and the order of evalu-
ation of : initform forms are undefined. If the order of evaluation is important, initia&+instmce
or shared-initialize methods should be used instead.

Objects 7-3

ANSI X3.226-1994 Programming Language-Common Lisp

7.1.4 Rules for Initialization Arguments
The : initarg slot option may be specified more than once for a given slot.

The following rules specify when initialization arguments may be multiply defined:

l A given initialization argument can be used to initialize more than one slot if the same
initialization argument name appears in more than one : initarg slot option.

l A given initialization argument name can appear in the lambda list of more than one
initialization method.

l A given initialization argument name can appear both in an :initarg slot option and in
the lambda list of an initialization method.

If two or more initialization arguments that initialize the same slot are given in the arguments to
make-instance, the leftmost of these initialization arguments in the initialization argument list
supplies the value, even if the initialization arguments have different names.

If two or more different initialization arguments that initialize the same slot have default values
and none is given explicitly in the arguments to make-instance, the initialization argument
that appears in a :default-initargs class option in the most specific of the classes supplies the
value. If a single : def anlt-initargs class option specifies two or more initialization arguments
that initialize the same slot and none is given explicitly in the arguments to make-instance, the
leftmost in the :defanlt-initargs class option supplies the value, and the values of the remaining
default value forms are ignored.

Initialization arguments given explicitly in the arguments to make-instance appear to the left
of defaulted initialization arguments. Suppose that the classes Cr and Cz supply the values of
defaulted initialization arguments for different slots, and suppose that Cl is more specific thar
Cz; then the defaulted initialization argument whose value is supplied by Cr is to the left of the
defaulted initialization argument whose value is supplied by Cz in the defaulted initialization
argument list. If a single :def ault-initargs class option supplies the values of initialization
arguments for two different slots, the initialization argument whose value is specified farther
to the left in the :default-initargs class option appears farther to the left in the defaulted
initialization argument list.

If a slot has both an : initfom form and an : initarg slot option, and the initialization argument
is defaulted using :default-initargz or is supplied to make-instance, the captured :initforn
form is neither used nor evaluated.

The following is an example of the above rules:

(defclass q 0 ((x :initarg a)))
(defclaaa r (q) ((x :initarg b))

(:defanlt-initargs a 1 b 2))

Defaulted
Form Initialization Argument List Contents of Slot X
(make-instance ‘r) (a 1 b 2) 1
(make-instance ‘r ‘a 3) (a 3 b 2) 3
(make-instance ‘r ‘b 4) (b 4 a 1) 4
(make-instance ‘r ‘a 1 ‘a 2) (a 1 a 2 b 2) 1

7-4 Objects

Programming Language-Common Lisp ANSI x3.226-1994

7.1.5 Shared-Initialize
The generic function shared-initialize is used to fill the slots of an instance using initialization
arguments and : initforr forms when an instance is created, when an instance is reinitialized,
when an instance is updated to conform to a redefined class, and when an instance is updated
to conform to a different class. It uses standard method combination. It takes the following
arguments: the instance to be initialized, a specification of a set of names of slots accessible in
that instance, and any number of initialization arguments. The arguments after the first two
must form an initialization argument list.

The second argument to shared-initialize may be one of the following:

l It can be a (possibly empty) list of slot names, which specifies the set of those slot
names.

l It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared-initialize whose first parameter specializer
is the class standard-object. This method behaves as follows on each slot, whether shared or
local:

l If an initialization argument in the initialization argument list specifies a value for that
slot, that value is stored into the slot, even if a value has already been stored in the slot
before the method is run. The affected slots are independent of which slots are indicated
by the second argument to shared-initialize.

l Any slots indicated by the second argument that are still unbound at this point are
initialized according to their :initfon. forms. For any such slot that has an :initfom
form, that form is evaluated in the lexical environment of its defining defclass form
and the result is stored into the slot. For example, if a before method stores a value
in the slot, the :initformform will not be used to supply a value for the slot. If the
second argument specifies a name that does not correspond to any slots accessible in the
instance, the results are unspecified.

l The rules mentioned in Section 7.1.4 (Rules for Initialization Arguments) are obeyed.

The generic function shared-initialize is called by the system-supplied primary methods for
reinitialize-instance, update-instance-for-different-class, update-instance-for-redefined-class,
and initialize-instance. Thus, methods can be written for shared-initialize to specify actions that
should be taken in all of these contexts.

7.1.6 Initialize-Instance
The generic function initialize-instance is called by make-instance to initialize a newly created
instance. It uses standard method combination. Methods for initialize-instance can be defined in
order to perform any initialization that cannot be achieved simply by supplying initial values for
slols.

During initialization, initialize-instance is invoked after the following actions have been taken:

l The defaulted initializaho? argument list has been computed by combining the supplied
initialization argument list with any default initialization arguments for the class.

l The validity of the defaulted initialization argument list has been checked. If any of the
initialization arguments has not been declared as valid, an error is signaled.

Objects 7-5

ANSI X3.226-1994 Programming Language-Common Lisp !

l A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance and the defaulted initial-
ization arguments. There is a system-supplied primary method for initialize-instance whose
parameter specializer is the class standard-object. This method calls the generic function
shared-initialize to fill in the slots according to the initialization arguments and the :initforn
forms for the slots; the generic function shared-initialize is called with the following arguments:
the instance, t, and the defaulted initialization arguments.

Note that initialize-instance provides the defaulted initialization argument list in its call to
shared-initialize, so the first step performed by the system-supplied primary method for
shared-initialize takes into account both the initialization arguments provided in the call to
make-instance and the defaulted initialization argument list.

Methods for initialize-instance can be defined to specify actions to be taken when an instance
is initialized. If only ajter methods for initialize-instance are defined, they will be run after the
system-supplied primary method for initialization and therefore will not interfere with the default
behavior of initialize-instance.

The object system provides two functions that are useful in the bodies of initialize-instance
methods. The function slot-bouudp returns a generic boolean value that indicates whether
a specified slot has a value; this provides a mechanism for writing after methods for
initialize-instance that initialize slots only if they have not already been initialized. The function
slot-makunbound causes the slot to have no value.

7.1.7 Definitions of Make-Instance and Initialize-Instance
The generic function make-instance behaves as if it were defined as follows, except that certain
optimizations are permitted:

(defrethod rake-instance ((class standard-class) &rest initargs)
. . .
(let ((instance (apply #‘allocate-instance class initargs)))

(apply aDinitialize-instance instance initargs)
instance))

(defrethod rake-instance ((class-name symbol) best initargs)
(apply It ‘make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance augments the initargs with any defaulted
initialization arguments and checks the resulting initialization arguments to determine whether
an initialization argument was supplied that neither filled a slot nor supplied an argument to an
applicable method.

The generic function initialize-instance behaves as if it were defined as follows, except that
certain optimizations are permitted:

(defmethod initialize-instance ((instance standard-object) &rest initargs)
(apply S’shared-initialize instance t initargs)))

These procedures can be customized.

Customizing at the Programmer Interface level includes using the :initforn, :initarg,
and :default-initargs options to defclass, as well as defining methods for make-instance,
allocate-instance, and initiaIize-instance. It is also possible to define methods for
shared-initialize, which would be invoked by the generic functions reinItiaIlze&sta,
update-instance-for-redefkned-&ss, update-instance-for-different-class, and
initialize-instance. The meta-object level supports additional customization.

7-6 Objects

Programming Language-Common Lisp ANSI x3.226-1994

Implementations are permitted to make certain optimizations to initialize-instance and
shared-initialize. The description of shared-initialize in Chapter 7 mentions the possible op
timizations.

Objects 7-7

ANSI X3.226-1994 Programming Language-Common Lisp

7.2 Changing the Class of an Instance
The function change-class can be used to change the class of an instance from its current
cl=, Cfmn, to a different class, Cto; it changes the structure of the instance to conform to the
definition of the class Ct,.

Note that changing the class of an instance may cause slots to be added or deleted. Changing the
class of an instance does not change its identity as defined by the eq function.

When change-class is invoked on an instance, a two-step updating process takes place. The
first step modifies the structure of the instance by adding new local slots and discarding local
slots that are not specified in the new version of the instance. The second step initializes the
newly added local slots and performs any other user-defined actions. These two steps are further
described in the two following sections.

7.2.1 Modifying the Structure of the Instance
In order to make the instance conform to the class C,,, local slots specified by the class Cto that
are not specified by the class Cr ro,,, are added, and local slots not specified by the class Ct, that
are specified by the class Crrom are discarded.

The values of local slots specified by both the class Ct, and the class Cr,, are retained. If such a
local slot was unbound, it remains unbound.

The values of slots specified as shared in the class CrrOm and as local in the class CtO are retained.

This first step of the update does not affect the values of any shared slots.

7.2.2 Initializing Newly Added Local Slots
The second step of the update initializes the newly added slots and performs
any other user-defined actions. This step is implemented by the generic function
update-instance-for-different-class. The generic function update-instance-for-different-class is
invoked by change-class after the first step of the update has been completed.

The generic function update-instance-for-different-class is invoked on arguments computed by
change-class. The first argument passed is a copy of the instance being updated and is an in-
stance of the class C&,,,,; this copy has dynamic extent within the generic function cbang~class.
The second argument is the instance as updated so far by change-class and is an instance of the
class Ct,. The remaining arguments are an initialization argument list.

There is a system-supplied primary method for update-instance-for-different-class that has two
parameter specializers, each of which is the class standard-object. First this method checks the
validity of initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid. (For more information, see Section 7.1.2 (Declaring the Validity of
Initialization Arguments).) Then it calls the generic function shared-initialize with the following
arguments: the new instance, a list of names of the newly added slots, and the initialization
arguments it received.

7.2.3 Customizing the Change of Class of an Instance
Methods for update-instance-for-different-class may be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-different-class are
defined, they will be run after the system-supplied primary method for initialization and will not.
interfere with the default behavior of update-instance-for-different-class.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

7-8 Objects

Programming Language-Common Lisp ANSI X3.226-1994

7.3 Reinitializing an Instance
The generic function reinitialize-instance may be used to change the values of slots according to
initialization arguments.

The process of reinitialization changes the values of some slots and performs any user-defined
actions. It does not modify the structure of an instance to add or delete slots, and it does not use
any : initfora forms to initialize slots.

The generic function reinitialize-instance may be called directly. It takes one required argument,
the instance. It also takes any number of initialization arguments to be used by methods for
reinitialize-instance or for shared-initialize. The arguments after the required instance must
form an initialization argument list.

There is a system-supplied primary method for reinitialize-instance whose parameter specialirer
is the class standard-object. First this method checks the validity of initialization arguments and
signals an error if an initialization argument is supplied that is not declared as valid. (For more
information, see Section 7.1.2 (Declaring the Validity of Initialization Arguments).) Then it calls
the generic function shared-initialize with the following arguments: the instance, nil, and the
initialization arguments it received.

7.3.1 Customizing Reinit ializat ion
Methods for reinitialize-instance may be defined to specify actions to be taken when an instance
is updated. If only after methods for reinitialize-instance are defined, they will be run after the
system-supplied primary method for initialization and therefore will not interfere with the default
behavior of reinitialize-instance.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

Objects 7-9

ANSI X3.226-1994 Programming Language-Common Lisp

7.4 Meta-Objects
The implementation of the object system manipulates classes, methods, and generic junciions.
The object system contains a set of generic functions defined by methods on classes; the behavior
of those generic functions defines the behavior of the object system. The instances of the classes
on which those methods are defined are called meta-objects.

7.4.1 Standard Meta-objects
The object system supplies a set of meta-objects, called standard meta-objects. These
include the class standard-object aud insiances of the classes standard-method,
standard-generic-function, and method-combination.

l The class standard-method is the default class of methods defined by the defmethod
and defgeneric forms.

l The class standard-generic-function is the default class of generic junc2ions defined by
the forms defmethod, defgeneric, and defclass.

l The class named standard-object is au instance of the class standard-class and
is a superclass of every class that is an instance of standard-class except itself and
structure-class.

l Every method combination object is an insiance of a subclass of class
method-combination.

7-10 Objects

Programming Language-Common Lisp ANSI X3.226- 1994

7.5 Slots

7.5.1 Introduction to Slots
An object of metaclass standard-class has zero or more named slots. The slots of an object are
determined by the class of the object. Each slot can hold one value. The name of a slot is a
symbol that is syntactically valid for use as a variable name.

When a slot does not have a value, the slot is said to be unbound. When an unbound slot is
read, the generic function slot-unbound is invoked. The system-supplied primary method for
slot-unbound on class t signals an error. If slot-unbound returns, its primary value is used that
time as the value of the slot.

The default initial value form for a slot is defined by the :initforrslot option. When the
:initforr form is used to supply a value, it is evaluated in the lexical environment in which
the def&ss form was evaluated. The : initf orn along with the lexical environment in which the
defclass form was evaluated is called a captured initialization form. For more details, see Section
7.1 (Object Creation and Initialization).

A local slot is defined to be a slot that is accessible to exactly one instance, namely the one in
which the slot is allocated. A shared slot is defined to be a slot that is visible to more than one
instance of a given class and its subclasses.

A class is said to define a slot with a given name when the defelass form for that class contains
a slot specifier with that name. Defining a local slot does not immediately create a slot; it
causes a slot to be created each time an instance of the class is created. Defining a shared slot
immediately creates a slot.

The :a~ocationslot option to defclass controls the kind of slot that is defined. If the value of
the :allocation slot option is : instance, a local slot is created. If the value of :dllocation is
:class, a shared slot is created.

A slot is said to be accessible in an instance of a class if the slot is defined by the class of the
instance or is inherited from a superclass of that class. At most one slot of a given name can be
accessible in an instance. A shared slot defined by a class is accessible in all instances of that
class. A detailed explanation of the inheritance of slots is given in Section 7.5.3 (Inheritance of
Slots and Slot Options).

7.5.2 Accessing Slots
Slots can be accessed in two ways: by use of the primitive function slot-value and by use of
generic functions generated by the defclass form.

The function slot-value can be used with any of the slot names specified in the defclass form to
access a specific slot accessible in an instance of the given class.

The macro defclass provides syntax for generating methods to read and write slots. If a reader
method is requested, a method is automatically generated for reading the value of the slot, but
no method for storing a value into it is generated. If a writer method is requested, a method is
automatically generated for storing a value into the slot, but no method for reading its value is
generated. If an accessor method is requested, a method for reading the value of the slot and a
method for storing a value into the slot are automatically generated. Reader and writer methods
are implemented using slot-value.

When a reader or writer method is specified for a slot, the name of the generic function to which
the generated method belongs is directly specified. If the name specified for the writer method is
the symbol name, the name of the generic function for writing the slot is the symbol pane, and the

Objects 7-11

ANSI X3.226-1994 Programming Language-Common Lisp

genetic function takes two arguments: the new value and the itasfance, in that order. If the na
specified for the accessor method is the symbol n-e, the name of the generic function for reading
the slot is the symbol nane, and the name of the generic function for writing the slot is the list
(setf name).

A generic function created or modified by supplying :reader, :uriter, or :accesaor slot options
can be treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot whether or not reader or
writer methods exist for that slot. When slot-value is used, no reader or writer methods are
invoked.

The macro with-slots can be used to establish a lezical enuironmeni in which specified slots are
lexically available as if they were variables. The macro with-slots invokes the funciion slot-value
to access the specified slots.

The macro with-accessors can be used to establish a lexical environment in which specified slots
are lexically available through their accessors as if they were variables. The macro with-accessors
invokes the appropriate accessors to access the specified slots.

7.5.3 Inheritance of Slots and Slot Options
The set of the names of all slcts accessible in an instance of a class C is the union of the sets of
names of slots defined by C and its superclasses. The structure of an instance is the set of names
of local slots in that instance.

In the simplest CM, only one class among C and its superclasses defines a slot with a given slot
name. If a sloi is defined by a superclass of C, the slot is said to be inherited. The characteris-
tics of the slot are determined by the slot specifier of the defining class. Consider the defining
class for a slot S. If the value of the :dllocation slot option is :instance, then S is a local slot
and each instance of C has its own slot named S that stores its own value. If the value of the
:allocation slot option is :class, then S is a shared slot, the class that defined S stores the
value, and all instances of C can access that single slot. If the :z~location slot option is omitted,
: instance is used.

In general, more than one class among C and its superclasses can define a slot with a given
name. In such cases, only one sloi with the given name is accessible in an instance of C, and the
characteristics of that slot are a combination of the several slot specifiers, computed as follows:

l All the slot specifiers for a given sloi name are ordered from most specific to least spe-
cific, according to the order in C’s class precedence lisi of the classes that define them.
All references to the specificity of slot specifiers immediately below refers to this ordering.

l The allocation of a slot is controlled by the most specific slol specifier. If the most
specific slot specifier does not contain an :a~ocation slot option, :instance is used. Less
specific slot specijers do not affect the allocation.

l The default initial value form for a slot is the value of the :initfon slot option in the
most specific sloi specifier that contains one. If no slot specifier contains an :initforr
slot option, the slot has no default initial value form.

l The contents of a slot will always be of type (and Tl . . . T,) where Tl . . . Tn are the
values of the : type slot options contained in all of the slot specifiers. If no slot specifier
contains the : type slot option, the contents of the slot will always be of type t. The
consequences of attempting to store in a slot a value that doea not satisfy the lype of tt
slot are undefined.

7-12 Objects

Programming Language-Common Lisp ANSI x3.226-1994

l The set of initialization arguments that initialize a given slot is the union of the initializa-
tion arguments declared in the : initarg slot options in all the slot specifiers.

l The documentation string for a slot is the value of the :docunentationslot option in the
most specific slot specifier that contains one. If no slot specifier contains a :docunentation
slot option, the slot has no documentation string.

A consequence of the allocation rule is that a shared slot can be shadowed. For example, if a
class Ci defines a slot named S whose value for the :allocation slot option is : class, that slot is
accessible in instances of Cl and all of its subclasses. However, if C-J is a subclass of Cl and also
defines a slot named S, Cl’s slot is not shared by instances of Cs and its subclasses. When a class
C, defines a shared slot, any subclass Cs of Cr will share this single slot unless the defclass form
for Cz specifies a slot of the same name or there is a superclass of C’s that precedes C~ in the
class precedence list of C’s that defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type constraint of each slot
specijieier that contributes to that slot. Because the result of attempting to store in a slot a value
that does not satisfy the type constraint for the slot is undefined, the value in a slot might fail to
satisfy its type constraint.

The :reader, :writer, and :accessor slot options create methods rather than define the charac-
teristics of a slot. Reader and writer methods are inherited in the sense described in Section 7.6.7
(Inheritance of Methods).

Methods that access slots use only the name of the slot and the type of the slot’s value. Suppose
a superclass provides a method that expects to access a shared slot of a given name, and a
subclass defines a local slot with the same name. If the method provided by the superclass is used
on an instance of the subclass, the method accesses the local slot.

Objects 7-13

ANSI X3.226-1994 Programming Languqyz-Common Lisp

7.6 Generic Functions and Methods

7.6.1 Introduction to Generic Functions
A generic fiurction is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object is associated with a set of methods, a lambda
list, a method combinationz, and other information.

Like an onlinay function, a generic function takes arguments, performs a series of operations,
and perhaps returns useful values. An ordinary function has a single body of code that is always
ezecuted when the function is called. A generic function has a set of bodies of code of which a
subset is selected for ezecution. The selected bodies of code and the manner of their combina-
tion are determined by the classes or identities of one or more of the arguments to the generic
function and by its method combination.

Ordinary firnctions and generic functions are called with identical syntax.

Generic functions are true functions that can be passed as arguments and used as the first
argument to funcall and apply.

A binding of a function name to a generic function can be established in one of several ways. It
can be established in the global environment by ensure-generic-function, defmethod (implicitly,
due to ensure-generic-function) or defgeneric (also implicitly, due to ensure-generic-function).
No standardized mechanism is provided for establishing a binding of a function name to a generic
function in the lezical environment.

When a defgeneric form is evaluated, one of three actions is taken (due to
ensure-generic-function):

l If a generic function of the given name already exists, the existing generic function
object is modified. Methods specified by the current defgeneric form are added, and
any methods in the existing generic function that were defined by a previous defgeneric
form are removed. Methods added by the current defgeneric form might replace methods
defined by defmethod, defclass, define-condition, or defstruct. No other methods in the
generic function are affected or replaced.

l If the given name names an ordinary function, a macro, or a special operator, an error is
signaled.

l Otherwise a generic function is created with the methods specified by the method defini-
tions in the defgeneric form.

Some opemtors permit specification of the options of a generic function, such as the type of
method combination it uses or its argument precedence order. These operators will be referred
to as “operators that specify generic function options.” The only standanlized operator in this
category is defgeneric.

Some operators define methods for a generic function. These opemtors will be referred to as
method-defining operators; their associated forms are called method-defining forms. The
standardized method-defining operators are listed in Figure 7-1.

I defgeneric defmethod
define-condition defstruct

Figure 7-1. Standardized Method-Defining Operators

defclass
I

7-14 Objects

Progr amming Language-Common Lisp ANSI X3.226-1994

Note that of the standardized method-defining operators only defgeneric can specify generic
function options. defgeneric and any implementation-defined operators that can specify generic
function options are also referred to as “operators that specify generic function options.”

7.62 Introduction to Methods
Methods define the class-specific or identity-specific behavior and operations of a generic function.

A method object is associated with code that implements the method’s behavior, a sequence of
parameter specializers that specify when the given method is applicable, a lambda list, and a
sequence of qualifiers that are used by the method combination facility to distinguish among
methods.

A method object is not a function and cannot be invoked as a function. Various mechanisms in
the object system take a method object and invoke its method function, as is the case when a
generic function is invoked. When this occurs it is said that the method is invoked or called.

A method-defining form contains the code that is to be run when the arguments to the generic
function cause the method that it defines to be invoked. When a method-defining form is evalu-
ated, a method object is created and one of four actions is taken:

l If a generic function of the given name already exists and if a method object already
exists that agrees with the new one on paremeter specializers and qualifiers, the new
method object replaces the old one. For a definition of one method agreeing with another
on parameter specializers and qualifiers, see Section 7.6.3 (Agreement on Parameter
Specialisers and Qualifiers).

l If a generic function of the given name already exists and if there is no method object
that agrees with the new one on parameter specializers and qualifiers, the existing generic
function object is modified to contain the new method object.

l If the given name names an ordinary function, a macro, or a special opera2or, an error is
signaled.

l Otherwise a generic function is created with the method specified by the method-defining
f 07-m.

If the lambda list of a new method is not congruent with the lambda lid of the genericfunciion,
an error is signaled. If a method-defining operator that cannot specify generic function options
creates a new generic function, a lambda lisi for that generic function is derived from the lambda
list of the method in the method-defining form in such a way as to be congruent with it. For
a discussion of congruence, see Section 7.6.4 (Congruent Lambda-lists for all Methods of a
Generic Function).

Each method has a specialized lambda lid, which determines when that method can be ap-
plied. A specialized lambda lisi is like an ordinary lambda lisi except that a specialized param-
eter may occur instead of the name of a required parameter. A specialized parameter is a list
(variable-name parameter-specializer-name), where parameter-specializer-name is one of the
following:

a symbol

denotes a parameter specializer which is the class named by that symbol.

a class

denotes a parameter specializer which is the class itself.

Objects 7-15

ANSI X3.226-1994 Programming Language-Common Lisp :

(eql form>

denotes a parameter specializer which satisfies the type specifier (eql objeci) , where object
is the result of evaluating form. The form form is evaluated in the lexical environment in
which the method-defining form is evaluated. Note that form is evaluated only once, at
the time the method is defined, not each time the generic function is called.

Parameter specializer names are used in macros intended as the user-level interface (defmethod),
while parameter specializers are used in the functional interface.

Only required parameters may be specialized, and there must be a parameter specializer for each
required parameter. For notational simplicity, if some required parameter in a specialized lambda
list in a method-defining form is simply a variable name, its pammeter specializer defaults to the
class t.

Given a generic function and a set of arguments, an applicable method is a method for that
generic function whose parameter specializers are satisfied by their corresponding arguments. The
following definition specifies what it means for a method to be applicable and for an argument to
satisfy a parameter specializer.

Let (AI,..., A,,) be the required arguments to a generic function in order. Let (PI,. . . , Pn) be the
parameter specializers corresponding to the required parameters of the method M in order. The
method M is applicable when each Ai is of the type specified by the type specifier Pi. Because
every valid pammeier specialiter is also a valid type specifier, the function typep can be used
during method selection to determine whether an argument satisfies a parameter specializer.

A method all of whose pammeter specializers are the class t is called a default method; it is
always applicable but may be shadowed by a more specific method.

Methods can have qualifiers, which give the method combination procedure a way to distinguis’
among methods. A method that has one or more qualifiers is called a qualified method. A meth. _
with no qualifiers is called an unqualified method. A qualifier is any non-list. The qualifiers
defined by the standardized method combination types are symbols.

In this specification, the terms “primary method* and “auxiliary method” are used to partition
methods within a method combination type according to their intended use. In standard method
combination, primary methods are unqualified methods and auxiliary methods are methods with a
single qualifier that is one of :around, :before, or :after. Methods with these qualifiers are called
around methods, before methods, and after methods, respectively. When a method combination
type is defined using the short form of definemethod-combination, prima y methods are meth-
ods qualified with the name of the type of method combination, and auxiliary methods have the
qualifier :around. Thus the terms “primary meihod” and “auxiliary method” have only a relative
definition within a given method combination type.

7.6.3 Agreement on Parameter Specializers and Qualifiers
Two methods are said to agree with each other on pammeter specializers and qualifiers if the
following conditions hold:

1. Both methods have the same number of required parameters. Suppose the parameter
specializers of the two methods are PI,~ . . . Pl,n and PZJ . . . Pz,n.

2. For each 1 5 i < n, PI+ agrees with P 2,i. The parameter specializer PI+ agrees with Px,i
if Pl,i and Pz,i are the same class or if PI+ = (eql objectI), Pz,i = (eql objec$), and
<eql object1 objech). Otherwise Pl,i and P2,; do not agree.

3. The two lists of qualifiers are the same under equal.

7-16 Objects

Programming Language-Common Lisp ANSI X3.226-1994

7.6.4 Congruent Lambda-lists for all Methods of a Generic
Function

These rules define the congruence of a set of lambda lists, including the lambda list of each
method for a given generic function and the lambda list specified for the generic function itself, if
given.

1. Each lambda list must have the same number of required parameters.

2. Each lambda list must have the same number of optional parameters. Each method can
supply its own default for an optional parameter.

3. If any lambda list mentions &rest or &key, each lambda list must mention one or both of
them.

4. If the generic junction lambda list mentions &key, each method must accept all of the
keyword names mentioned after &key, either by accepting them explicitly, by specifying
&allow-other-keys, or by specifying &rest but not &key. Each method can accept
additional keyword arguments of its own. The checking of the validity of keyword names
is done in the generic function, not in each method. A method is invoked as if the
keyword argument pair whose name is :allov-other-keys and whose value is true were
supplied, though no such argument pair will be passed.

5. The use of &allow-other-keys need not be consistent across lambda lists. If
&allow-other-keys is mentioned in the lambda list of any applicable method or of the
generic junction, any keyword arguments may be mentioned in the call to the generic
junction.

6. The use of &aux need not be consistent across methods.

If a method-defining operator that cannot specify generic junction options creates a
generic junction, and if the lambda list for the method mentions keyword arguments, the
lambda list of the generic function will mention &key (but no keyword arguments).

7.6.5 Keyword Arguments in Generic Functions and Methods
When a generic function or any of its methods mentions &key in a lambda list, the specific
set of keyword arguments accepted by the generic function varies according to the applicable
methods. The set of keyword arguments accepted by the generic function for a particular call
is the union of the keyword arguments accepted by all applicable methods and the keyword
arguments mentioned after &key in the generic function definition, if any. A method that has
&rest but not &key does not affect the set of acceptable keyword arguments. If the lambda list
of any applicable method or of the generic function definition contains &allow-other-keys, all
keyword arguments are accepted by the generic function.

The lambda list congruence rules require that each method accept all of the keyword arguments
mentioned after &key in the generic function definition, by accepting them explicitly, by specify-
ing &allow-other-keys, or by specifying &rest but not &key. Each method can accept additional
keyword arguments of its own, in addition to the keyword arguments mentioned in the generic
function definition.

If a generic junction is passed a keyword argument that no applicable method accepts, an error
should be signaled; see Section 3.5 (Error Checking in Function Calls).

7.6.5.1 Examples of Keyword Arguments in Generic Functions and Methods

For example, suppose there are two methods defined for vidth as follows:

Objects 7-17

ANSI X3.226-1994 Programming Language-Common Lisp

(defmethod width ((c character-class) Llrey font) . ..I

(defrethod vidth ((p picture-class) &key pixel-size) . ..I

Assume that there are no other methods and no generic function definition for width. The evalua-
tion of the following form should signal an error because the keyword argument :pixel-size is not
accepted by the applicable method.

(width (rake-instance ‘character-class :char #\Q)
:font ‘baskerville :pixel-size 10)

The evaluation of the following form should signal an error.

(vidth (rake-instance ‘picture-class :glyph (glyph S\Q))
:font 9baskerville :pixel-size 10)

The evaluation of the following form will not, signal an error if the class named character-
picture-class is a subclass of both picture-class and character-class.

(vidth (rake-instance ‘character-picture-class :char S\Q)
:font 'baakerville :pixel-size 10)

7.6.6 Method Selection and Combination
When a generic fun&ion is called with particular arguments, it must, determine the code to
execute. This code is called the ef&ctive method for those arguments. The effective method
is a combination of the applicable methods in the generic function that calls some or all of the
methods.

If a generic function is called and no methods are applicable, the generic function
n&applicable-method is invoked, with the resulis from that call being used as the results of
the call to the original generic funciion. Calling nc+appIicable-method takes precedence over
checking for acceptable keyword arguments; see Section 7.6.5 (Keyword Arguments in Generic
Functions and Methods).

When the effective method has been determined, it is invoked with the same arguments as were
passed to the generic fur&on. Whatever values it returns are returned as the values of the
generic function.

7.6.6.1 Determining the Effective Met hod

The effective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific method first.

3. Apply method combination fo the sorted list of applicable methods, producing the
effective method.

7.6.6.1.1 Selecting the Applicable Methods

This step is described in Section 7.6.2 (Introduction to Methods).

7-18 Objects

Programming Language-Common Lisp ANSI X3.226-1994

7.6.6.1.2 Sorting the Applicable Methods by Precedence Order

To compare the precedence of two methods, their parameter specializers are examined in order.
The default examination order is from left to right, but an alternative order may be specified by
the :a.rgurent-precedence-order option to defgeneric or to any of the other operators that specify
generic function options.

The corresponding parameter specializers from each method are compared. When a pair of
parameter specializers agree, the next pair are compared for agreement. If all corresponding
parameter specializers agree, the two methods must have different qualifiers; in this case, either
method can be selected to precede the other. For information about agreement, see Section 7.6.3
(Agreement on Parameter Specializers and Qualifiers).

If some corresponding parameter specializers do not agree, the first pair of pammeter specialirers
that do not agree determines the precedence. If both parameter specializers are classes, the more
specific of the two methods is the method whose parameter specialiser appears earlier in the class
precedence lisl of the corresponding argument. Because of the way in which the set of applicable
methods is chosen, the parameter specializers are guaranteed to be present in the class precedence
list of the class of the argument.

If just one of a pair of corresponding pammetet speciaIizers is (eql object), the method with
that parameter specializer precedes the other method. If both parameter specializers are eql
expressions, the specializers must agree (otherwise the two methods would not both have been
applicable to this argument).

The resulting list of applicable methods has the most specific method first and the least specific
method last.

7.6.6.1.3 Applying method combination to the sorted list of applicable methods

In the simple case-if standard method combination is used and all applicable methods are
primary methods--the effective method is the most specific method. That method can call
the next most specific method by using the fun&on call-next-method. The method that
call-next-method will call is referred to as the next method. The predicate next-method-p
tests whether a next method exists. If call-next-method is called and there is no next most
specific method, the generic function nc+next-method is invoked.

In general, the effective method is some combination of the applicable methods. It is described
by a form that contains calls to some or all of the applicable methods, returns the value or values
that will be returned as the value or values of the generic function, and optionally makes some of
the methods accessible by means of call-next-method.

The role of each method in the effective method is determined by its qualifiers and the specificity
of the method. A qualifier serves to mark a method, and the meaning of a qualifier is determined
by the way that these marks are used by this step of the procedure. If an applicable method
has an unrecognized qualifier, this step signals an error and doea not include that method in the
effective method.

When standard method combination is used together with qualified methods, the effective method
is produced as described in Section 7.6.6.2 (Standard Method Combination).

Another type of method combination can be specified by using the :rethod-combination option of
defgeneric or of any of the other operators that specify generic function options. In this way this
step of the procedure can be customized.

New types of method combination can be defined by using the define-method-combination
macro.

Objects 7-19

ANSI X3.226-1994 Programming Language-Common Lisp

7.6.6.2 Standard Method Combination

Standard method combination is supported by the class standard-generic-function. It is used
if no other type of method combination is specified or if the built-in method combination type
standard is specified.

Primary methods define the main action of the effective method, while auxiliary methods modify
that action in one of three ways. A primary method has no method qualifiers.

An auxiliary method is a method whose qualifier is :before, :after, or :around. Standard method
combination allows no more than one qualifier per method; if a method definition specifies more
than one qualifier per method, an error is signaled.

4 A before method has the keyword :before as its only qualifier. A before method specifies
code that is to be run before any primary methods.

l An after method has the keyword :after as its only qualifier. An after method specifies
code that is to be run after primary methods.

l An around method has the keyword :around as its only qualifier. An around method spec-
ifies code that is to be run instead of other applicable methods, but which might contain
explicit code which calls some of those shadowed methods (via call-next-method).

The semantics of standard method combination is as follows:

l If there are any around methods, the most specific around method is called. It supplies
the value or values of the generic function.

l Inside the body of an around method, call-next-method can be used to call the nezt
method. When the next method returns, the around method can execute more code,
perhaps based on the returned value or values. The generic function no-next-method
is invoked if call-next-method is used and there is no applicable method to call. The
function next-method-p may be used to determine whether a nezt method exists.

l If an around method invokes call-next-method, the next most specific around method
is called, if one is applicable. If there are no around methods or if call-next-method is
called by the least specific around method, the other methods are called as follows:

- All the before methods are called, in most-specific-first order. Their values are
ignored. An error is signaled if call-next-method is used in a before method.

- The most specific primary method is called. Inside the body of a primary
method, call-next-method may be used to call the next most specific primary
method. When that method returns, the previous primary method can execute
more code, perhaps based on the returned value or values. The generic function
no-next-method is invoked if call-next-method is used and there are no more
applicable primary methods. The function next-method-p may be used to de-
termine whether a nezt method exists. If call-next-method is not used, only the
most specific primary method is called.

- All the after methods are called in most-specific-last order. Their values are
ignored. An error is signaled if call-next-method is used in an after method.

l If no around methods were invoked! the most specific primary method supplies the vale
or values returned by the generic function. The value or values returned by the invocation
of call-next-method in the least specific around method are those returned by the most
specific primary method.

7-20 Objects

Programming Language--Common Lisp ANSI X3.226-1994

In standard method combination, if there is an applicable method but no applicable primary
method, an error is signaled.

The before methods are run in most-specific-first order while the after methods are run in least-
specific-first order. The design rationale for this difference can be illustrated with an example.
Suppose class Cr modifies the behavior of its superclass, Cz, by adding before methods and
after methods. Whether the behavior of the class Cz is defined directly by methods on CZ or
is inherited from its superclasses does not affect the relative order of invocation of methods on
instances of the class Ci. Class Cl’s before method runs before all of class Cz’s methods. Class
Cl’s after method runs after all of class Cz’s methods.

By contrast, all around methods run before any other methods run. Thus a less specific around
method runs before a more specific primary method.

If only primary methods are used and if call-next-method is not used, only the most specific
method is invoked; that is, more specific methods shadow more general ones.

7.6.6.3 Declarative Method Combination
The macro define-method-combination defines new forms of method combination. It provides
a mechanism for customizing the production of the effective method. The default procedure for
producing an effective method is described in Section 7.6.6.1 (Determining the Effective Method).
There are two forms of define-method-combination. The short form is a simple facility while
the long form is more powerful and more verbose. The long form resembles defmacro in that
the body is an expression that computes a Lisp form; it provides mechanisms for implementing
arbitrary control structures within method combination and for arbitrary processing of method
qualifiers.

7.6.6.4 Built-in Method Combination Types

The object system provides a set of built-in method combination types. To specify that a generic
function is to use one of these method combination types, the name of the method combina-
tion type is given as the argument to the :aethod-combination option to defgeneric or to the
:method-combination option to any of the other operators that specify generic function options.

The names of the built-in method combination types are listed in Figure 7-2.

+ append max
and list min

Figure 7-2. Built-in Method Combination Types

nconc
or

progn
standard

The semantics of the standard built-in method combination type is described in Section 7.6.6.2
(Standard Method Combination). The other built-in method combination types are called simple
built-in method combination types.

The simple built-in method combination types act as though they were defined by the short form
of define-method-combination. They recognize two roles for methods:

l An around method has the keyword symbol :around as its sole qualifier. The meaning of
:around methods is the same as in standard method combination. Use of the functions
call-next-method and next-method-p is supported in around methods.

l A primary method has the name of the method combination type as its sole qualifier.
For example, the built-in method combination type and recognizes methods whose sole
qualifier is and; these are primary methods. Use of the functions call-next-method and
next-method-p is not supported in primary methods.

Objects 7-21

. - _ ~ . - _ - L ~ _ . _ - _ ^ I . . - -

A N S I X 3 .2 2 6 -1 9 9 4 P ro g ra m m i n g L a n g u a g e -C o m m o n L i s p

T h e s e m a n ti c s o f th e s i m p l e b u i l t-i n m e th o d c o m b i n a ti o n ty p e s i s a s fo l l o w s :

l If th e re a re a n y a ro u n d m e th o d s , th e m o s t s p e c i fi c a ro u n d m e th o d i s c a l l e d . It s u p p l i e s
th e v a l u e o r v a l u e s o f th e g e n e ri c fu n c ti o n .

. In s i d e th e b o d y o f a n a ro u n d m e th o d , th e fu n c ti o n c a l l -n e x t-m e th o d c a n b e u s e d to c a l l
th e n e z t m e th o d . T h e g e n e ri c fu n c ti o n n o -n e x t-m e th o d i s i n v o k e d i f c a l l -n e x t-m e th o d
i s u s e d a n d th e re i s n o a p p l i c a b l e m e th o d to c a l l . T h e fu n c ti o n n e x t-m e th o d -p m a y b e
u s e d to d e te rm i n e w h e th e r a n e rt m e th o d e x i s ts . W h e n th e n e z t m e th o d re tu rn s , th e
a ro u n d m e th o d c a n e x e c u te m o re c o d e , p e rh a p s b a s e d o n th e re tu rn e d v a l u e o r v a l u e s .

l If a n a ro u n d m e th o d i n v o k e s c a l l -n e x t-m e th o d , th e n e x t m o s t s p e c i fi c a ro u n d m e th o d
i s c a l l e d , i f o n e i s a p p l i c a b l e . If th e re a re n o a ro u n d m e th o d s o r i f c a l l -n e x t-m e th o d i s
c a l l e d b y th e l e a s t s p e c i fi c a ro u n d m e th o d , a L i s p fo rm d e ri v e d fro m th e n a m e o f th e
b u i l t-i n m e th o d c o m b i n a ti o n ty p e a n d fro m th e l i s t o f a p p l i c a b l e p ri m a ry m e th o d s i s
e v a l u a te d to p ro d u c e th e v a l u e o f th e g e n e ri c fu n c ti o n . S u p p o s e th e n a m e o f th e m e th o d
c o m b i n a ti o n ty p e i s o p e ra to r a n d th e c a l l to th e g e n e ri c fu n c ti o n i s o f th e fo rm

(g e n e ri c -fu n c ti o n a l . . . a ,)

L e t M l ,..., M k b e th e a p p l i c a b l e p ri m a ry m e th o d s i n o rd e r; th e n th e d e ri v e d L i s p fo rm
i s

(o p e ra to r (M l a 1 . . . a ,,) . . . (h fk 0 1 . . .a ,))

If th e e x p re s s i o n (M i a l . . . a ,) i s e v a l u a te d , th e m e th o d M i w i l l b e a p p l i e d to th e a rg u -
m e n ts a l .. . a n . F o r e x a m p l e , i f o p e ra to r i s o r, th e e x p re s s i o n (M i a l . . .a ,,) i s e v a l u a t
o n l y i f (M j a i . . . a ,,), 1 5 i < i , re tu rn e d n i l .

T h e d e fa u l t o rd e r fo r th e p ri m a ry m e th o d s i s :ro a t-s p e c i f i c -f i rs t. H o w e v e r, th e
o rd e r c a n b e re v e rs e d b y s u p p l y i n g :ro s t-s p e c i fi c - l a s t a s th e s e c o n d a rg u m e n t to th e
z re th o d -c o m b i n a ti o n o p ti o n .

T h e s i m p l e b u i l t-i n m e th o d c o m b i n a ti o n ty p e s re q u i re e x a c tl y o n e q u a l i fi e r p e r m e th o d . A n
e rro r i s s i g n a l e d i f th e re a re a p p l i c a b l e m e th o d s w i th n o q u a l i fi e rs o r w i th q u a l i fi e rs th a t a re n o t
s u p p o rte d b y th e m e th o d c o m b i n a ti o n ty p e . A n e rro r i s s i g n a l e d i f th e re a re a p p l i c a b l e a ro u n d
m e th o d s a n d n o a p p l i c a b l e p ri m a ry m e th o d s .

7 .6 .7 In h e ri ta n c e o f M e th o d s
A s u b c l a s s i n h e ri ts m e th o d s i n th e s e n s e th a t a n y m e th o d a p p l i c a b l e to a l l i n s ta n c e s o f a c l a s s i s
a l s o a p p l i c a b l e to a l l i n s ta n c e s o f a n y s u b c l a s s o f th a t c l a s s .

T h e i n h e ri ta n c e o f m e th o d s a c ts th e s a m e w a y re g a rd l e s s o f w h i c h o f th e m e th o d -d e fi n i n g o p e ra -
to rs c re a te d th e m e th o d s .

T h e i n h e ri ta n c e o f m e th o d s i s d e s c ri b e d i n d e ta i l i n S e c ti o n 7 .6 .6 (M e th o d S e l e c ti o n a n d C o m b i -
n a ti o n).

7 -2 2 O b j e c ts

Programming Language-Common Lisp ANSI x3.226- 1994

function-keywords Standard Generic Function

Syntax:
function-keywords method -) keys, allow-other-keys-p

Met hod Signatures:
function-keywords (method standard-method)

Arguments and Values:
method-a method.

keys-a list.

allow-other-keys-p-a generalized boolean.

Description:
Returns the keyword parameter specifiers for a method.

Two values are returned: a list of the explicitly named keywords and a generalized boolean that
states whether &allow-other-keys had been specified in the method definition.

Examples:

(defmethod gfl ((a integer) &optional (b 2)
&key (c 3) ((:dee d) 4) e ((eff f)))

(list a b c d e f))
+ #~STANDARD+lETHOD GFl (INTEGER) 36324653>

(find-method #'gfl '0 (list (find-class 'integer)))
+ XCSTANDARD-METHOD GFl (INTEGER) 36324653>

(function-keyvords *)
-+ (:C :DEE :E EFF), false

(defmethod gf2 ((a integer))
(list a b c d e f))

+ #'Z3TANDARD-HETHOD GF2 (INTEGER) 427Q1775>
(function-keyvords (find-method #'gfl '0 (list (find-class 'integer))))

* 0, false
(defmethod gf3 ((a integer) &key b c d tallov-other-keys)

(list a b c d e f))
(function-keyvords l)

-+ (:B :C :D>, lrue

Affected By:
defmethod

See Also:
defmethod

Objects 7-23

ANSI X3.226-1994 Pr%KUmxling Language-Common Lisp

ensure-generic-function Function

Syntax:
ensure-generic-function function-name &key argument-precedence-order declare

documentation environment
generic-function-class lambda-list
method-class method-combination

+ generic-function

Arguments and Values:
function-name-a function name.

The keyword arguments correspond to the option arguments of defgeneric, except that the
:method-class and :generic-function-class arguments can be class objects as well as names.

Method-combination - method combination object.

Environment - the same as the &environment argument to macro expansion functions and is used
to distinguish between compile-time and run-time environments.

generic-function-a generic function object.

Description:
The function ensure-generic-function is used to define a globally named generic function with
no methods or to specify or modify options and declarations that pertain to a globally named
generic function as a whole.

If function-name is not fbound in the global environment, a new generic function is created. If
(fdefinition function-name) is an ordinary function, a macro, or a speciai operator, an error is
signaled.

If function-name is a list, it must be of the form (setf symbol). If function-name specifies a
generic function that has a different value for any of the following arguments, the generic func-
tion is modified to have the new value: :argument.-precedence-order, :declare, :documentation,
:method-combination

If function-name specifies a generic fun&ion that has a different value for the :lambda-list.
argument, and the new value is congruent with the lambda lists of all existing methods or there
are no methods, the value is changed; otherwise an error is signaled.

If function-name specifies a generic function that has a different value for the
:generic-function-class argument and if the new generic function class is compatible with
the old, change-class is called to change the class of the generic function; otherwise an error is
signaled.

If function-name specifies a generic function that has a different value for the :method-class
argument, the value is changed, but any existing methods are not changed.

Affected By:
Existing function binding of function-name.

Exceptional Situations:
If (fdefinition function-name) is an ordinary function, a macro, or a special operator, an error o,
type error is signaled.

7-24 Objects

Programming Language-Common Lisp ANSI X3.226-1994

If function-name specifies a generic function that has a different value for the :lambda-list
argument, and the new value is not congruent with the lambda list of any existing method, an
error of type error is signaled.

If function-name specifies a generic function that has a different value for the
:generic-function-class argument and if the new generic function class not is compatible with
the old, an error of type error is signaled.

See Also:
defgeneric

allocate-instance Standard Generic Function

Syntax:
allocate-instance c/ass &rest inharp &key &allow-other-keys -+ new-instance

Method Signatures:
allocate-instance (c/ass standard-class) &rest initargs

allocate-instance (class structure-class) &rest initargs

Arguments and Values:
class-a class.

initargs -a list of keyword/value pairs (initialization argument names and values).

new-instance-an object whose class is class.

Description:
The generic function allocate-instance creates and returns a new instance of the class, without
initializing it. When the class is a standard class, this means that the slots are unbound; when
the class is a structure class, this means the slots’ values are unspecified.

The caller of allocate-instance is expected to have already checked the initialization arguments.

The generic function allocate-instance is called by make-instance, as described in Section 7.1
(Object Creation and Initialization).

See Also:
defclass, make-instance, class-of, Section 7.1 (Object Creation and Initialization)

Notes:
The consequences of adding methods to allocate-instance is unspecified. This capability might be
added by the Metaobject Protocol.

Objects 7-25

ANSI X3.226-1994 Programming Language-Common Lisp

reinitialize-instance Standard Generic Function

Syntax:
reinitklize-instance instance treat initargs &key tallow-other-keys -* instance

Method Signatures:
reinitialize-instance (instance standard-object) &rest initargs

Arguments and Values:
instance-an object.

initargs-an initialization argument list.

Description:
The generic function reinitialize-instance can be used to change the values of local slots of an
instance according to initargs. This generic function can be called by users.

The system-supplied primary method for reinitialize-instance checks the validity of initargs and
signals an error if an initarg is supplied that is not declared as valid. The method then calls the
generic function shared-initialize with the following arguments: the instance, nil (which means no
slots should be initialized according to their initforms), and the initargs it received.

Side Effects:
The ge’neric function reinitialize-instance changes the values of locul slots.

Exceptional Situations:
The system-supplied primary method for reinitialize-instance signals au error if an initarg is
supplied that is not declared as valid.

See Also:
initialize-instance, shared-initialize, update-instance-for-redefied-class,
update-instance-for-different-class, slot-boundp, slot-makunbound, Section 7.3 (Reinitial-
izing an Instance), Section 7.1.4 (Rules for Initialization Arguments), Section 7.1.2 (Declaring the
Validity of Initialization Arguments)

Notes:
Initargs are declared as valid by using the :initarg option to defclass, or by defining methods for
reinitialize-instance or shared-initialize. The keyword name of each keyword parameter specifier
in the lambda list of any method defined on reinitialize-instance or shared-initialize is declared
as a valid initialization argument name for all classes for which that method is applicable.

shared-initialize Standard Generic Function

Syntax:
shared-initialize instance dot-names &rest initargs &key Oallov-other-keys ---* instance

7-26 Objects

Programming Language-Common Lisp ANSI X3.226-1994

Method Signatures:
shared-initialize (instance standard-object) dot-names &rest initargs

Arguments and Values:
instance-an object.

slot-names-a list or t.

initargs-a list of keyword/value pairs (of initialization argument names and values).

Description:
The generic function shared-initialize is used to fill the slots of an instance using hi-
targs and : initf arm forms. It is called when an instance is created, when an instance is re-
initialized, when an instance is updated to conform to a redefined class, and when an in-
stance is updated to conform to a different class. The generic function shared-initialize is
called by the system-supplied primary method for initialize-instance, reinitialize-instance,
update-instance-for-redefined-class, and update-instance-for-different-class.

The generic function shared-initialize takes the following arguments: the instance to be initial-
ized, a specification of a set of slot-names accessible in that instance, and any number of initargs.
The arguments after the first two must form an initialization argument list. The system-supplied
primary method on shared-initialize initializes the slots with values according to the initargs and
supplied : initform forms. Slot-names indicates which slots should be initialized according to their
: initform forms if no initargs are provided for those slots.

The system-supplied primary method behaves as follows, regardless of whether the slots are local
or shared:

l If an initarg in the initialization argument list specifies a value for that slot, that value is
stored into the slot, even if a value has already been stored in the slot before the method
is run.

l Any slots indicated by slot-names that are still unbound at this point are initialized
according to their : initform forms. For any such slot that has an : initf or-m form, that
form is evaluated in the lexical environment of its defining defclass form and the result
is stored into the slot. For example, if a before method stores a value in the slot, the
: initform form will not be used to supply a value for the slot.

l The rules mentioned in Section 7.1.4 (Rules for Initialization Arguments) are obeyed.

The slots-names argument specifies the slots that are to be initialized according to their :initforz
forms if no initialization arguments apply. It can be a list of slot names, which specifies the set of
those slot names; or it can be the symbol t, which specifies the set of all of the slots.

See Also:
initialize-instance, reinitialize-instance, update-instance-for-redefined-class,
update-instance-for-different-class, slot-boundp, slot-makunbound, Section 7.1 (Object
Creation and Initialization), Section 7.1.4 (Rules for Initialization Arguments), Section 7.1.2
(Declaring the Validity of Initialization Arguments)

Notes:
lnitargs are declared as valid by using the :initarg option to defclass, or by defining methods
for shared-initialize. The keyword name of each keyword parameter specifier in the lambda list
of any method defined on shared-initialize is declared as a valid initarg name for all classes for
which that method is applicable.

Implementations are permitted to optimize : initf arm forms that neither produce nor depend
on side effects, by evaluating these forms and storing them into slots before running any

Objects 7-27

ANSI X3.226-1994 Programming Language-Common Lisp

initialize&stance methods, rather than by handling them in the primary initialize-instance
method. (This optimization might be implemented by having the allocate-instance method COPY
a prototype instance.)

Implementations are permitted to optimize default initial value forms for inirsrgs associated with
slots by not actually creating the complete initialization argument list when the only method that
would receive the complete list is the mefhod on standard-object. In this case default initial
value forms can be treated like : initf om forms. This optimization has no visible effects other
than a performance improvement.

update-instance-for-different-class standard Generic Function

Syntax:
update-instance-for-different-class previous current &rest initargs kkey tallow-other-keys
-+ implementation-dependent

Method Signatures:
update-instance-for-different-class (previous standard-object)

(current standard-object)
&rest initargs

Arguments and Values:
previous- a copy of the original instance.

current-the original instance (altered).

initargs-an initialization argument list.

Description:
The generic function update-instance-for-different-class is not intended to be called by program-
mers. Programmers may write methods for it. The function update-instance-for-different-class
is called only by the function change-class.

The system-supplied primary method on update-iustauce-for-different-class checks the validity
of initargs and signals an error if an initarg is supplied that is not declared as valid. This method
then initializes slots with values according to the initargs, and initializes the newly added slots
with values according to their : i.nitforr forms. It does this by calling the generic function
shared-initialize with the following arguments: the instance (current), a list of names of the
newly added slots, and the initargs it received. Newly added slots are those local slots for which
no slot of the same name exists in the previous class.

Methods for update-instance-for-different-class can be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-different-class are
defined, they will be run after the system-supplied primary method for initialization and therefore
will not interfere with the default behavior of update-instance-for-different-class.

Methods on update-instanc~for-different-class can be defined to initialize slots differently from
change-class. The default behavior of change-class is described in Section 7.2 (Changing the
Clsss of an Instance).

7-28 Objects

Programming Languag~Common Lisp ANSI X3.226-1994

The arguments to update-instance-for-different-class are computed by change-class. When
change-class is invoked on an instance, a copy of that instance is made; change-class then de-
structively alters the original instance. The first argument to update-instance-for-different-class,
previous, is that copy; it holds the old slot values temporarily. This argument has dynamic ex-
tent within change-class; if it is referenced in any way once update-instance-for-different-class
returns, the results are undefined. The second argument to update-instance-for-different-class,
current, is the altered original instance. The intended use of previous is to extract old slot val-
ues by using slot-value or with-slots or by invoking a reader generic function, or to run other
methods that were applicable to instances of the original class.

Examples:
See the example for the function change-class.

Exceptional Situations:
The system-supplied primary method on update-instance-for-different-class signals an error if an
initialization argument is supplied that is not declared as valid.

See Also:
change-class, shared-initialize, Section 7.2 (Changing the Class of an Instance), Section 7.1.4
(Rules for Initialization Arguments), Section 7.1.2 (Declaring the Validity of Initialization Argu-
ments)

Notes:
lnitargs are declared as valid by using the : initarg option to defclass, or by defining methods for
update-instance-for-different-class or shared-initialize. The keyword name of each keyword pa-
rameter specifier in the lambda list of any method defined on update-instance-for-different-ciass
or shared-initialize is declared as a valid initarg name for all classes for which that method is
applicable.

The value returned by update-instance-for-different-class is ignored by change-class.

update-instance-for-redefined-class Standard Generic Function

Syntax:
update-instance-for-redefined-class instance

added-slots discarded-slots
property-list
treat initargs &key tallov-other-keys

+ {result}*

Met hod Signatures:
update-instance-for-redefined-class (instance standard-object)

added-slots discarded-slots
property-list
&rest initargs

Arguments and Values:
instance-an object.

Objects r-29

ANSI X3.226-1994 Programming Language-Common Lisp

added-slots-a lisf .

discarded-slots-a list.

property-list-a list.

initargs-an initialization argument list.

result-an object.

Description:
The generic function update-instance-for-redefiued-chss is not intended to be
called by programmers. Programmers may write methods for it. The generic func-
tion update-instance-for-redefined-cl- is called by the mechanism activated by
make-instances-obsolete.

The system-supplied primary method on update-instance-for-redeflned-class checks the validity
of initargs and signals an error if an initarg is supplied that is not declared as valid. This method
then initializes slots with values according to the initargs, and initializes the newly added-slots
with values according to their :initform forms. It does this by calling the generic function
shared-initialize with the following arguments: the instance, a list of names of the newly addcd-
slots to instance, and the initargs it received. Newly added-slots are those local slots for which no
slot of the same name exists in the old version of the class.

When make-instances-obsolete is invoked or when a class has been redefined and an in-
stance is being updated, a property-list is created that captures the slot names and val-
ues of all the discarded-slots with values in the original instance. The structure of the in-
stance is transformed so that it conforms to the current class definition. The arguments to
update-instance-for-redefined-class are this transformed instance, a list of added-slots to the
instance, a list discarded-slots from the instance, and the property-list containing the slot names
and values for slots that were discarded and had values. Included in this list of discarded slots is_
slots that were local in the old class and are shared in the new class.

The value returned by update-instance-for-redefined-class is ignored.

Examples:

(defclass position () 0)

(defclass x-y-position (position)
((x :initform 0 :accessor position-x)

(y :initform 0 :accessor position-y)))

; ; ; It turns out polar coordinates are used more than Cartesian
* . * coordinates, so the representation is altered and some new .,I
;;; accessor methods are added.

(defnethod update-instance-for-redefined-class :before
((pas x-y-position) added deleted plist &key)

;; Transform the x-y coordinates to polar coordinates
;; and store into the neu slots.
(let ((x (getf plist ‘x1>

(y (getf plist ‘~1))
(setf (position-rho pas) (sqrt (+ (* x x) (* y y)>)

(position-theta pas) (atan y x1)) 1

7-30 Objects

Programming Language-Common Lisp ANSI X3.226- 1994

(defclass x-y-position (position)
((rho :initforn 0 :accessor position-rho)

(theta : initf ox-m 0 : accessor position-theta)))

;;; All instances of the old x-y-position class vi11 be updated
; ; ; automatically .

;;: The neu representation is given the look and feel of the old one.

(defrethod position-x ((pas x-y-position))
(with-slots (rho theta) pos (* rho (co8 theta))))

(defmethod (eetf position-x) (nev-x (pas x-y-position))
(with-slots (rho theta) pos

(let ((y (position-y pas)))
(setq rho (sqrt (+ (* nerr-x nev-x) (* y y)))

theta (atan y nev-x1>
new-x)))

(defmethod position-y ((pas x-y-position))
(with-slots (rho theta) pos (* rho (sin theta))))

(defmethod (setf position-y) (new-y (pas x-y-position))
(Pith-slots (rho theta) poa

(let ((x (position-x ~0s)))
(setq rho (sqrt (+ (* x x) (* nev-y new-y)))

theta (atan new-y x))
nev-y)))

Exceptional Situations:
The system-supplied primary me2hod on update-instance-for-redefined-class signals an error if
an initarg is supplied that is not declared as valid.

See Also:
make-instances-obsolete, shared-initialize, Section 4.3.6 (Redefining Classes), Section 7.1.4
(Rules for Initialization Arguments), Section 7.1.2 (Declaring the Validity of Initialization Argu-
ments)

Notes:
lnitargs are declared as valid by using the :initarg option to defclass, or by defining methods for
update-instance-for-redefined-class or shared-initialize. The keyword name of each keyword pa-
rameter specifier in the lambda list of any method defined on update-instance-for-redefined-class
or shared-initialize is declared as a valid initarg name for all classes for which that method is
applicable.

change-class Standard Generic Function

Syntax:
change-class instance new-class &key Dallov-other-keys + instance

Objects 7-31

-.----.-- ... - .

ANSI X3.226-1994 Programming Language-Common Lisp ,

Met hod Signatures:
change-class (instance standard-object) (new-class standard-class) trest initargs

change-class (instance t) (new-c/ass symbol) &rest initargs

Arguments and Values:
instance-an objecf .

new-class-a class designator.

initargs-an initialization argument list.

Description:
The generic function change-class changes the class of an instance to new-class. It destructively
modifies and returns the instance.

If in the old class there is any slot of the same name as a local slot in the new-class, the value
of that slot is retained. This means that if the slot has a value, the value returned by slot-value
after change-class is invoked is eql to the value returned by slot-value before change-class is
invoked. Similarly, if the slot was unbound, it remains unbound. The other slots are initialized as
described in Section 7.2 (Changing the Clans of an Instance).

After completing all other actions, change-class invokes update-instance-for-different-class. The
generic function update-instance-for-different-class can be used to assign values to slots in the
transformed instance. See Section 7.2.2 (Initializing Newly Added Local Slots).

If the second of the above methods is selected, that method invokes change-class on instance,
(find-class new-class), and the initargs.

Examples:

(defclass position 0 0)

(defclass x-y-position (position)
((x :initform 0 :initarg :x1

(y :initform 0 :initarg :y)))

(defclass rho-theta-position (position)
((rho :initform 0)

(theta :initforu 0)))

(defrethod update-instance-for-different-class :before ((old x-y-position)
(new rho-theta-position)
&key)

;; Copy the position information from old to new to rake neu
;; be a rho-theta-position at the same position as old.
(let ((x (slot-value old 'x))

(y (slot-value old '~1))
(setf (slot-value neo 'rho) (sqrt (+ (* x x1 (* y y)))

(slot-value neo 'theta) (atau y x))))

*** At this point an instance of the class x-y-position can be .,I

;;; changed to be an instance of the class rho-theta-position using
;;; change-class:

(setq pl (make-instance 'x-y-position :x 2 :y 0))

7-32 Objects

Programming Language-Common Lisp ANSI x3.226-1994

(change-class pl ‘rho-theta-position)

;;; The result is that the instance bound to pl is now an instance of
; ; ; the class rho-theta-position. The update-instance-for-different-class
. . . ,. * method performed the initialization of the rho and theta slots based
;;; on the value of the x and y slots, ohich were maintained by
; ; ; the old instance.

See Also:
update-instance-for-different-class, Section 7.2 (Changing the Class of an Instance)

Notes:
The generic function change-class has several semantic difficulties. First, it performs a destruc-
tive operation that can be invoked within a method on an instance that was used to select that
method. When multiple methods are involved because methods are being combined, the methods
currently executing or about to be executed may no longer be applicable. Second, some imple-
mentations might use compiler optimizations of slot access, and when the class of an instance is
changed the assumptions the compiler made might, be violated. This implies that a programmer
must not use change-class inside a method if any methods for that generic function access any
slots, or the results are undefined.

slot-boundp

Syntax:
slot-boundp instance slot-name * generalmd-boolean

Arguments and Values:
instance-an object.

slot-name -a symbol naming a slot of instance.

generalized-boolean--a generalized boolean.

Description:
Returns true if the slot named slot-name in instance is bound; otherwise, returns false.

Exceptional Situations:
If no slot of the name slot-name exists in the instance, slot.-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
‘slot-boundp)

(If slot-missing is invoked and returns a value, a boolean equivalent to its primary value is
returned by slot-boundp.)

The specific behavior depends on instance’s metaclass. An error is never signaled if instance has
metaclass standard-class. An error is always signaled if instance has metaclass built-in-class.
The consequences are undefined if instance has any other metaclass-an error might or might not
be signaled in this situation. Note in particular that the behavior for conditions and structures is
not specified.

Objects 7-33

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
slot-m&unbound, slot-missing

Notes:
The function slot-boundp allows for writing afler metlrods on initialize-instance in order to
initialize only those slots that have not already been bound.

Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-boundp using the function slot-boundp-using-class described in the
Metaobject Protocol.

slot-exists-p Function

Syntax:
slot-exists-p object slot-name -r generalized-boolean

Arguments and Values:
object-an object.

slot-name-a symbol.

generalized-boolean-a generalized boolean.

Description:
Returns true if the object has a slot named slot-name.

Affected By:
defclass, defstruct

See Also:
defclass, slot-missing

Notes:
Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-exists-p using the function slot-exists-p-using-class described in
the Metoobject Protocol.

slot-makunbound Function
-

Syntax:
slot-makunbound instance slot-name --+ instance

Arguments and Values:
instance - instance.

Slot-name-a symbol.

Description:
The function slot-makunbound restores a slot of the name slot-name in an instance to the
unbound state.

7-34
.

Objects

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
If no slot of the name slot-name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
'slot-makunbound)

(Any values returned by slot-missing in this case are ignored by slot-makunbound.)

The specific behavior depends on instance’s metaclass. An error is never signaled if instance has
metaclass standard-class. An error is always signaled if instance has metaclass built-in-class.
The consequences are undefined if instance has any other metaclass-an error might or might not
be signaled in this situation. Note in particular that the behavior for conditions and structures is
not specified.

See Also:
slot-boundp, slot-missing

Notes:
Although no implementgtion is required to do so, implementors are strongly encouraged to
implement the function slot-makunbound using the function slot-makrmbound-using-class
described in the Metaobject Protocol.

slot-missing Standard Generic Function

Syntax:
slot-missing class object slot-name operation koptional new-value -r, {result}*

Met hod Signatures:
slot-missing (c/ass t) object slot-name

operation &optional new-value

Arguments and Values:
class-the class of object.

object-an object.

slot-name-a symbol (the name of a would-be slot).

operation-one of the symbols setf, slot-boundp, slot-makunbound, or slot-value.

new-value-an object.

result-an object.

Description:
The generic function slot-missing is invoked when an attempt is made to access a slot in an
object whose metaclass is standard-class and the slot of the name slot-name is not a name of a
slot in that class. The default method signals an error.

The generic function slot-missing is not intended to be called by programmers. Programmers
may write methods for it.

Objects 7-35

ANSI X3.226-1994 Programming Language-Common Lisp

The generic function slot-missing may be called during evaluation of slot-value,
(setf slot-value), sloGbouudp, and slot-malcunbound. For each of these operations the
corresponding symbol for the operation argument is slot-value, setf, slot-boundp, and
slot-makunbound respectively.

The optional new-value argument to slot-missing is used when the operation is attempting to set,
the value of the slot.

If slot-missing returns, its values will be treated as follows:

l If the operation is setf or slot-makunbound, any values will be ignored by the caller.

l If the operation is slot-value, only the primary unlue will be used by the caller, and all other
values will be ignored.

l If the operation is slot-boundp, any boolean equivoZen2 of the primary value of the method
might be is used, and all other values will be ignored.

Exceptional Situations:
The default, method on slot-missing signals an error of type error.

See Also:
defclass, slot-exists-p, slot-value

Notes:
The set of arguments (including the class of the instance) facilitates defining methods on the
metaclass for slot-missing.

slot-unbound Standard Generic Function

Syntax:
slot-unbound c/ass instance slot-name + {r&w/t)*

Method Signatures:
slot-unbound (class t) instance slot-name

Arguments and Values:
c/ass--the class of the instance.

instance--the instance in which an attempt was made to read the unbound slot.

slot-name--the name of the unbound slot.

result-an object.

Description:
The generic function slot-unbound is called when an unbound slot is read in an instance whose
metaclass is standard-class. The default melhod signals an error of type unbound-slot. The
name slot of the unbound-slot condiiion is initialized to the name of the offending variable, and
the instance slot of the unbound-slot condition is initialized to the offending instance.

The generic function slot-unbound is not intended to be called by programmers. Programmers
may write methods for it. The function slot-unbound is called only indirectly by slot-value.

7-36 Objects

Programming Language-Common Lisp ANSI x3.226-1994

If slot-unbound returns, only the primary value will be used by the caller, and all other values
will be ignored.

Exceptional Situations:
The default method on slot-unbound signals an error of type unbound-slot.

See Also:
slot-makunbound

Notes:
An unbound slot may occur if no : initform form was specified for the slot and the sloi value has
not been set, or if slot-makunbound has been called on the slot.

slot-value Function

Syntax:
slot-value object dot-name -* value

Arguments and Values:
object-an object.

name-a symbol.

value-an object.

Description:
The function slot-value returns the value of the slol named slot-name in the object. If there is no
sloi named slot-name, slot-missing is called. If the slot is unbound, slot-unbound is called.

The macro setf can be used with slot-value to change the value of a slot.

Examples:

(defclass foo (1
((a :acceasor foo-a :initarg :a :initform 1)

(b :accessor foo-b :initarg :b)
(c :accessor foo-c :initform 3)))

-) #<STANDARD-CLASS FOO 244020371>
(setq fool (make-instance 'foo :a 'one :b 'too))

- #:<FOO 36325624>
(slot-value fool 'a) -+ ONE
(slot-value fool ‘b) -+ TWO
(slot-value fool 'c) --) 3
(setf (slot-value fool 'a) 9~10) -+ UN0
(slot-value fool 'a) + UN0
(defmethod foo-method ((x foe))

(slot-value x ‘a))
-) #<STANDARD-METHOD FOO-HETHOD (FOO) 42720573>

(foe-method fool) * UN0

Exceptional Situations:
If an attempt is made to read a slot and no slot of the name slot-name exists in the object,
slot-missing is called as follows:

Objects 7-37

ANSI X3.226-1994 Programming Language-Common Lisp

(slot-missing (class-of instance)
instance
slot-name
yslot-value)

(If slot-missing is invoked, its primary value is returned by slot-value.)

If an attempt is made to write a slot and no slot of the name slot-name exists in the object,
slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
'setf
new-value)

(If slot-missing returns in this case, any uaZues are ignored.)

The specific behavior depends on object’s metaclass. An error is never signaled if object has
metaclass standard-class. An error is always signaled if object has metaclass built-in-class. The
consequences are unspecified if object has any other metaclass-an error might or might not be
signaled in this situation. Note in particular that the behavior for conditions and structures is not
specified.

See Also:

Notes:

slot-missing, slot-unbound, with-slots

Although no implementation is required to do 80, implementors are strongly encouraged to
implement the function slot-value using the function slot-value-using-class described in the
Metaobject Protocol.

Implementations may optimize slot-value by compiling it inline.

method-qualifiers Standard Genetic Function

Syntax:
method-qualifiers method -+ qualifiers

Met hod Signatures:
method-quallflers (method standard-method)

Arguments and Values:
method-a method.

qualifiers-a proper list.

Description:
Returns a list of the quali$ers of the method.

Examples:

(defmethod sore-gf :before ((a integer)) a)
-) #<STANDARD-HETHOD SOHE-GF (:BEFORE) (INTEGER) 42736540)

(method-qualifiers *) + (:BEFORE)

7-38 Objects

Programming Language-Common Lisp ANSI x3.226-1994

See Also:
define-method-combination

no-applicable-met hod Standard Generic Function

Syntax:
no-applicable-method generic-function &rest function-arguments + (result}*

Met hod Signatures:
no-applicable-method (generic-function t)

&rest function-arguments

Arguments and Values:
generic-function-a generic funciion on which no applicable method was found.

function-arguments- arguments to the generic-function.

result-an object.

Description:
The generic function no-applicable-method is called when a generic function is invoked and no
method on that generic fin&on is applicable. The defaulf method signals an error.

The generic function no-applicable-method is not intended to be called by programmers. Pro-
grammers may write methods for it.

Exceptional Situations:
The default method signals an error of type error.

See Also:

no-next-method &Z?daTd Generic Function

Syntax:
no-next-method generic-function method &rest args -+ {result)*

Method Signatures:
no-next-method (generic-function standard-generic-function)

(method standard-method)
&rest args

Arguments and Values:
generic-function - generic function to which method belongs.

method - method that contained the call to call-next-method for which there is no next mefhod.

args - arguments to call-next-method.

Objects 7-39

ANSI X3.226-1994 Programming Language-Common Lisp ,

result-an object.

Description:
The genetic function no-next-method is called by call-next-method when there is no net2
method.

The generic function no-next-method is not intended to be called by programmers. Program-
mers may write methods for it.

Exceptional Situations:
The system-supplied method on nwnext-method signals an error of type error.

See Also:
call-next-method

remove-method Standard Generic Function

Syntax:
remove-method generic-function method -+ generic-function

Method Signatures:
remove-method (generic-function standard-generic-function)

method

Arguments and Values:
generic-function-a generic function.

method-a method.

Description:
The generic function remove-method removes a method from generic-function by modifying the
generic-function (if necessary).

remove-method must not signal an error if the method is not one of the methods on the generic-
function.

See Also:
And-method

7-40 Objects

Programming Languag*Common Lisp ANSI X3.226-1994

make-instance Standard Generic Function

Syntax:
make-instance c/ass &rest hitargs kkey Lalloo-other-keys -* instance

Met hod Signatures:
make-instance (c/ass standard-class) krest initargs

make-instance (c/ass symbol) krest initargs

Arguments and Values:
class-a class, or a symbol that names a class.

initargs-an initialization argument list.

instance-a fresh instance of class class.

Description:
The generic function make-instance creates and returns a new instance of the given c/ass.

If the second of the above methods is selected, that method invokes make-instance on the argu-
ments (find-class class) and initargs.

The initialization arguments are checked within make-instance.

The genetic function make-instance may be used as described in Section 7.1 (Object Creation
and Initialization).

Exceptional Situations:
If any of the initialization arguments has not been declared as valid, an error of type error is
signaled.

See Also:
defclass, class-of, allocate-instance, initialize-instance, Section 7.1 (Object Creation and
Initialization)

make-instances-obsolete StCZMhLTd Generic Function

Syntax:
make-instances-obsolete c/ass + class

Met hod Signatures:
make-instances-obsolete (class standard-class)

make-instances-obsolete (c/ass symbol)

Arguments and Values:
class-a class designator.

Objects 7-41

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
The fur&ion make-instances-obsolete has the effect of initiating the process of updating the
instances of the class. During updating, the generic function update-instance-for-redefined-class
will be invoked.

The generic function malc+instauces-obsolete is invoked automatically by the system when
defclass has been used to redefine an existing standard class and the set of local slots accessible
in an instance is changed or the order of slots in storage is changed. It can also be explicitly
invoked by the user.

If the second of the above methods is selected, that method invokes make-instances-obsolete on
(find-class c/ass).

Examples:

See Also:
update-instance-for-redeflued-class, Section 4.3.6 (Redefining Classes)

make-load-form ~hZdaTd Generic Function

Syntax:
make-load-form object &optional environment + creation-form[, initialiIa tion-form]

Met hod Signatures:
make-load-form (object standard-object) &opt ional environment

make-load-form (object structure-object) &optional environment

make-load-form (object condition) &optional environment

make-load-form (object class) topt ional environment

Arguments and Values:
object-an object.

environment-an environment object.

creation-form-a form.

initialization-form-a form.

Description:
The generic finction make-load-form creates and returns one or two forms, a creation-form and
an initialization-form, that enable load to construct an object equivalent to object. Environment
is an environment object corresponding to the lezical environment in which the forms will be
processed.

The file compiler calls make-load-form to process certain classes of literal objects; see Section
3.2.4.4 (Additional Constraints on Externalizable Objects).

Confoming programs may call make-load-form directly, providing object is a generalized instance
of standard-object, structure-object, or condition.

The creation form is a form that, when evaluated at load time, should return an object that is
equivalent to object. The exact meaning of equivalent depends on the type of object and is up to

7-42 Objects

Programming Language-Common Lisp ANSI X3.226-1994

the programmer who defines a method for make-load-form; see Section 3.2.4 (Literal Objects in
Compiled Files).

The initialization form is a form that, when evaluated at load time, should perform fur-
ther initialization of the object. The value returned by the initialization form is ignored. If
make-load-form returns only one value, the initialization form is nil, which has no effect. If
object appears as a constant in the initialization form, at load time it will be replaced by the
equivalent object constructed by the creation form; this is how the further initialization gains
access to the object.

Both the creation-form and the initialization-form may contain references to any extemalirable
object. However, there must not be any circular dependencies in creation forms. An example
of a circular dependency is when the creation form for the object x contains a reference to the
object Y, and the creation form for the object Y contains a reference to the object X. Initialization
forms are not subject to any restriction against circular dependencies, which is the reason that
initialization forms exist; see the example of circular data structures below.

The creation form for an object is always evaluated before the initialization form for that object.
When either the creation form or the initialization form references other objects that have not
been referenced earlier in the file being compiled, the compiler ensures that all of the referenced
objects have been created before evaluating the referencing form. When the referenced object is
of a type which the file compiler processes using make-load-form, this involves evaluating the
creation form returned for it. (This is the reason for the prohibition against circular references
among creation forms).

Each initialization form is evaluated as soon as possible after its associated creation form, as de-
termined by data flow. If the initialization form for an object does not reference any other objecfs
not referenced earlier in the file and processed by the file compiler using make-load-form, the
initialization form is evaluated immediately after the creation form. If a creation or initialization
form F does contain references to such objects, the creation forms for those other objects are
evaluated before F, and the initialization forms for those other objects are also evaluated before F
whenever they do not depend on the object created or initialized by F. Where these rules do not
uniquely determine an order of evaluation between two creation/initialization forms, the order of
evaluation is unspecified.

While these creation and initialization forms are being evaluated, the objects are possibly in an
uninitialized state, analogous to the state of an object between the time it has been created by
allocate-instance and it has been processed fully by initialize-instance. Programmers writing
methods for make-load-form must take care in manipulating objects not to depend on slots that
have not yet been initialized.

It is implementation-dependent whether load calls evaI on the forms or does some other operation
that has an equivalent effect. For example, the forms might be translated into different but
equivalent forms and then evaluated, they might be compiled and the resulting functions called
by load, or they might be interpreted by a special-purpose function different from eval. All that
is required is that the effect be equivalent to evaluating the forms.

The method specialized on class returns a creation form wing the name of the class if the class
has a proper name in environment, signaling an error of type error if it doea not have a proper
name. Evaluation of the creation form uses the name to find the class with that name, as if by
calling And-class. If a class with that name has not been defined, then a class may be computed
in an implementation-defined manner. If a class cannot be returned as the result of evaluating the
creation form, then an error of type error is signaled.

Both conforming implementations and conforming programs may further specialize
make-load-form.

Objects 743

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(defclass obj (1
((x :initarg :x :reader obj-xx)

(y :initarg :y :reader obj-y)
(dist :acceasor obj-dist)))

+ 1I<STABDABD-CLASS OBJ 250020030>
(defrethod shared-initialize :after ((self objl slot-nanes &rest keys)

(declare (ignore slot-nanes keys))
(u&leas (slot-boundp self ‘dist)

(setf (obj-dist self)
(sqrt (+ (expt (obj-x self 1 2) (expt (obj-y self 1 2) 1) 1))

+ SC(STABDABD-BETBOD SBABED-IHITIALIXE (:AFTEB) (OBJ T) 26266714>
(defrethod rake-load-fern ((self obj) &optional environment)

(declare (ignore environrent))
;; Note that this definition only vorks because X and Y do not
;; contain information vhich refers back to the object itself.
;; For a note general solution to this problem, see revised exanple belov.
‘(nake-instance ,,(class-of self)

:x ,,(obj-x self) :y ,,(obj-y self)))
* t<STABDABD-HEIHOD HAKE-LOAD-FOBB (083) 26267532>

(setq obji (make-instance ‘obj :x 3.0 :y 4.0)) + t<OBJ 26274136>
(obj-dist objl) --* 5.0
(make-load-fozm objl) + (MAKE-INSTANCE 'OBJ :X '3.0 :Y '4.0)

In the above example, au equivalent instance of obj is reconstructed by using the values of two of
its slots. The value of the third slot is derived from those two values.

Another way to write the make-load-form method in that example is to use
make-load-form-saving-slots. The code it generates might yield a slightly different result from -es
the make-load-form method shown above, but the operational effect will be the same. For exam-
ple:

;; Redefine method defined above.
(defmethod make-load-form ((self obj) &optional environment)

(rake-load-f orn-saving-slots self
:slot-nsmes '(x y)
:environment environment))

* #<STARDABD-BETBDD BAKE-LOAD-FDBB (OBJ) 42755655)
;; Try HAKE-LOAD-FOBB on object created above.
(rake-load-forrr objl)

--t (ALLOCATE-IPSTABCE ,*<STABDABD-CLASS OBJ 250020030~)’
(PRDGB

(SETF (SLOT-VALUE ‘#<OBJ 26274136) ‘Xl ‘3.0) *
(SETF (SLOT-VALUE ‘WOBJ 26274136> ‘Y) ‘4.0)
(IBITIALIZE-IBSTABCE ‘#<OBJ 26274136)))

In the following example, instances of my-frob are “interned,, in some way. An equivalent instance
is reconstructed by using the value of the name slot as a key for searching existing objecfs. In this
case the programmer has chosen to create a new object if no existing object is found; alternatively
an error could have been signaled in that case.

(defclass my-frob (1
((nare : initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob) &optional environment)
(declare (ignore enviroxament))
‘(find-my-frob ',(my-name self) :if-does-not-exist :create))

744 Objects

Programming Language-Common Lisp ANSI x3.226-1994

In the following example, the data structure to be dumped is circular, because each parent has a
list of its children and each child has a reference back to its parent. If make-load-form is called
on one object in such a structure, the creation form creates an equivalent object and fills in the
children slot, which forces creation of equivalent objects for all of its children, grandchildren, etc.
At this point none of the parent slots have been filled in. The initialization form fills in the parent
slot, which forces creation of an equivalent object for the parent if it was not already created.
Thus the entire tree is recreated at load time. At compile time, make-load-form is called once
for each object in the tree. All of the creation forms are evaluated, in implementation-dependent
order, and then all of the initialization forms are evaluated, also in implementation-dependent
order.

(defclass tree-with-parent () ((parent :accessor tree-parent)
(children :initarg :child.ren)))

(defmethod make-load-form ((x tree-vith-parent) &optional environment)
(declare (ignore environment))
(values

;; creation form
‘(make-instance ',(class-of x) :children ',(slot-value x 'children))
;; initialization form
'(setf (tree-parent ',x) ',(slot-value x 'parent))))

In the following example, the data structure to be dumped has no special properties and an
equivalent structure can be reconstructed simply by reconstructing the slots’ contents.

(defstruct my-struct a b c)
(defmethod make-load-form ((s my-struct) &optional environment)

(make-load-form-saving-slots s :environment environment))

Exceptional Situations:
The methods specialized on standard-object, structure-object, and condition all signal an error
of type error.

It is implementation-dependent whether calling make-load-form on a generalized instance of a
system class signals an error or returns creation and initialization forms.

See Also:
compile-file, make-load-form-saving-slots, Section 3.2.4.4 (Additional Constraints on Externaliz-
able Objects) Section 3.1 (Evaluation), Section 3.2 (Compilation)

Notes:
The file compiler calls make-load-form in specific circumstances detailed in Section 3.2.4.4
(Additional Constraints on Externalizable Objects).

Some implementations may provide facilities for defining new subclasses of classes which are
specified as system classes. (Some likely candidates include generic-function, method, and
stream). Such implementations should document how the file compiler processes instances of
such classes when encountered as literal objects, and should document any relevant methods for
make-load-form.

make-load-form-saving-slots Function

Syntax:
make-load-form-saving-slots object &key slot-names environment

4 creation-form, initialization-form

Objects 7-45

ANSI X3.226-1994 Programming Language-Common Lisp

Arguments and Values:
object-an object.

slot-names-a list.

environment-m environment object.

creation-form-a form.

initialization-form-a fem.

Description:
Returns forms that, when evaluated, will construct an object equivalent to object, without
ezecuting initialization forms. The slofs in the new object that correspond to initialized slob in
object are initialized using the values from object. Uninitialized slots in object are not initialized
in the new object. make-load-form-saving-slots works for any instance of standard-object or
structure-object.

Slot-names is a list of the names of the slots to preserve. If slot-names is not supplied, its value is
all of the local slots.

make-load-form-saving-slots returns two values, thus it can deal with circular structures.
Whether the result is useful in an application depends on whether the object’s type and slot
contents fully capture the application’s idea of the object’s state.

Environment is the environment in which the forms will be proceased.

See Also:
make-load-form, make-instance, setf , slot-value, slot-makunbound

Notes:
make-load-form-saving-slots can be useful in user-written make-load-form methods.

When the object is an instance of standard-object, make-load-form-saving-slots could return a
creation form that calls allocate-instance and an initialization form that contains calls to s&f of
slot-value and slot-m&unbound, though other functions of similar effect might actually be used.

wit h-accessors Macro

Syntax:
wit$ccyt;y ({slot-entry} *) instanceform { declaration} * {form} *

resu

slot-entfy::=(variabhame accessor-name)

Arguments and Values:
variabla-name-a variable name; not evaluated.

accessor-name-a fun&on name; not evaluated.

instanctform-a form; evaluated.

declaration-a declare expression; not evaluated.

746 Objects

Programming Language-Common Lisp ANSI X3.226- 1994

forms-an implicit pmgn.

results--the values returned by the forms.

Description:
Creates a lexical environment in which the slots specified by slot-entry are lexically available
through their accessors as if they were variables. The macro with-accessors invokes the appropri-
ate accessors to access the slots specified by slot-en&y. Both setf and setq can be used to set the
value of the slot.

Examples:

(defclass thing 0
((x :initarg :x :accessor thing-x)

(y :initarg :y :accessor thing-y)))
--) #<STANDARD-CLASS THING 250020173>

(defmethod (setf thing-x) :before (nev-x (thing thing))
(format t *I- &Changing X from 'D to 'D in -S.-X"

(thing-x thing) nev-x thing))
(setq thing1 (rake-instance 'thing :x 1 :y 2)) + #<THING 43135676>
(setq thing2 (rake-instance 'thing :x 7 :y 8)) + WTHING 43147374>
(pith-accessors ((xl thing-x) (yl thing-y))

thing1
(vith-accessors ((x2 thing-x) (y2 thing-y))

thing2
(list (list xl (thing-x thingi) yl (thing-y thing11

x2 (thing-x thingl) y2 (thing-y thing211
(setq xl (+ yl x2))
(list xl (thing-x thing11 yl (thing-y thingl)

x2 (thing-x thing21 y2 (thing-y thing2))
(setf (thing-x thing2) (list xl))
(list xl (thing-x thing11 yl (thing-y thingl)

x2 (thing-x thing21 y2 (thing-y thing2)))))
D Changing X fro8 1 to 9 in #<THING 43135676>.
D Changing X fro8 7 to (9) in #<THING 43147374>.
-+ ((I 12 2 7 7 8 8)

9
(99227788)
(9)
(9 9 2 2 (9) (9) 8 8))

Affected By:
defclass

Exceptional Situations:
The consequences are undefined if any accessor-name is not the name of an accessor for the
instance.

See Also:
with-slots, symbol-macrolet

Notes:
A with-accessors expression of the form:

(vith-accessors (dot-entry,... slot-entry,) instance-form form1 . . .formk)

Objects 7-47

ANSI X3.226-1994 Programming LanguageCommon Lisp

expands into the equivalent of

(let ((in instance-form) 1
(sywbol-uacrolet (Q1 . . . Q, 1 form1 . . .fOr’nQ) >

where Q is

(variable-name+ () (accessor-name+ in))

with-slots Macro

Syntax:
* wi~-jlots,~~~/ot-e~t~}) instance-form { declaration} * { form) *

resll

slot-en try ::=slot-name 1 (variable-name slot-name)

Arguments and Values:
slot-name-a slot name; not evaluated.

variablcname-a variable name; not evaluated.

instance-form-a form; evaluted to produce instance.

instance-an object.

declaration-a declare ezpression; not evaluated.

forms-an implicit progn.

results-the values returned by the forms.

Descyiption:
The macro with-slots establishes a lexical environment for referring to the slots in the instance
named by the given slot-names as though they were variables. Within such a context the value of
the slot can be specified by using its slot name, as if it were a lexically bound variable. Both s&f
and s&q can be used to set the value of the slot.

The macro with-slots translates an appearance of the slot name as a variable into a call to
slot-value.

Examples:

(defclass thing 0
((x :initarg :x :accessor thing-x)

(y :initarg :y :accesaor thing-y)))
- #<STAgDUD-CLASS MIlDG 250020173>

(defmethod (setf thing-x) :before (new-x (thing thing))
(foraat t "'tChauging X from 'D to 'D in 'S.'X08

(thing-x thing) new-x thing))
(setq thing (Ilake-instance ‘thing :x 0 :y 1)) -+ X<THIIG 62310540>
(with-slots (x y) thing (incf x) (incf y)) -+ 2
(values (thing-x thing) (thing-y thing)) + 1, 2

7-48 Objects

Programming Languag~Common Lisp ANSI X3.226-1994

(setq thing1 (rske-instance 'thing :I 1 :y 2)) 4 #<THING 43135676>
(setq thing2 (make-instance 'thing :x 7 :y 8)) + ~<TNING 43147374>
(with-slots ((xl x) (yl y))

thing1
(Pith-slots ((x2 x) (~2 y))

thing2
(list (list xl (thing-x thingl) yl (thing-y thingi)

x2 (thing-x thing21 y2 (thing-y thinga))
(setq xl (+ yl x2))
(list xl (thing-x thing11 yl (thing-y thingl)

x2 (thing-x thingl) y2 (thing-y thing211
(setf (thing-x thing21 (list xl))
(list xl (thing-x thing11 yl (thing-y thing11

x2 (thing-x thing21 y2 (thing-y thing2)))))
D Changing X from 7 to (9) in #<THING 43147374).
-) ((I 12 2 7 7 8 8)

9
(99227788)
(9)
(9 9 2 2 (9) (9) 8 8))

Affected By:
clefclass

Exceptional Situations:
The consequences are undefined if any slot-name is not the name of a slot in the instance.

See Also:
with-accessors, slot-value, symbol-macrolet

Notes:
A with-slots expression of the form:

(vith-slots(dOt-e&f&... slot-entry,) instance-form form1 . . .formc)

expands into the equivalent of

(let ((in instance-form))
(symbol-macrolet <& . ..&.,) ~OTY?Q . ..~o~YTQ))

where Qi is

(slot-entryi () (slot-value in ‘slot-entryi))

if slot-entryi is a symbol and is

(variable-namei () (slot-value in ‘slot-namei))

if slot-entryi is of the form

(variable-namei slot-namei)

Objects 7-49

ANSI X3.226-1994 Programming Language-Common Lisp ,

defclass Macro

Syntax:
defclass class-name ({superclass-name}*) ((slot-specifier)*) [I class-option]

4 new-class

slot-specifier:= slot-name 1 (slof-name [J slot-option])

slot-name::= symbol

slot-option::= { :readar reader-function-name}* 1
{ :writer writer-function-name}* 1
{ : accessor reader-function-name)* 1
{ :allocation allocation-type) 1
{ : ini t arg initarg-name} * 1
(: initf arm form} 1
{ :type type-specifier} 1
{:documentation string}

function-name::= {symbol ((setf symbol)}

c/ass-option::= (:def ault-initargs . initarg-list) 1
(:documentation string) 1
(:retaclass class-name)

Arguments and Values:
C/ass-name-a non-nil symbol.

Superclass-name-a non-nil symbol.

Slot-name-a symbol. The slot-name argument is a symbol that is syntactically valid for use as a
variable name.

Reader-function-namta non-nil symbol. : reader can be supplied more than once for a given slot.

Writer-function-name-a generic function name. :writer can be supplied more than once for a
given slot.

Reader-function-name-a non-nil symbol. :accessor can be supplied more than once for a given
slot.

Allocation-type-(member : instance :class). :allocation can be supplied once at most for a
given slot.

Initarg-name-a symbol. : initarg can be supplied more than once for a given slot.

Form-a form. : init-f om can be supplied once at most for a given slot.

Type-specifier-a type specifier. : type can be supplied once at most for a given slot.

Class-option- refers to the class as a whole or to all class slots.

Initarg-list-a list of alternating initialization argument names and default initial value forms.
: def ault-initargs can be supplied at most once.

Class-name-a non-nil symbol. :retaclass can be supplied once at most.

7-50 Objects

Programming Language-Common Lisp ANSI X3.226-1994

new-class-the new class object.

Description:
The macro defclass defines a new named class. It returns the new class object as its result.

The syntax of defclsss provides options for specifying initialization arguments for slots, for
specifying default initialization values for slots, and for requesting that methods on specified
generic functions be automatically generated for reading and writing the values of slots. No
reader or writer functions are defined by default; their generation must be explicitly requested.
However, slots can always be accessed using slot-value.

Defining a new class also causes a type of the same name to be defined. The predicate
(typep object class-name) returns true if the class of the given object is the class named by
class-name itself or a subclass of the class class-name. A class object can be used as a type speci-
fier. Thus (typep object class) returns true if the class of the object is class itself or a subclass of
class.

The class-name argument specifies the proper name of the new class. If a class with the same
proper name already exists and that class is an instance of standard-class, and if the defclass
form for the definition of the new class specifies a class of class standard-class, the existing class
is redefined, and instances of it (and its subclasses) are updated to the new definition at the time
that they are next accessed. For details, see Section 4.3.6 (Redefining Classes).

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list
is empty, then the superclass defaults depending on the metaclass, with standard-object being
the default for standard-class.

The new class will inherit slots and methods from each of its direct superclasses, from their direct
superclasses, and so on. For a discussion of how slots and methods are inherited, see Section 4.3.4
(Inheritance).

The following slot options are available:

a The :reader slot option specifies that an unqualijed method is to be defined on the
generic function named reader-function-name to read the value of the given slot.

l The :vriter slot option specifies that an unqualified method is to be defined on the
generic function named writer-function-name to write the value of the slot.

l The :accessor slot option specifies that an unqualified method is to be defined on
the generic function named reader-function-name to read the value of the given slot
and that an unqualified method is to be defined on the generic function named
(setf reader-function-name) to be used with s&f to modify the value of the slot.

l The :z~ocat.ion slot option is used to specify where storage is to be allocated for the
given slot. Storage for a slot can be located in each iustauce or in the Class object itself.
The value of the allocation-type argument can be either the keyword :instance or the
keyword :class. If the : allocation slot option is not specified, the effect is the same as
specifying : allocation : instance.

- If allocation-type is :instance, a local slot of the name slot-name is allocated in
each instance of the class.

- If allocation-type is :class, a shared slot of the given name is allocated in the
class object created by this defclass form. The value of the slot is shared by all
instances of the class. If a class Cl defines such a shared slot, any subclass Cz of
Cr will share this single slot unless the defclass form for C2 specifies a slot of the

-Objects 7-51

ANSI X3.226-1994 Programming Language-Common Lisp

same name or there is a superclass of Cz that precedes Cl in the class precede
list of Cz and that defines a slot of the same name.

l The : initfom slot option is used to provide a default initial value form to be used in
the initialization of the slot. This form is evaluated every time it is used to initialize the
slot. The lexical environment in which this form is evaluated is the lexical environment
in which the defclass form was evaluated. Note that the lexical environment refers both
to variables and to functions. For local slots, the dynamic environment is the dynamic
environment in which make-instance is called; for shared slots, the dynamic environment
is the dynamic environment in which the defcIass form was evaluated. See Section 7.1
(Object Creation and Initialization).

No implementation is permitted to extend the syntax of defclass to allow
(dot-name form) as an abbreviation for (slot-name :init.fom form).

l The : initarg slot option declares an initialization argument named initarg-name and
specifies that this initialization argument initializes the given slot. If the initialization
argument has a value in the call to initialize-instance, the value will be stored into
the given slot, and the slot’s : initforr slot option, if any, is not evaluated. If none of
the initialization arguments specified for a given slot has a value, the slot is initialized
according to the : initforr slot option, if specified.

l The : type slot option specifies that the contents of the slot will always be of the specified
data type. It effectively declares the result type of the reader generic function when
applied to an object of this class. The consequences of attempting to store in a slot a
value that does not satisfy the type of the slot are undefined. The : type slot option is
further discussed in Section 7.5.3 (Inheritance of Slots and Slot Options).

l The :docurentationslot option provides a documentation string for the slot.
:documentation can be supplied once at most for a given slot.

Each class option is an option that refers to the class as a whole. The following class options are
available:

l The :default-initargs class option is followed by a list of alternating initialization ar-
gument names and default initial value forms. If any of these initialization arguments
does not appear in the initialization argument list supplied to make-instance, the cor-
responding default initial value form is evaluated, and the initialization argument name
and the form’s value are added to the end of the initialization argument list before the in-
stance is created; see Section 7.1 (Object Creation and Initialization). The default initial
value form is evaluated each time it is used. The lexical environment in which this form
is evaluated is the lexical environment in which the defclass form was evaluated. The
dynamic environment is the dynamic environment in which make-instance was called.
If an initialization argument name appears more than once in a :default-initargs class
option, an error is signaled.

l The :docruentation class option causes a documentation string to be attached with the
class object, and attached with kind type to the class-name. :docmentation can be
supplied once at most.

l The :metaclass class option is used to specify that instances of the class being defined
are to have a different metaclass than the default provided by the system (the class
standard-class).

Note the following rules of defclass for standard classes:

7-52 Objects

Programming Language-Common Lisp ANSI X3.226-1994

0 It is not required that the superclasses of a class be defined before the defclass form for
that class is evaluated.

0 All the superclasses of a class must be defined before an instance of the class can be
made.

l A class must be defined before it can be used as a parameter specializer in a defmethod
form.

The object system can be extended to cover situations where these rules are not obeyed.

Some slot options are inherited by a class from its superclasses, and some can be shadowed
or altered by providing a local slot description. No class options except :default-initargs are
inherited. For a detailed description of how slots and slot options are inherited, see Section 7.5.3
(Inheritance of Slots and Slot Options).

The options to defclazs can be extended. It is required that all implementations signal an error if
they observe a class option or a slot option that is not implemented locally.

It is valid to specify more than one reader, writer, accezsor, or initialization argument for a
slot. No other slot option can appear more than once in a single slot description, or an error is
signaled.

If no reader, writer, or accessor is specified for a slot, the slot can only be accessed by the junc-
tion slot-value.

If a defclass form appears as a top level form, the compiler must make the class name be rec-
ognized as a valid type name in subsequent declarations (aa for deftype) and be recognized as a
valid class name for defmethod parameter specialiters and for use as the :metaclass option of
a subsequent defclass. The compiler must make the class definition available to be returned by
find-class when its environment argument is a value received as the environment parameter of a
macro.

Exceptional Situations:
If there are any duplicate slot names, an error of type program-error is signaled.

If an initialization argument name appears more than once in :default-initargs class option, an
error of type program-error is signaled.

If any of the following slot options appears more than once in a single slot description, an error of
type program-error is signaled: : allocation, : initf arm, : type, :documentation

It is required that all implementations signal an error of type program-error if they observe a
class option or a slot option that is not implemented locally.

See Also:
documentation, initialize-instance, make-instance, slot-value, Section 4.3 (Classes), Section
4.3.4 (Inheritance), Section 4.3.6 (Redefining Classes), Section 4.3.5 (Determining the Class
Precedence List), Section 7.1 (Object Creation and Initialization)

defgeneric Macro

Syntax:
defgeneric function-name gfi/ambda-list 1 ioption ({lmcthod-description}*]

-+ new-generic

Objects 7-53

ANSI X3.226-1994 Programming Language-Common Lisp

option:.+ : argument-p recedence-order {parameter-name}+) 1

(declare {&dec/aration}+) 1

(: documentation gfidocumentation) 1

(:method-combination method-combination { method-COmbinatiOfl-argUfflent)*) 1

(:generic-function-class generic-function-class) 1

(:rethod-class method-c/ass)

method-description::=(:method {method-qualifier}* specialized-lambda-list

Arguments and Values:
[{declaration}* 1 documentation]I {form}*)

function-name-a function name.

generic-function-class -a non-nil symbol naming a class.

gfideclaration-an optimize declaration specifier; other declaration specifiers are not permitted.

&documentation-a string; not evaluated.

gf-lambda-list-a generic function lambda list.

method-class-a non-nil symbol naming a class.

method-combination-argument-an object.

method-combination-name-a symbol naming a method combination type.

method-qualifiers, specialized-lambda-list, declarations, documentation, forms-as per defmethod.

new-generic-the generic finction object.

parameter-name-a symbol that names a required parameter in the lambda-list. (If the
:argument-precedence-order option is specified, each required parameter in the lambda-list must
be used exactly once as a parameter-name.)

Description:
The macro defgeneric is used to define a generic function or to specify options and declarations
that pertain to a generic function as a whole.

If function-name is a list it must be of the form (setf symbol). If (fboundp function-name) is
false, a new generic function is created. If (fdefinition function-name) is a generic function,
that generic function is modified. If function-name names an ordinary function, a macro, or a
special operator, an error is signaled.

The effect of the defgeneric macro is as if the following three steps were performed: first, methods
defined by previous defgeneric forms are removed; second, ensure-generic-function is called; and
finally, methods specified by the current defgeneric form are added to the generic function.

Each method-description defines a method on the generic function. The lambda list of each method
must be congruent with the lambda list specified by the gf-lambda-list option. If no method
descriptions are specified and a generic function of the same name does not already exist, a
generic function with no methods is created.

The gf-lambda-list argument of defgeneric specifies the shape of lambda lists .for the methods
on this generic function. All methods on the resulting generic function must have lambda lists
that are congruent with this shape. If a defgeneric form is evaluated and some methods for tha’
generic function have lambda lists that are not congruent with that given in the defgenerid for,. ,
an error is signaled. For further details on method congruence, see Section 7.6.4 (Congruent
Lambda-lists for all Methods of a Generic Function).

7-54 Objects

Programming Language-Common Lisp ANSI X3.226-1994

The generic function passes to the method all the argument values passed to it, and only those;
default values are not supported. Note that optional and keyword arguments in method defini-
tions, however, can have default initial value forms and can use supplied-p parameters.

The following options are provided. Except as otherwise noted, a given option may occur only
once.

l The :argument-precedence-order option is used to specify the order in which the required
arguments in a call to the generic function are tested for specificity when selecting a
particular method. Each required argument, as specified in the gfilambda-list argument,
must be included exactly once as a parameter-name so that the full and unambiguous
precedence order is supplied. If this condition is not met, an error is signaled.

l The declare option is used to specify declarations that pertain to the generic function.

An optimize declaration specifier is allowed. It specifies whether method selection should
be optimized for speed or space, but it has no effect on methods. To control how a
method is optimized, an optimize declaration must be placed directly in the defmethod
form or method description. The optimization qualities speed and space are the only
qualities this standard requires, but an implementation can extend the object system to
recognize other qualities. A simple implementation that has only one method selection
technique and ignores optimize declaration specifiers is valid.

The special, ftype, function, inline, notinline, and declaration declarations are not per-
mitted. Individual implementations can extend the declare option to support additional
declarations. If an implementation notices a declaration specifier that it does not support
and that has not been proclaimed as a non-standard declaration identifier name in a
declaration proclamation, it should issue a warning.

The declare option may be specified more than once. The effect is the same as if the lists
of declaration specifiers had been appended together into a single list and specified as a
single declare option.

l The :documentation argument is a documentation string to be attached to the generic
function object, and to be attached with kind function to the function-name.

l The :generic-function-class option may be used to specify that the generic func-
tion is to have a different class than the default provided by the system (the class
standard-generic-function). The class-name argument is the name of a class that can
be the class of a generic function. If function-name specifies an existing generic function
that has a different value for the :generic-function-class argument and the new generic
function class is compatible with the old, change-class is called to change the class of the
generic function; otherwise an error is signaled.

l The :method-class option is used to specify that all methods on this generic func-
tion are to have a different class from the default provided by the system (the class
standard-method). The class-name argument is the name of a class that is capable of
being the class of a method.

l The :method-combination option is followed by a symbol that names a type of method
combination. The arguments (if any) that follow that symbol depend on the type of
method combination. Note that the standard method combination type does not support
any arguments. However, all types of method combination defined by the short form of
define-method-combination accept an optional argument named order, defaulting to
:most-specif ic-first, where a value of :nost-specif ic-last reverses the order of the
primary methods without affecting the order of the auxiliary methods.

Objects 7-55

ANSI X3.226-1994 Programming Language-Common Lisp

The method-description arguments define methods that will be associated with the genetic func-
tion. The method-qualifier and specialized-lambda-list arguments in a method description are the
same as for defmethod.

The form arguments specify the method body. The body of the method is enclosed in an implicit
block. If function-name is a symbol, this block bears the same name as the generic function. If
function-name is a list of the form (setf symbol), the name of the block is symbol.

Implementations can extend defgeneric to include other options. It is required that an implemen-
tation signal an error if it observes an option that is not implemented locally.

defgeneric is not required to perform any compile-time side effects. In particular, the methods
are not installed for invocation during compilation. An implementation may choose to store
information about the generic function for the purposes of compile-time error-checking (such as
checking the number of arguments on calls, or noting that a definition for the function name has
been seen).

Exceptional Situations:
If function-name names an ordinary function, a macro, or a special operator, an error of type
program-error is signaled.

Each required argument, as specified in the &lambda-list argument, must be included exactly
once as a parameter-name, or an error of type program-error is signaled.

The lambda list of each method specified by a method-description must be congruent with the
lambda list specified by the gfilambda-list option, or an error of type error is signaled.

If a defgeneric form is evaluated and some methods for that generic function have lambda lists
that are not congruent with that given in the defgeneric form, an error of type error is signaled.

A given option may occur only once, or an error of type program-error is signaled.

If function-name specifies an existing generic function that has a different value for the
:generic-function-class argument and the new generic function class is compatible with the
old, change-class is called to change the class of the generic function; otherwise an error of type
error is signaled.

Implementations can extend defgeneric to include other options. It is required that an imple-
mentation signal an error of type program-error if it observes an option that is not implemented
locally.

See Also:
defmethod, documentation, ensure-generic-function, generic-function, Section 7.6.4 (Congru-
ent Lambda-lists for all Methods of a Generic Function)

defmethod Macro

Syntax:
defmethod function-name {method-qualifier}* specialized-lambda-list

[{ decbration}* 1 documentation] {form}*

-) new-method

function-name::= {symbol 1 (setf symbol)}

7-56 Objects

Programming Language-Common Lisp ANSI X3.226-1994

method-qualifier:= non-list

specialized-lambda&i::= ({ var 1 (var parameter-speciakzer-name)}*
[&optional { var 1 (var Chitform [supplied-p-paramctef] I)}*1
C&rest varl
[&key{ var 1 ((var 1 (keyword var)) C ini orm [supplied-p;paramctcr] I)}* tf

[&allow-other-keys]]
C&aux { vaf I (var [initform])}*I)

parameter-specialiter-name::= symbol I (eql l ql-spccializer-form)

Arguments and Values:
declaration-a declare expression; not evaluated.

documentation-a string; not evaluated.

var-a variable name.

eql-specializer-form-a form.

Form-a form.

hitform-a form.

Supplied-p-parameter-variable name.

new-method-the new method object.

Description:
The macro defmethod defines a method on a generic function.

If (fbomdp function-name) is nil, a generic function is created with default values for the ar-
gument precedence order (each argument is more specific than the arguments to its right in
the argument list), for the generic function class (the class standard-generic-function), for the
method class (the class standard-method), and for the method combination type (the standard
method combination type). The lambda list of the generic function is congruent with the lambda
list of the method being defined; if the defmethod form mentions keyword arguments, the lambda
list of the generic function will mention &key (but no keyword arguments). If function-name
names an ordinary function, a macro, or a special operator, an error is signaled.

If a generic function is currently named by function-name, the lambda list of the method must be
congruent with the lambda list of the generic function. If this condition does not hold, an error is
signaled. For a definition of congruence in this context, see Section 7.6.4 (Congruent Lambda-lists
for all Methods of a Generic Function).

Each method-qualifier argument is an object that is used by method combination to identify the
given method. The method combination type might further restrict what a method qualifier can
be. The standard method combination type allows for unqualified methods and methods whose
sole qualifier is one of the keywords :before, :after, or :aroun&

The specialized-lambda-list argument is like an ordinary lambda list except that the names of
required parameters can be replaced by specialized parameters. A specialized parameter is a
list of the form (var parameter-specializer-name). Only required parameters can be special-
ized. If parameter-specializer-name is a symbol it names a class; if it is a list, it is of the form
(eql eql-specializer-form) . The parameter specializer name (eql eql-specializcr-form) indicates that
the corresponding argument must be eql to the object that is the value of eql-speciahr-form for
the. method to be applicable. The eql-specializer-form is evaluated at the time that the &zxpansion
of the defmethod macro is evaluated. If no parameter specialirer name is specified for a given
required parameter, the parameter specializer defaults to the class t. For further discussion, see

Objects 7-57

. . . . _ __-

ANSI X3.226-1994 Programming Language-Common Lisp

Section 7.6.2 (Introduction to Methods).

The form arguments specify the method body. The body of the method is enclosed in an implicit
block. If function-name is a symbol, this block bears the same name as the generic junction. If
junction-name is a lid of the form (setf symbol), the name of the block is symbol.

The class of the method object that is created is that given by the method class option of the
generic function on which the method is defined.

If the generic function already has a method that agrees with the method being defined on
parameter specializers and qualifiers, defmethod replaces the existing method with the one now
being defined. For a definition of agreement in this context. see Section 7.6.3 (Agreement on
Parameter Specialisers and Qualifiers).

The parameter speeializers are derived from the parameter specializer names as described in
Section 7.6.2 (Introduction to Methods).

The expansion of the defmethod macro “refers to” each specialized parameter (see the descrip-
tion of ignore within the description of declare). This includes parameters that have an explicit
parameter specializer name oft. This means that a compiler warning does not occur if the body
of the method does not refer to a specialized parameter, while a warning might occur if the body
of the method does not refer to an unspecialized parameter. For this reason, a parameter that
specializes on t is not quite synonymous with an unspecialized parameter in this context.

Declarations at the head of the method body that apply to the method’s lambda variables are
treated as bound declarations whose scope is the same as the corresponding bindings.

Declarations at the head of the method body that apply to the functional bindings of
call-next-method or next-method-p apply to references to those functions within the method
body forms. Any outer bindings of the function names call-next-method and next-method-p,
and declarations associated with such bindings are shadowed2 within the method body forms.

The scope of free declarations at the head of the method body is the entire method body, which
includes any implicit local function definitions but excludes initialization forms for the lambda
variables.

defmethod is not required to perform any compile-time side effects. In particular, the methods
are not installed for invocation during compilation. An implementation may choose to store
information about the generic function for the purposes of compile-time error-checking (such as
checking the number of arguments on calls, or noting that a definition for the function name has
been seen).

Documentation is attached as a documentation string to the method object.

Affected By:
The definition of the referenced generic function.

Exceptional Situations:
If function-name names an ordina y function, a macro, or a special operator, an error of type
error is signaled.

If a generic function is currently named by function-name, the lambda list of the method must be
congruent with the lambda list of the generic function, or an error of type error is signaled,

See Also:
defgeneric, documentation, Section 7.6.2 (Introduction to Methods), Section 7.6.4 (Congruent
Lambda-lists for all Methods of a Generic Function), Section 7.6.3 (Agreement on Parameter
Specializers and Qualifiers), Section 3.4.11 (Syntactic Interaction of Documentation Strings and
Declarations)

7-58 Objects

Programming Language-Common Lisp ANSI X3.226-1994

find-class Accessor

Syntax:
find-class symbol &optional errorp environment -+ class

(setf (find-class symbol &optional errorp environment) new-c/ass)

Arguments and Values:
symbol-a symbol.

errorp -a generalized boolean. The default is true.

environment - same as the &environment argument to macro expansion functions and is used
to distinguish between compile-time and run-time environments. The &environment argument
has dynamic extent; the consequences are undefined if the &environment argument is referred to
outside the dynamic extent of the macro expansion function.

class-a class object, or nil.

Description:
Returns the class object named by the symbol in the environment. If there is no such class, nil is
returned if errorp is false; otherwise, if errorp is true, an error is signaled.

The class associated with a particular symbol can be changed by using setf with And-class; or,
if the new class given to setf is nil, the class association is removed (but the class object itself
is not affected). The results are undefined if the user attempts to change or remove the class
associated with a symbol that is defined as a type specifier in this standard. See Section 4.3.7
(Integrating Types and Classes).

When using setf of And-class, any error-p argument is evaluated for effect, but any values it re-
turns are ignored; the errorp parameter is permitted primarily so that the environment parameter
can be used.

The environment might be used to distinguish between a compile-time and a run-time environ-
ment.

Exceptional Situations:
If there is no such class and errorp is true, find-class signals an error of type error.

See Also:
defmacro, Section 4.3.7 (Integrating Types and Classes)

next-method-p Local Function

Syntax:
next-method-p (no arguments) -* generalized-boolean

Arguments and Values:
generalized-boolean-a generalized boolean.

Objects 7-59

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
The locally defined function next-method-p can be used within the body forms (but not the
lambda list) defined by a method-defining form to determine whether a next method exists.

The function next-method-p has lezical scope and indefinite eztent.

Whether or not next-method-p is &Sound in the global environment is implementation-dependent;
however, the restrictions on redefinition and shadowing of next-method-p are the same as for
symbols in the COWWON-LISP package which are fbound in the global environment. The conse-
quences of attempting to use next-method-p outside of a method-defining form are undefined.

See Also:
call-next-method, defmethod, call-method

~~ ~

call-method, make-method Local Macro

Syntax:
call-method method &optional next-method-list + {result}*

make-method form + method-object

Arguments and Values:
method-a method object, or a list (see below); not evaluated.

method-object-a method object.

next-method-list-a list of method objects; not evaluated.

results-the values returned by the method invocation.

Description:
The macro call-method is used in method combination. It hides the implementation-dependent
details of how methods are called. The macro call-method has lexical scope and can only be used
within an effective method form.

Whether or not call-method is fbound in the global environment is implementation-dependent;
however, the restrictions on redefinition and shadowing of call-method are the same as for sym-
bols in the COH?4ON-LISP package which are fbound in the global environment. The consequences of
attempting to use call-method outside of an effective method form are undefined.

The macro call-method invokes the specified method, supplying it with arguments and with
definitions for call-next-method and for next-method-p. If the invocation of call-method is
lexically inside of a make-method, the arguments are those that were supplied to that method.
Otherwise the arguments are those that were supplied to the generic function. The definitions of
call-next-method and next-method-p rely on the specified next-method-list.

If method is a list, the first element of the list must be the symbol make-method and the second
element must be a form. Such a list specifies a method object whose method function has a body
that is the given form.

Next-method-list can contain method objects or lists, the first element of which must be the
symbol make-method and the second element of which must be a form.

7-60 Objects

Programming Language-Common Lisp ANSI X3.226-1994

Those are the only two places where make-method can be used. The form used with
make-method is evaluated in the null lexical environment augmented with a local macro
definition for call-method and with bindings named by symbols not accessible from the
CO~OB-LISP-USERpactage.

The call-next-method function available to method will call the first method in next-method-list.
The call-next-method function available in that method, in turn, will call the second method in
next-method-list, and so on, until the list of next methods is exhausted.

If next-method-list is not supplied, the call-next-method function available to method signals an
error of type control-error and the next-method-p function available to method returns nil.

Examples:

See Also:
call-next-method, deAne-method-combination, next-method-p

call-next-method Local Function

Syntax:
call-next-method &rest args + (result}*

Arguments and Values:
arg-an object.

results-the values returned by the method it calls.

Description:
The function call-next-method can be used within the body forms (but not the lambda list) of a
method defined by a method-defining form to call the next method.

If there is no next method, the generic function no-next-method is called.

The type of method combination used determines which methods can invoke call-next-method.
The standard method combination type allows call-next-method to be used within primary
methods and around methods. For generic functions using a type of method combination defined
by the short form of define-method-combination, call-next-method can be used in around
methods only.

When call-next-method is called with no arguments, it passes the current method’s original
arguments to the next method. Neither argument defaulting, nor using s&q, nor rebinding
variables with the same names as parameters of the method affects the values call-next-method
passes to the method it calls.

When call-next-method is called with arguments, the next method is called with those argu-
ments.

If call-next-method is called with arguments but omits optional arguments, the next method
called defaults those arguments.

The function call-next-method returns any values that are returned by the next method.

The function call-next-method has lexical scope and indefinite extent and can only be used
within the body of a method defined by a method-defining form.

Objects 7-61

ANSI X3.226-1994 Programming Language-Common Lisp

Whether or not call-next-method is fbound in the global environment is implementation-
dependent; however, the restrictions on redefinition and shadowing of call-next-method are
the same as for symbols in the CCMUON-LISP package which are fbound in the global environment.
The consequences of attempting to use call-next-method outside of a method-defining form are
undefined.

Affected By:
defmethod, call-method, deiIne+method-combination

Exceptional Situations:
When providing arguments to call-next-method, the following rule must be satisfied or an
error of type error should be signaled: the ordered set of applicable methods for a changed set of
arguments for call-next-method must be the same as the ordered set of applicable methods for
the original arguments to the generic function. Optimizations of the error checking are possible,
but they must not change the semantics of call-next-method.

See Also:
define-method-combination, defmethod, next-method-p, n-next-method, call-method, Sec-
tion 7.6.6 (Method Selection and Combination), Section 7.6.6.2 (Standard Method Combination),
Section 7.6.6.4 (Built-in Method Combination Types)

compute-applicable-methods $hndaTd Genetic Function

Syntax:
compute-applicable-methods generic-function function-arguments + methods

Met hod Signatures:
compute-applicable-methods (generic-function standard-generic-function)

Arguments and Values:
generic-function-a generic function.

function-arguments-a list of arguments for the generic-function.

methods-a list of method objects.

Description:
Given a generic-function and a set of function-arguments, the function compute-applicable-methods
returns the set of methods that are applicable for those arguments sorted according to precedence
order. See Section 7.6.6 (Method Selection and Combination).

Affected By:
defmethod

See Also:
Section 7.6.6 (Method Selection and Combination)

7-62 Objects

Programming Language-Common Lisp ANSI X3.226-1994

define-method-combination

Syntax:
define-method-combination name [lshort-form-option]

--t name

define-method-combination name lambda-list
({method-group-specifier}*)
[(:srguments . args-/ambda-list)]
[(:generic-function generic-function-symbo/)]
[{ declaration} * 1 documentation 1
{form}*

-+ name

short-form-option::=: documentation documentation 1

: identity-vith-one-argument identity-with-one-argument 1

: operator operator

method-group-specifier::=(name {(qualifier-pattern}+] predicate} [Ilong-form-optionl)

long-form-option::=:description description 1

:order order I

: required required-p

Arguments and Values:
args-lambda-list-a define-method-combination arguments lambda list.

declaration-a declare ezpression; not evaluated.

description-a format control.

documentation-a string; not evaluated.

forms-an implicit progn that must compute and return the form that specifies how the methods
are combined, that is, the effective method.

generic-function-symbol-a symbol.

identity-with-one-argument-a generalized boolean.

lambda-list-ordina y lambda list.

name-a symbol. Non-keyword, non-nil symbols are usually used.

operator-an operator. Name and operator are often the same symbol. This is the default,, but it
is not required.

order-::most-specific-first or :most-specific-last; evaluated.

predicate-a symbol that names a function of one argument that returns a generalized boolean.

qualifier-pattern-a list, or the symbol *.

required-p-a generalized boolean.

Objects 7-63

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
The macro define-method-combination is used to define new types of method combination.

There are two forms of define-method-combination. The short form is a simple facility for the
cases that are expected to be most commonly needed. The long form is more powerful but more
verbose. It resembles defmacro in that the body is an expression, usually using backquote, that
computes a form. Thus arbitrary control structures can be implemented. The long form also
allows arbitrary processing of method qualifiers.

Short Form

The short form syntax of define-method-combination is recognized when the
second subform is a non-nil symbol or is not present. When the short form is
used, name is defined as a type of method combination that produces a Lisp form
(operator method-call method-call . . .). The operator is a symbol that can be the name
of a function, macro, or special operator. The operator can be supplied by a keyword
option; it defaults to name.

Keyword options for the short form are the following:

l The :docurentation option is used to document the method-combination type;
see description of long form below.

l The :identity-with-one-argument option enables an optimization when its value
is true (the default is false). If there is exactly one applicable method and it is a
primary method, that method serves as the effective method and operator is not
called. This optimization avoids the need to create a new effective method and
avoids the overhead of a function call. This option is designed to be used with
operators such as progn, and, +, and max.

l The :operator option specifies the name of the operator. The operator argument
is a symbol that can be the name of a function, macro, or special form.

These types of method combination require exactly one qualifier per method. An error is
signaled if there are applicable methods with no qualifiers or with qualifiers that are not
supported by the method combination type.

A method combination procedure defined in this way recognizes two roles for methods.
A method whose one qualifier is the symbol naming this type of method combination is
defined to be a primary method. At least one primary method must be applicable or an
error is signaled. A method with :around as its one qualifier is an auxiliary method that
behaves the same as an around method in standard method combination. The function
call-next-method can only be used in around methods; it cannot be used in primary
methods defined by the short form of the define-method-combination macro.

A method combination procedure defined in this way accepts an optional argument
named order, which defaults to :rost-specific-first. A value of :rost-specific-last
reverses the order of the primary methods without affecting the order of the auxiliary
methods.

The short form automatically includes error checking and support for around methods.

For a discussion of built-in method combination types, see Section 7.6.6.4 (Built-in
Method Combination Types).

Long Form

The long form syntax of define-method-combination is recognized when the second
subform is a list.

7-64 Objects

Programming Language- Common Lisp ANSI X3.226-1994

The lambda-list receives any arguments provided after the name of the method combina-
tion type in the :method-combination option to defgeneric.

A list of method group specifiers follows. Each specifier selects a subset of the applicable
methods to play a particular role, either by matching their qualifiers against some
patterns or by testing their qualifiers with a predicate. These method group specifiers
define all method qualifiers that can be used with this type of method combination.

The car of each method-group-specifier is a symbol which names a variable. During the
execution of the forms in the body of define-method-combination, this variable is bound
to a list of the methods in the method group. The methods in this list occur in the order
specified by the :order option.

If qualifier-pattern is a symbol it must be *. A method matches a qualifier-pattern if the
method’s list of qualifiers is equal to the qualifier-pattern (except that the symbol * in a
qualifier-pattern matches anything). Thus a qualifier-pattern can be one of the following:
the empty list, which matches unqualified methods; the symbol *, which matches all
methods; a true list, which matches methods with the same number of qualifiers as the
length of the list when each qualifier matches the corresponding list element; or a dotted
list that ends in the symbol * (the * matches any number of additional qualifiers).

Each applicable method is tested against the qualifier-patterns and predicates in left-to-
right order. As soon as a qualifier-pattern matches or a predicate returns true, the method
becomes a member of the corresponding method group and no further tests are made.
Thus if a method could be a member of more than one method group, it joins only the
first such group. If a method group has more than one qualifier-pattern, a method need
only satisfy one of the qualifier-patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier-patterns in a method
group specifier. The predicate is called for each method that has not been assigned to
an earlier method group; it is called with one argument, the method’s qualifier list. The
predicate should return true if the method is to be a member of the method group. A
predicate can be distinguished from a qualifier-pattern because it is a symbol other than
nil or *.

If there is an applicable method that does not fall into any method group, the function
invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier patterns or
predicate. Keyword options can be distinguished from additional qualifier patterns
because they are neither lists nor the symbol *. The keyword options are as follows:

l The :description option is used to provide a description of the role of methods
in the method group. Programming environment tools use (apply #‘format
stream format-control (method-qualifiers method)) to print this description,
which is expected to be concise. This keyword option allows the description of a
method qualifier to be defined in the same module that defines the meaning of
the method qualifier. In most cases, format-control will not contain any format
directives, but they are available for generality. If :description is not supplied,
a default description is generated based on the variable name and the qualifier
patterns and on whether this method group includes the unqualified methods.

l The :order option specifies the order of methods. The order argument is a form
that evaluates to :most-specific-first or :most-specific-last. If it evaluates
to any other value, an error is signaled. If :order is not supplied, it defaults to
:most-specific-first.

l The :required option specifies whether at least one method in this method

Objects 7-65

ANSI X3.226-1994 Programming Language-Common Lisp

group is required. If its value is tme and the method group is empty (that is, no
applicable methods match the qualifier patterns or satisfy the predicate), an error
is signaled. If :required is not supplied, it defaults to nil.

The use of method group specifiers provides a convenient syntax to select methods, to
divide them among the possible roles, and to perform the necessary error checking. It is
possible to perform further filtering of methods in the body forms by using normal list-
processing operations and the functions method-qualifiers and invalid-method-error.
It is permissible to use setq on the variables named in the method group specifiers and
to bind additional variables. It is also possible to bypass the method group specifier
mechanism and do everything in the body forms. This is accomplished by writing a
single method group with * as its only qualifier-pattern; the variable is then bound to a
list of all of the applicable methods, in most-specific-first order.

The body forms compute and return the form that specifies how the methods are com-
bined, that is, the effective method. The effective method is evaluated in the null lexical
environment augmented with a local macro definition for call-method and with bindings
named by symbols not accessible from the CDl4HON-LISP-USER package. Given a method
object in one of the lists produced by the method group specifiers and a list of next
methods, call-method will invoke the method such that call-next-method has available
the next methods.

When an effective method has no effect other than to call a single method, some imple-
mentations employ an optimization that uses the single method directly as the effective
method, thus avoiding the need to create a new effective method. This optimization is ac-
tive when the effective method form consists entirely of an invocation of the call-method
macro whose first subform is a method object and whose second subjorm is nil or unsup
plied. Each deAne-method-combination body is responsible for stripping off redundant
invocations of progn, and, multiple-value-progl, and the like, if this optimization is
desired.

The list (:arguments . lambda-list) can appear before any declarations or documentation
string. This form is useful when the method combination type performs some specific be-
havior as part of the combined method and that behavior needs access to the arguments
to the generic function. Each parameter variable defined by lambda-list is bound to a
form that can be inserted into the effective method, When this joma is evaluated during
execution of the effective method, its value is the corresponding argument to the generic
junction; the consequences of using such a form as the place in a setf form are undefined.
Argument correspondence is computed by dividing the :arguaents lambda-list and the
generic function lambda-list into three sections: the required parameters, the optional
parameters, and the keyword and rest parameters. The arguments supplied to the generic
junction for a particular call are also divided into three sections; the required arguments
section contains as many arguments as the generic junction has required parameters,
the optional arguments section contains as many arguments as the generic junction has
optional parameters, and the keyword/rest erguments section contains the remaining
arguments. Each parameter in the required and optional sections of the :a.rgrmenta
lambda-list accesses the argument at the same position in the corresponding section of
the arguments. If the section of the :arguments lambda-list is shorter, extra arguments are
ignored. If the section of the :arguments lambda-list is longer, excess required parameters
are bound to forms that evaluate to nil and excess optional parameters are bound to their
initforms. The keyword parameters and rest parameters in the :arguments lambda-list
access the keyword/rest section of the arguments. If the :argunente lambda-list contains
&key, it behaves as if it also contained &allow-other-keys.

In addition, &whole var can be placed first in the :argu.ments lambda-list. It causea var to
be bound to a form that evaluates to a list of all of the arguments supplied to the generic
junction. This is different from &rest because it accesses all of the arguments, not just
the keyword/rest arguments.

7-66 Objects

Programming Language-Common Lisp ANSI X3.226- 1994

Erroneous conditions detected by the body should be reported with
method-combination-error or invalid-method-error; these functions add any neces-
sary contextual information to the error message and will signal the appropriate error.

The body forms are evaluated inside of the bindings created by the lambda list and
method group specifiers. Declarations at the head of the body are positioned directly
inside of bindings created by the lambda list and outside of the bindings of the method
group variables. Thus method group variables cannot be declared in this way. locally
may be used around the body, however.

Within the body forms, generic-function-symbol is bound to the generic function object.

Documentation is attached as a documentation string to name (as kind
method-combination) and to the method combination object.

Note that two methods with identical specializers, but with different qualifiers, are
not ordered by the algorithm described in Step 2 of the method selection and combi-
nation process described in Section 7.6.6 (Method Selection and Combination). Nor-
mally the two methods play different roles in the effective method because they have
different qdalifiers, and no matter how they are ordered in the result of Step 2, the
effective method is the same. If the two methods play the same role and their order
matters, an error is signaled. This happens as part of the qualifier pattern matching in
define-method-combination.

If a define-method-combination form appears as a top level form, the compiler must make
the method combination name be recognized as a valid method combination name in subse-
quent defgeneric forms. However, the method combination is executed no earlier than when
the define-method-combination form is executed, and possibly as late as the time that generic
functions that use the method combination are executed.

Examples:
Most examples of the long form of define-method-combination also illustrate the use of the
related functions that are provided as part of the declarative method combination facility.

;;; Examples of the short fox-a of define-method-combination

(define-method-combination and :identity-vith-one-argument t)

(defrethod func end ((x class11 y) . ..)

;;; The equivalent of this example in the long form is:

(define-method-combination and
(&optional (order :most-specific-first))
((around (:around))

(primary (and) :order order :required t))
(let ((form (if (rest primary)

‘(and ,Q(mapcar #‘&u&da (method)
‘(call-method ,method))

primary))
‘ (call-method , (first primary) 1) >)

(if around
‘ (call-methpd , (first around)

(,O(rest around)
(make-method ,form)))

form)))

Objects 7-67

ANSI X3.226-1994 Erogramming Language-Common Lisp

;;; Exanples of the long form of define-method-combination

;The default nethod-combination technique
(define-method-conbination standard 0

((around (:around))
(before (:before))
(prinary 0 :required t)
(after (:after)))

(flet ((call-methods (methods)
(mapcar *'(lanbda (method) ‘(call-method ,method))

methods)))
(let ((form (if (or before after (rest primary))

‘(multiple-value-pro@
(progu ,O(call-methods before)

(call-method ,(first primary)
,(rest primary)))

,O(call-methods (reverse after)))
‘(call-method ,(first primary)))))

(if around
‘(call-method ,(first around)

(,Q(rest around)
(make-method ,forn)))

fern))))

;A simple way to try several methods until one returns non-nil
(define-method-conbination or 0

((methods (or)))
‘(or ,O(mapcar #'(la&da (method) ‘(call-method ,method))

methods)))

;A more complete version of the preceding
(define-method-combination or

(&optional (order ':most-specific-first))
((around (:around))

(primary (or)))
;; Process the order argument
(case order

(:most-specific-first)
(:nost-specific-last (setq primary (reverse primary)))
(othervise (method-combination-error "'S is au invalid order.3
:most-specific-first and :most-specific-last are the possible values."

order)))
;; tlust have a primary method
(unless primary

(method-combination-error "A primary method is required."))
;; Construct the for-n that calls the primary methods
(let ((fern (if (rest primary)

'(or ,O(mapcar Il*(lambda (method) ‘(call-method ,method))
primary))

‘(call-method ,(firstprimary)))))
** Wrap the around methods around that forn
;;f around

‘(call-method ,(first around)
(,Q(rest around) (make-method ,form)))

fern>)>

7-68 Objects

Programming Language-Common Lisp ANSI X3.226-1994

;The same thing, using the :order and :required keyvord options
(define-method-combination or

(&optional (order 9:moat-apecific-firat))
((around (:around))

(primary (or) :order order :required t)>
(let ((form (if (rest primary)

‘(or ,Q(rapcar #'(lambda (method)
‘(call-method ,method))

primary))
‘(call-method ,(firat primary)>)))

(if around
‘(call-method ,(firat around)

(,O(reat around)
(make-method ,form)))

form)))

;Thia short-form call is behaviorally identical to the preceding
(define-method-combination or :identity-with-one-argument t)

;Order methods by positive integer qualifiers
;:around methods are diaalloved to keep the example small

(define-method-combination example-method-combination (>
((methods positive-integer-qualifier-p))

‘(progn ,O(mapcar #'(lambda (method)
‘(call-method ,method))

(stable-sort methods S'C
:key #'(lambda (method)

(first (method-qualifiers method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)
(and (= (length method-qualifiers) 1)

(typep (first method-qualifiers) '(integer 0 *))I)

;;; Example of the uae of :argumenta
(define-method-combination progn-vith-lock (1

((methods 0))
(:argumenta object.)
'(unvind-protect

(progn (lock (object-lock ,object))
,O(mapcar I!'(lambda (method)

‘(call-method ,method))
methods))

(unlock (object-lock ,object))))

Side Effects:
The compiler is not required to perform any compile-timeside-effects.

Exceptional Situations:
Method combination types defined with the short form require exactly one qualifier per method.
An error of type error is signaled if there are applicable methods with no qualifiers or with
qualijers that are not supported by the method combination type. At least one primary method
must be applicable or an error of type error is signaled.

If an applicable method does not fall into any method group, the system signals an error of type

Objects 7-69

ANSI X3.226-1994 Programming Language-Common Lisp

error indicating that the method is invalid for the kind of method combination in use.

If the value of the :required option is frue and the method group is empty (that is, no applicable
methods match the qualifier patterns or satisfy the predicate), an error of lype error is signaled.

If the : order option evaluates to a value other than :rost-specif ic-f irst or :rost.-specif ic-last,
an error of type error is signaled.

See Also:
call-method, call-next-method, documentation, method-qualifiers, method-combination-error,
invalid-method-error, d&generic, Section 7.6.6 (Method Selection and Combination), Section
7.6.6.4 (Built-in Method Combination Types), Section 3.4.11 (Syntactic Interaction of Documen-
tation Strings and Declarations)

Notes:
The :rethod-corbination option of defgeneric is used to specify that a generic function should
use a particular method combination type. The first argument to the :rethod-combination option
is the nume of a method combination type and the remaining arguments are options for that
type.

find-method Standard Generic Function

Syntax:
And-method generic-function method-qualifiers specializers &optional errorp

-+ method

Method Signatures:
And-method (generic-function standard-generic-function)

method-qualifiers spccializers &optional errorp

Arguments and Values:
generic-function-a generic function.

method-qualifiers-a list.

sp&ializcn-a list.

errorp-a generalized boolean. The default is true.

method-a method object, or nil.

Description:
The generic function And-method takes a generic function and returns the method objecf that
agrees on qualifiers and parameter specialisers with the method-qualifiers and spccialiren argu-
ments of find-method. Method-quaiifks contains the method qualifiers for the method. The
order of the method qualifiers is significant. For a definition of agreement in this context, see
Section 7.6.3 (Agreement on Parameter Specialirers and Qualifiers).

The special&s argument contains the parameter specializers for the method. It must correspond
in length to the number of required arguments of the generic function, or an error is signaled.
This means that to obtain the default meihod on a given generic-function, a Ii&t whose elements
are the class t must be given.

7-70 Objects

Programming Language-Common Lisp ANSI X3.226- 1994

If there is no such method and errorp is true, find-method signals an error. If there is no such
method and errorp is false, And-method returns nil.

Examples:

(defrethod sore-operation ((a integer) (b float)) (list a b))
- #<STAIODARD-IIETHOD SOHi?-OPERATIOB (IIfTgGER FLOAT) 26723357)

(find-nethod t'sore-operation '(1 (napcar *'find-class '(integer float)))
- t<STA5DARD-HETHOD SOHEOPElUTIOJl (IITEGER FLOAT) 26723357s

(find-method #'sore-operation '0 (napcar *'find-class '(integer integer)))
D Error: lo matching nethod

(find-method #'aone-operation '(1 (napcar *'find-class '(integer integer)) nil)
+ IilL

Affected By:
add-method, defclass, defgeneric, defmethod

Exceptional Situations:
If the specializers argument does not correspond in length to the number of required arguments of
the generic-function, an an error of type error is signaled.

If there is no such method and crrorp is true, find-method signals an error of type error.

See Also:
Section 7.6.3 (Agreement on Parameter Specializers and Qualifiers)

add-method Standard Generic Function

Syntax:
add-method generic-function method --) generic-function

Met hod Signatures:
add-method (generic-function standard-generic-function)

(method method)

Arguments and Values:
generic-function-a generic function object.

method-a method object.

Description:
The generic function add-method adds a method to a generic function.

If method agrees with an existing method of generic-function on parameter specializers and quali-
jlers, the existing method is replaced.

Exceptional Situations:
The lambda list of the method function of method must be congruent with the lambda list of
generic-function, or an error of type error is signaled.

if method is a method object of another generic function, an error of type error is signaled.

Objects 7-71

ANSI X3.226-1994 Programming Language-Common Lisp ,

See Also:
defmethod, defgeneric, And-method, remove-method, Section 7.6.3 (Agreement on Parameter
Specializers and Qualifiers)

initialize-instance ShEndaTd Generic Function

syntax:
initialize-instance instance &rest initargs &key Lallov-other-keys + instance

Met hod Signatures:
initialize-instance (instance standard-object) &rest initargs

Arguments and Values:
instance--an object.

initargs-a defaulted initialization argument list.

Description:
Called by make-instance to initialize a newly created instance. The generic function is called
with the new instance and the defaulted initialization argument list.

The system-supplied primary method on initialize-instance initializes the slots of the instance
with values according to the initargs and the : initforr forms of the slots. It does this by calling
the generic function shared-initialize with the following arguments: the instance, t (this indicates
that all slots for which no initialization arguments are provided should be initialized according to
their : initform forms), and the initargs.

Programmers can define methods for initialize-instance to specify actions to be taken when an
instance is initialized. If only after methods are defined, they will be run after the system-supplied
primary method for initialization and therefore will not interfere with the default behavior of
initialize-instance.

See Also:
shared-initialize, make-instance, slot-boundp, slot-malcunbound, Section 7.1 (Object Creation
and Initialization), Section 7.1.4 (Rules for Initialization Arguments), Section 7.1.2 (Declaring the
Validity of Initialization Arguments)

class-name Standard Generic Function

Syntax:
class-name c/ass + name

Method Signatures:
cl&-name (c/ass class)

Arguments and Values:
class-a class object.

7-72 Objects

Programming Language-Common Lisp ANSI X3.226-1994

name-a symbol.

Description:
Returns the name of the given class.

See Also:
find-class, Section 4.3 (Classes)

Notes:
If S is a symbol such that S =(class-name C) and C = tf ind-class S) , then S is the proper
name of C. For further discussion, see Section 4.3 (Classes).

The name of an anonymous class is nil.

(setf class-name) StandaTd Generic Function

Syntax:
(setf class-name) new-value c/ass + new-value

Method Signatures:
(setf class-name) new-value (c/ass class)

Arguments and Values:
new-value-a symbol.

class-a class.

Description:
The generic function (setf class-nare) sets the name of a class object.

See Also:
And-class, proper name, Section 4.3 (Classes)

class-of Function

Syntax:
class-of object 4 class

Arguments and Values:
object-an object.

class-a class object.

Description:
Returns the class of which the object is a direct instance.

Examples:

(class-of 'fred) + #<BUILT-IN-CLASS SYMBOL 610327300>
(class-of 2/3) -) #<BUILT-IN-CLASS RATIO 610326642>

Objects 7-73

ANSI X3.226-1994 Programming Language-Common Lisp

(defclass book () (1) + WSTAHDARD-CLASS BOOK 33424745>
(clas8-of (w&e-instance 'book)) + WSTAKDARD-CLASS BOOK 33424745,

(defclass novel (book) (1) -+ #<STAUDARD-CLASS UOVEL 33424764s
(class-of (rake-instance 'novel)) --+ #<STANDARD-CLASS HOVEL 33424764>

(defstnxt Irons kar kdr) + KOliS
(class-of (rake-Irons :kar 3 :kdr 4)) + #<STBUCTUBB-CLASS KOIJS 250020317>

See Also:
m&4nstance, type-of

unbound-slot Condition Type

Class Precedence List:
unbound-slot, cell-error, error, serious-condition, condition, t

Description:
The object having the unbound slot is initialized by the :instance initialization argument to
make-condition, and is accessed by the function unbound-slot-instance

The name of the cell (see cell-error) is the name of the slot.

See Also:
cell-error-name, unbound-slot-object, Section 9.1 (Condition System Concepts)

unbound-slot-instance Function

Syntax:
unbound-slot-instance condition + instance

Arguments and Values:
condition-a condition of type unbound-slot.

instance--an object.

Description:
Returns the instance which had the unbound slot in the situation represented by the condition.

See Also:
cell-error-name, unbound-slot, Section 9.1 (Condition System Concepts)

7-74 Objects

ANSI X3.226-1994

Programming Language-Common Lisp

8. Structures

ANSI X3.226-1994 Programming Language-Common Lisp

ii structures

Programming Language-Common Lisp ANSI X3.226-1994

defstruct Macro

Syntax:
defstruct name-and-options [documentation] { Islot-description}*

- structure-name

name-and-options::=structure-name 1 (structure-name [loptions])

options::=1 cone-name-option (

{ 1 constructor-option) * 1

1 copier-option 1

1 include-option 1

1 initial-ofket-op tion 1

1 named-option)

ipredicattoption 1

Jpfinter-option 1

1 type-option

cone-name-option::=: cone-name 1 (:conc-name) 1 (:conc-name cone-name)

constructor-option:= : con5tNctor 1

(:constNctor) 1

(: constructor constructor-name) 1

(: constructor constructor-name constructor-arglist)

copier-option::= :copier 1 (:copier) 1 (:copier copier-name)

predicate-option::= :predicate ((:predicate) I (:predicate predicate-name)

include-option::=(: include included-structure-name { lslot-description}*)

printer-option::=lprint-object-option I iprint-function-option

print-object-option:z(:print-object printer-name) I (:print-object)

print-function-option::=(:print-function printer-name) 1 (:print-function)

type-option:.+ :type type)

named-option::= : named

initial-offset-option::=(: initial-offset initiaCoff.et)

slot-description::=slot-name 1

(slot-name [slot-initform I(Jslot-optionB])

slot-option..=:type slot-type I

:read-only slot-read-only-p

Structures 8-I

ANSI X3.226-1994 Programming Language-Common Lisp

Arguments and Values:
cone-name-a string designator.

constructor-arglist-a boa lambda list.

constructor-name-a symbol.

copier-name-a symbol.

included-structure-name-an already-defined structure name. Note that a derived type is not
permissible, even if it would expand into a structure name.

initial-offset-a non-negative integer.

predicata-name-a symbol.

printer-name-a function name or a lambda expression.

slot-name-a symbol.

slot-i&form--a form.

slot-read-only-p-a generalized boolean.

structura-name-a symbol.

type-one of the type specifiers list, vector, or (vector size), or some other type specifier defined
by the implementation to be appropriate.

documentation-a string; not evaluated.

Description:
defstruct defines a structured type, named structura-type, with named slots as specified by the
slot-options.

defstruct defines readers for the slots and arranges for setf to work properly on such reader func-
tions. Also, unless overridden, it defines a predicate named name-p, defines a constructor function
named rake-constructor-name, and defines a copier function named copy-constructor-name. All
names of automatically created functions might automatically be declared Sine (at the discre-
tion of the implementation).

If documentation is supplied, it is attached to structura-name as a documentation string of kind
structure, and unless :type is used, the documentation is also attached to structure-name aa a
documentation string of kind type and as a documentation string to the class object for the class
named structure-name.

defstruct defines a constructor function that is used to create instances of the structure created
by defstruct. The default name is rake-structurtname. A different name can be supplied by
giving the name as the argument to the constructor option. nil indicates that no constructor
function will be created.

After a new structure type has been defined, instances of that type normally can be created by
using the constructor function for the type. A call to a constructor function is of the following
form:

(constructor-function-name
slot-keyword-l form-l
slot-keyword-2 form-2
. . .)

The arguments to the constructor function are all keyword arguments. Each slot keyword ar-

8-2 Structures

Programming Language-Common Lisp ANSI X3.226-1994

gument must be a keyword whose name corresponds to the name of a structure slot. All the
keywords and forms are evaluated. If a slot is not initialized in this way, it is initialized by eval-
uating slot-i&form in the slot description at the time the constructor function is called. If no
slot-initform is supplied, the consequences are undefined if an attempt is later made to read the
slot’s value before a value is explicitly assigned.

Each slot-hitform supplied for a defstruct component, when used by the constructor function for
an otherwise unsupplied component, is re-evaluated on every call to the constructor function. The
slot-initform is not evaluated unless it is needed in the creation of a particular structure instance.
If it is never needed, there can be no type-mismatch error, even if the type of the slot is specified;
no warning should be issued in this case. For example, in the following sequence, only the last call
is an error.

(defstruct person (name 007 :type string))
(make-person :name "James")
(rake-person)

It is as if the slot-initforms were used as initialization forms for the keyword parameters of the
constructor function.

The symbols which name the slots must not be used by the implementation as the names for the
lambda variables in the constructor function, since one or more of those symbols might have been
proclaimed special or might be defined as the name of a constant variable. The slot default init
forms are evaluated in the lezical environment in which the defstruct form itself appears and in
the dynamic environment in which the call to the constructor function appears.

For example, if the form (gensyn) were used as an initialization form, either in the constructor-
function call or as the default initialization form in defstruct, then every call to the constructor
function would call gensym once to generate a new symbol.

Each slot-description in defstruct can specify zero or more s/of-options. A slot-option consists of
a pair of a keyword and a value (which is not a form to be evaluated, but the value itself). For
example:

(defstruct ship
(x-position 0.0 :type short-float)
(y-position 0.0 :type short-float)
(x-velocity 0.0 :type short-float)
(y-velocity 0.0 :type short-float)
(mass *default-ship-mass* :type short-float :read-only t>>

This specifies that each slot always contains a short float, and that the last slot cannot be altered
once a ship is constructed.

The available slot-options are:

:type type

This specifies that the contents of the slot is always of type type. This is entirely analo-
gous to the declaration of a variable or function; it effectively declares the result type of
the reader function. It is implementation-dependent whether the type is checked when
initializing a slot or when assigning to it. Type is not evaluated; it must be a valid type
specifier.

:read-only x

When x is true, this specifies that this slot cannot be altered; it will always contain the
value supplied at construction time. setf will not accept the reader function for this slot.
If x is false, this slot-option has no effect. X is not evaluated.

Structures 8-3

ANSI X3.226-1994 Programming Language-Common Lisp

When this option is false or unsupplied, it is implementation-dependent whether the
ability to write the slot is implemented by a setf function or a setf ezpander.

The following keyword options are available for use with defstruct. A defstruct option can be
either a keyword or a list of a keyword and arguments for that keyword; specifying the keyword
by itself is equivalent to specifying a list consisting of the keyword and no arguments. The syntax
for defstruct options differs from the pair syntax used for slot-options. No part of any of these
options is evaluated.

: cone-name

This provides for automatic prefixing of names of reader (or access) functions. The
default behavior is to begin the names of all the reader functions of a structure with the
name of the structure followed by a hyphen.

:conc-name supplies an alternate prefix to be used. If a hyphen is to be used as a sep-
arator, it must be supplied as part of the prefix. If :conc-name is nil or no argument is
supplied, then no prefix is used; then the names of the reader functions are the same
as the slot names. If a non-nil prefix is given, the name of the reader function for each
slot is constructed by concatenating that prefix and the name of the slot, and interning
the resulting symbol in the package that is current at the time the defstruct form is
expanded.

Note that no matter what is supplied for :conc-name, slot keywords that match the slot
names with no prefix attached are used with a constructor function. The reader function
name is used in conjunction with setf. Here is an example:

(defstruct (door (:conc-name dr-1) knob-color width material) 4 DOOR
(setq my-door (rake-door :knob-color ‘red :vidth 5.0))

+ #S(DOOR :KNOB-COLOR RED :YIDTH 5.0 :MATERIAL NIL)
(dr-width my-door) -+ 5.0
(setf (dr-vidthmy-door) 43.7) + 43.7
(dr-vidth my-door) * 43.7

Whether or not the :conc-name option is explicitly supplied, the following rule governs
name conflicts of generated reader (or accessor) names: For any structure type Si having
a reader function named R for a slot named Xi that is inherited by another structure
type S2 that would have a reader function with the same name R for a slot named X2,
no definition for R is generated by the definition of &; instead, the definition of R is
inherited from the definition of Si. (In such a case, if Xr and X2 are different slots, the
implementation might signal a style warning.)

: constructor

This option takes zero, one, or two arguments. If at least one argument is supplied and
the first argument is not nil, then that argument is a symbol which specifies the name
of the constructor function. If the argument is not supplied (or if the option itself is not
supplied), the name of the constructor is produced by concatenating the string “FUKE-g’
and the name of the structure, interning the name in whatever package is current at
the time defstruct is expanded. If the argument is provided and is nil, no constructor
function is defined.

If :constructor is given as (:constructor name arglist), then instead of making a key-
word driven constructor function, defstruct defines a “positional” constructor function,
taking arguments whose meaning is determined by the argument’s position and possibly
by keywords. Arglist is used to describe what the arguments to the constructor will be.
In the simplest case something like (:constructor m&e-foo (a b cl) defines make-foe to
be a three-argument constructor function whose arguments are used to initialize the slots
named a, b, and c.

Structures

Programming Language-Common Lisp ANSI X3.226-1994

Because a constructor of this type operates “By Order of Arguments,” it is sometimes
known as a “boa constructor.”

For information on how the arglist for a “boa constructor ” is processed, see Section 3.4.6
(Boa Lambda Lists).

It is permissible to use the :constructor option more than once, so that you can define
several different constructor functions, each taking different parameters.

defstruct creates the default-named keyword constructor function only if no explicit
:constructor options are specified, or if the :constructor option is specified without a
name argument.

(:constructor nil) is meaningful only when there are no other :constructor options
specified. It prevents defstruct from generating any constructors at all.

Otherwise, defstruct creates a constructor function corresponding to each supplied
: constructor option. It is permissible to specify multiple keyword constructor functions
as well as multiple “boa constructors”.

: copier

This option takes one argument, a symbol, which specifies the name of the copier func-
tion. If the argument is not provided or if the option itself is not provided, the name of
the copier is produced by concatenating the string WJPY-@8 and the name of the structure,
interning the name in whatever package is current at the time defstruct is expanded. If
the argument is provided and is nil, no copier function is defined.

The automatically defined copier function is a function of one argument, which must be
of the structure type being defined. The copier function creates a fresh structure that has
the same type as its argument, and that has the same component values as the original
structure; that is, the component values are not copied recursively. If the defstruct :type
option was not used, the following equivalence applies:

(copier-name xl = (copy-structure (the structure-name xl)

: include

This option is used for building a new structure definition as an extension of another
structure definition. For example:

(defstruct person name age sex)

To make a new structure to represent an astronaut that has the attributes of name,
age, and sex, and functions that operate on person structures, astronaut is defined with
: include as follows:

(defstruct (astronaut (:include person)
(:conc-name astro-))

helmet-size
(favorite-beverage ‘tang))

: include causes the structure being defined to have the same slots as the included
structure. This is done in such a way that the reader functions for the included structure
also work on the structure being defined. In this example, an astronaut therefore has
five slots: the three defined in person and the two defined in astronaut itself. The reader
functions defined by the person structure can be applied to instances of the astronaut
structure, and they work correctly. Moreover, astronaut has its own reader functions for
components defined by the person structure. The following examples illustrate the use of
astronaut structures:

Struc.tures 8-5

ANSI X3.226-1994 Programming Language-Common Lisp

(setq x (rake-astronaut :naae ‘buzz
:age 45.
:sex t
:helzet-size 17.5))

(person-naze XI) -) BUZZ
hstro-name xl * BUZZ
Castro-favorite-beverage xx) + TABG

(reduce X’+ aztros :key *‘person-age) ; obtains the total of the ages
; of the possibly empty
; sequence of aztros

The difference between the reader functions person-name and astro-naze is that
person-name can be correctly applied to any person, including an astronaut, while
aztro-naze can be correctly applied only to an astronaut. An implementation might
check for incorrect use of reader functions.

At most one :include can be supplied in a single defstruct. The argument to :include
is required and must be the name of some previously defined structure. If the structure
being defined has no :type option, then the included structure must also have had no
:type option supplied for it. If the structure being defined has a : type option, then the
included structure must have been declared with a : type option specifying the same
representation type.

If no :type option is involved, then the structure name of the including structure defini-
tion becomes the name of a data type, and therefore a valid type specifier recognizable by
typep; it becomes a subtype of the included structure. In the above example, astronaut is
a subtype of person; hence

(typep (8ake-astronaut) ‘person) -+ true

indicating that all operations on persons also work on astronauts.

The structure using :include can specify default values or slot-options for the included
slots different from those the included structure specifies, by giving the :include option
X3:

(: include included-structure-name {slot-description}*)

Each slot-description must have a slot-name that is the same as that of some slot in the
included structure. If a slot-description has no slot-initform, then in the new structure the
slot has no initial value. Otherwise its initial value form is replaced by the slot-in&form in
the slot-description. A normally writable slot can be made read-only. If a slot is read-only
in the included structure, then it must also be so in the including structure. If a type is
supplied for a slot, it must be a subtype of the type specified in the included structure.

For example, if the default age for an astronaut is 45, then

(defstruct (astronaut (:include person (age 45)))
helmet-size
(favorite-beverage ‘tang))

If :include is used with the : type option, then the effect is first to skip over as many
representation elements as needed to represent the included structure, then to skip over
any additional elements supplied by the : initial-offset option, and then to begin
allocation of elements from that point. For example:

8-6 Structure8

Programming Language-Common Lisp ANSI X3.226-1994

(defstruct (binop (:type list) :naed (:initial-offset 2))
(operator ‘? : type symbol)
operand-l
operand-:!) -+ BINOP

(defstruct (annotated-binop (:type list)
(:initial-offset 3)
(:include binop))

couutative associative identity) -+ ANNOTATED-BINOP
(make-annotated-binop :operator ‘*

: operand-l ‘x
: operand-2 5 m :corrutative t
:associative t
:identity 1)

* (NIL NIL BINOP * X 5 NIL NIL NIL T T 1)

The first two nil elements stem from the :initiaI-offset of 2 in the definition of
binop. The next four elements contain the structure name and three slots for binop.
The next three nil elements stem from the : initial-off set of 3 in the definition
of annotated-binop. The last three list elements contain the additional slots for an
annotated-binop.

:initial-offset

:initidl-offset instructs defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option’s argument is the number of slots
defstruct should skip. : initial-offset can be used only if :type is also supplied.

: initial-offset allows slots to be allocated beginning at a representational element other
than the first.. For example, the form

(defstruct (binop (:type list) (:initial-offset 2))
(operator ‘? : type symbol)
operand-l
operand-21 + BINIIP

would result in the following behavior for make-binop:

(make-binop :operator ‘+ :operand-1 ‘x :operand-2 5)
+ (NIL NIL + X 5)

(rake-binop :operand-2 4 :operator ‘*)
--+ (NIL NIL * NIL 4)

The selector functions binop-operator, binop-operand-l, and binop-operand-2 would be
essentially equivalent to third, fourth, and flfth, respectively. Similarly, the form

(defstruct (binop (:type list) :named (:initial-offset 2))
(operator ‘? :type symbol)
operand- 1
operand-a) -) BINOP

would result in the following behavior for make-binop:

(rake-binop :operator ‘+ :operand-1 ‘x :operand-2 5) -+ (NIL NIL BINOP + X 5)
(make-binop :operand-2 4 :operator ‘*) -+ (NIL NIL BINDP * HIL 4)

The first two nil elements stem from the :initidl-offset of 2 in the definition of binop.
The next four elements contain the structure name and three slots for binop.

Structures 8-7

ANSI X3.226-1994 Programming Language-Common Lisp

:naned

:named specifies that the structure is named. If no :type is supplied, then the structure is
always named.

For example:

(defstruct (binop (:type list.))
(operator ‘? : type symbol)
operand- 1
operand-2) + BINOP

This defines a constructor function make-binop and three selector functions, namely
binop-operator, binop-operand-l, and binop-operand-2 (It does not, however, define a
predicate binop-p, for reasons explained below.)

The effect of make-binop is simply to construct a list of length three:

(make-binop :operator ‘+ :operand-1 ‘x :operand-2 5) + (+ X 5)
(rake-binop :operand-2 4 :operator ‘*I -+ (* NIL 4)

It is just like the function list except that it takes keyword arguments and performs slot
defaulting appropriate to the binop conceptual data type. Similarly, the selector functions
binop-operator, binop-operand-l, and binop-operand-2 are essentially equivalent to car,
cadr, and caddr, respectively. They might not be completely equivalent because, for
example, an implementation would be justified in adding error-checking code to ensure
that the argument to each selector function is a length-3 list.

binop is a conceptual data type in that it is not made a part of the Common Lisp type
system. typep does not recognize binop as a type specifier, and type-of returns list
when given a binop structure. There is no way to distinguish a data structure constructed
by make-binop from any other list that happens to have the correct structure.

There is not any way to recover the structure name binop from a structure created by
make-binop. This can only be done if the structure is named. A named structure has
the property that, given an instance of the structure, the structure name (that names
the type) can be reliably recovered. For structures defined with no :type option, the
structure name actually becomes part of the Common Lisp data-type system. type-of,
when applied to such a structure, returns the structure name as the type of the object;
typep recognizes the structure name as a valid type specifier.

For structures defined with a :type option, type-of returns a type specifier such as list
or (vector t), depending on the type supplied to the :type option. The structure name
does not become a valid type specifier. However, if the :named option is also supplied,
then the first component of the structure (as created by a defstruct constructor function)
always contains the structure name. This allows the structure name to be recovered from
an instance of the structure and allows a reasonable predicate for the conceptual type to
be defined: the automatically defined name-p predicate for the structure operates by first
checking that its argument is of the proper type (list, (vector t.), or whatever) and then
checking whether the first component contains the appropriate type name.

Consider the binop example shown above, modified only to include the :naed option:

(defstrnct (binop (:type list) :named)
(operator ‘? : type symbol)
operand-l
operand-2) - BINOP

As before, this defines a constructor function make-binop and three selector functions
binop-operator, binop-operand-l, and binop-operand-l. It also defines a predicate

8-8 Structures

Programming Language-Common Lisp ANSI X3.226-1994

binop-p. The effect of make-binop is now to construct a list of length four:

(make-binop :operator ‘+ :operand-1 ‘x :operand-2 5) -+ (BINOP + X 5)
(rake-binop :operand-2 4 :operator ‘*) -, (BINOP * NIL 4)

The structure has the same layout as before except that the structure name binop is
included as the first list element. The selector functions binop-operator, binop-operand-l,
and binop-operand-2 are essentially equivalent to cadr, caddr, and cadddr, respectively.
The predicate binop-p is more or less equivalent to this definition:

(defun binop-p (x)
(and (consp x) (eq (car x) ‘binop))) + BINOP-P

The name binop is still not a valid lype specifier recognizable to typep, but at least there
is a way of distinguishing binop structures from other similarly defined structures.

:predicate

This option takes one argument, which specifies the name of the type predicate. If the
argument is not supplied or if the option itself is not supplied, the name of the predicate
is made by concatenating the name of the structure to the string ‘I-PI’, interning the
name in whatever p&age is current at the time defstruct is expanded. If the argument
is provided and is nil, no predicate is defined. A predicate can be defined only if the
structure is named; if :type is supplied and :named is not supplied, then :predicate must
either be unsupplied or have the value nil.

:print-function, :print-object

The :print-function and :print-object options specify that a print-object method
for structures of type structure-name should be generated. These options are not syn-
onyms, but do perform a similar service; the choice of which option (:print-function or
:print-object) is used affects how the function named printer-name is called. Only one of
these options may be used, and these options may be used only if : type is not supplied.

If the :print-function option is used, then when a structure of type structure-name is to
be printed, the designated printer function is called on three arguments:

- the structure to be printed (a generalized instance of structure-name).

- a stream to print to.

- an integer indicating the current depth. The magnitude of this integer may
vary between implementations; however, it can reliably be compared against
print-level to determine whether depth abbreviation is appropriate.

Specifying (:print-function printer-name) is approximately equivalent to specifying:

(defmethod print-object ((object structure-name) stream)
(funcall (function printer-name) object stream ((current-print-depth))))

where the ((current-print-depth)) represents the printer’s belief of how deep it is currently
printing. It is implementation-dependent whether ((current-print-depth)) is always 0 and
print-level, if nun-nil, is re-bound to successively smaller values as printing descends
recursively, or whether current-print-depth varies in value as printing descends recursively
and *print-level* remains constant during the same traversal.

If the :print-object option is used, then when a structure of type structure-name is to be
printed, the designated printer function is called on two arguments:

- the structure to be printed.

Structures 8-9

. . . “ _ - . . I . . _ . ~ . . ” - - ~

A N S I X 3 .2 2 6 -1 9 9 4 P ro g ra m m i n g L a n g u a g e -C o m m o n L i s p

- th e s tre a m to p ri n t to .

S p e c i fy i n g (:p ri n t-o b j e c t p ri n te r-n a m e) i s e q u i v a l e n t to s p e c i fy i n g :

(d e fre th o d p ri n t-o b j e c t ((o b j e c t s tru c tu rtn a m e) & r e a r)
(fu n c a l l (fu n c ti o n p ri n te r-n a m e) o b j e c t s tre a m))

If n o :ty p e o p ti o n i s s u p p l i e d , a n d i f e i th e r a :p ri n t-fu n c ti o n o r a :p ri n t-o b j e c t o p ti o n
i s s u p p l i e d , a n d i f n o p ri n te r-n a m e i s s u p p l i e d , th e n a p ri n t-o b j e c t m e th o d s p e c i a l i z e d fo r
s tru c tu rtn a m e i s g e n e ra te d th a t c a l l s a fu n c ti o n th a t i m p l e m e n ts th e d e fa u l t p ri n ti n g
b e h a v i o r fo r s tru c tu re s u s i n g # S n o ta ti o n ; s e e S e c ti o n 2 2 .1 .3 .1 2 (Pr i n ti n g S tru c tu re s).

If n e i th e r a :p ri n t-fu n c ti o n n o r a :p ri n t-o b j e c t o p ti o n i s s u p p l i e d , th e n d e fs tru c t d o e s
n o t g e n e ra te a p ri n t-o b j e c t m e th o d s p e c i a l i z e d fo r s tru c tu re -n a m e a n d s o m e d e fa u l t
b e h a v i o r i s i n h e ri te d e i th e r fro m a s tru c tu re n a m e d i n a n :i n c l u d e o p ti o n o r fro m th e
d e fa u l t b e h a v i o r fo r p ri n ti n g s tru c tu re s ; s e e th e fu n c ti o n p ri n t-o b j e c t a n d S e c ti o n
2 2 .1 .3 .1 2 (Pr i n ti n g S tru c tu re s).

W h e n * p ri n t-c i rc l e * i s tru e , a u s e r-d e fi n e d p ri n t fu n c ti o n c a n p ri n t o b j e c ts to th e s u p -
p l i e d s tre a m u s i n g w ri te , p ri n l , p ri n t, o r fo rm a t a n d e x p e c t c i rc u l a ri ti e s to b e d e te c te d
a n d p ri n te d u s i n g th e tn # s y n ta x . T h i s a p p l i e s to m e th o d s o n p ri n t-o b j e c t i n a d d i ti o n
to :p ri n t-fu n c ti o n o p ti o n s . If a u s e r-d e fi n e d p ri n t fu n c ti o n p ri n ts to a s tre a m o th e r th a n
th e o n e th a t w a s s u p p l i e d , th e n c i rc u l a ri ty d e te c ti o n s ta rts o v e r fo r th a t s tre a m . S e e th e
v a ri a b l e * p ri n t-c i rc l e *.

:ty p e

: ty p e e x p l i c i tl y s p e c i fi e s th e re p re s e n ta ti o n to b e u s e d fo r th e s tru c tu re . Its a rg u m e n t
m u s t b e o n e o f th e s e ty p e s :

v e c to r

T h i s p ro d u c e s th e s a m e re s u l t a s s p e c i fy i n g (v e c to r t). T h e s tru c tu re i s re p -
re s e n te d a s a g e n e ra l v e c to r, s to ri n g c o m p o n e n ts a s v e c to r e l e m e n ts . T h e fi rs t
c o m p o n e n t i s v e c to r e l e m e n t 1 i f th e s tru c tu re i s :n a re d , a n d e l e m e n t 0 o th e rw i s e .

(v e c to r e l e m e n t-ty p e)

T h e s tru c tu re i s re p re s e n te d a s a (p o s s i b l y s p e c i a l i z e d) v e c to r, s to ri n g c o m p c +
n e n ts a s v e c to r e l e m e n ts . E v e ry c o m p o n e n t m u s t b e o f a ty p e th a t c a n b e s to re d
i n a v e c to r o f th e ty p e s p e c i fi e d . T h e fi rs t c o m p o n e n t i s v e c to r e l e m e n t 1 i f th e
s tru c tu re i s :n a m e d , a n d e l e m e n t 0 o th e rw i s e . T h e s tru c tu re c a n b e :n a re d o n l y i f
th e ty p e s y m b o l i s a s u b ty p e o f th e s u p p l i e d l /e m e n t-ty p e .

l i s t

T h e s tru c tu re i s re p re s e n te d a s a l i s t. T h e fi rs t c o m p o n e n t i s th e c a d r i f th e
s tru c tu re i s :n a re d , a n d th e c a r i f i t i s n o t :n a re d .

S p e c i fy i n g th i s o p ti o n h a s th e e ffe c t o f fo rc i n g a s p e c i fi c re p re s e n ta ti o n a n d o f fo rc i n g th e
c o m p o n e n ts to b e s to re d i n th e o rd e r s p e c i fi e d i n d e fs tru c t i n c o rre s p o n d i n g s u c c e s s i v e e l -
e m e n ts o f th e s p e c i fi e d re p re s e n ta ti o n . It a l s o p re v e n ts th e s tru c tu re n a m e fro m b e c o m i n g
a v a l i d ty p e s p e c i fi e r re c o g n i z a b l e b y ty p e p .

F o r e x a m p l e :

(d e fs tru c t (q u u x (:ty p e l i s t) :n m e d) x y)

s h o u l d m a k e a c o n s tru c to r th a t b u i l d s a l i s t e x a c tl y l i k e th e o n e th a t l i s t p ro d u c e s , w i th
q u u x a s i ts c a r.

B -1 0 S tru c tu re s

Programming Language-Common Lisp ANSI X3.226-1994

If this type is defined:

(deftype qunx 0 ‘(satisfies quux-p))

then this form

(typep (make-qunx) ‘quux)

should return precisely what this one does

(typep (list ‘quux nil nil) ‘quwt)

If : type is not supplied, the structure is represented as an object of type
structure-object.

defstruct without a :type option defines a class with the structure name as its name.
The metaclass of structure instances is structure-class.

The consequences of redefining a defstruct structure are undefined.

In the case where no defstruct options have been supplied, the following functions are automati-
cally defined to operate on instances of the new structure:

Predicate

A predicate with the name structurtnamc-p is defined to test membership in the
structure type. The predicate (structure-name-p object) is true if an object is of
this type; otherwise it is false. typep can also be used with the name of the new
type to test whether an object belongs to the type. Such a function call has the form
(typep object ‘structure-name).

Component reader functions

Reader functions are defined to read the components of the structure. For each slot
name, there is a corresponding reader function with the name structure-name-slot-name.
This function reads the contents of that slot. Each reader function takes one argument,
which is an instance of the structure type. setf can be used with any of these reader
functions to alter the slot contents.

Constructor function

A constructor function with the name make-structure-name is defined. This function
creates and returns new instances of the structure type.

Copier function

A copier function with the name copy-structure-name is defined. The copier function
takes an object of the structure type and creates a new object of the same type that is a
copy of the first. The copier function creates a new structure with the same component
entries as the original. Corresponding components of the two structure instances are eql.

If a defstruct form appears as a top level form, the compiler must make the structure type
name recognized as a valid type name in subsequent declarations (as for deftype) and make the
structure slot readers known to setf. In addition, the compiler must save enough information
about the structure type so that further defstruct definitions can use :include in a subsequent .
deftype in the same file to refer to the structure type name. The functions which defstruct
generates are not defined in the compile time environment, although the compiler may save
enough information about the functions to code subsequent calls inline. The #S reader macro
might or might not recognize the newly defined structure type name at compile time.

Structures 8-11

____ _--.- . ..-....

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:
An example of a structure definition follows:

(defstruct ship
x-posit ion
y-position
x-velocity
y-velocity
mass)

This declares that every ship is an object with five named components. The evaluation of this
form does the following:

1. It defines ship-x-position to be a function of one argument, a ship, that returns the
x-position of the ship; ship-y-position and the other components are given similar
function definitions. These functions are called the access functions, as they are used to
uccess elements of the structure.

2. ship becomes the name of a type of which instances of ships are elements. ship becomes
acceptable to typep, for example; (typep x ‘ship) is true if x is a ship and false if x is
any object other than a ship.

3. A function named ship-p of one argument is defined; it is a predicate that is true if its
argument is a ship and is false otherwise.

4. A function called make-ship is defined that, when invoked, creates a data structure with
five components, suitable for use with the access functions. Thus executing

(setq ship2 (make-ship))

sets ship2 to a newly created ship object. One can supply the initial values of any desired
component in the call to rake-ship by using keyword arguments in this way:

(setq ship2 (rake-ship :mass *default-ship-nass*
:x-posit ion 0
:y-position 0) 1

This constructs a new ship and initializes three of its components. This function is called
the “constructor function” because it constructs a new structure.

5. A function called copy-ship of one argument is defined that, when given a ship object,
creates a new ship object that is a copy of the given one. This function is called the
“copier function.”

setf can be used to alter the components of a ship:

(setf (ship-x-position ship2) 100)

This alters the x-position of ship2 to be 100. This works because defstruct behaves as if it
generates an appropriate defsetf for each access function.

8-12 Structures

Programming Language-Common Lisp ANSI X3.226-1994

::;
;:; Example 1
;;; define tovn structure type

; ; ; area, vatertovers. firetrucks, population, elevation are it5 component5
:;;

(def stNct tovn
area
vatertovera
(firetrucks 1 :type fixnum)
population

;an initialized slot

+ TOWN
(elevation 5128 :read-only t)) ;a slot that can’t be changed

;create a tovn in5tance
(setq tovnl (make-tovn :area 0 :vatertovers 0)) -+ #S(TOUN...)

;tovn’s predicate recognizes the nev instance
(tom-p tovd) -+ true

;nev tovn’s area is as specified by rake-tovn
(tovn-area tovnl) --+ 0

;nev tovn’s elevation has initial value
(tovn-elevation tovnl) -* 5128

;setf recognizes reader function
(setf (tovn-population tovnl) 99) -+ 99
(tovn-population tovnl) * 99

;copier function makes a copy of tovnl
(setq tovn2 (copy-tovn tovnl)) -+ itS(TOUN...)
(= (tovn-population tovnl) (tovn-population tovn2)) + true

;since elevation is a read-only slot, its value can be set only
;vhen the structure is created

(setq tovn3 (make-tovn :area 0 :vatertoverrr 3 :elevation 1200))
+ #S(TOUN.. .)
;::
;;; Example 2
;;; define clovn structure type
;;; this structure uses a nonstandard prefix
:::

(defstruct (clovn (:conc-name bozo-1)
(nose-color ‘red)
frizzy-hair-p polkadots) * CLOWN

(setq funny-clovn (make-clovn)) + #S(CLOUN)
;use non-default reader name

(bozo-nose-color funny-clovn) + RED
(defstruct (klovn (:constructor rake-up-klovnl ;similar def using other

(:copier clone-klovn) ;customixing keyvords
(:predicate is-a-bozo-p))
nose-color frizzy-hair-p polkadots) + klovn

;custom constructor nov exists

(fboundp ‘make-up-k104 + tfve
:;;
;;; Example 3
; ; : define a vehicle structure type
; ; ; then define a truck structure type that include5
;;; the vehicle structure
;;:

(defstruct vehicle name year (diesel t :read-only t)) + VEHICLE

structures 8-13

.. _.__. --__._ -.-. -AI. .i_- __ .____. ~_ -. _- -_-_-I.--

ANSI X3.226-1994 Programming Language-Common Lisp

(defstruct (truck (:include vehicle (year 79)))
load-lirit
(axles 6)) -+ TRUCK

(setq x (rake-truck :nae 'rat :diesel t :load-lirit 17))
+ W(TRUCK...)
;vehicle readers work on trucks

(vehicle-name x)
+ HAC
;default taken fron :include c lause

(vehicle-year x1
* 79

(defstxuct (pickup (:include t ruck)) ;pickup type includes t ruck
caper long-bed four-wheel-drive) + PICKUP

(setq x (make-pickup :naee ‘k ing :long-bedt)) -+ #S(PICKUP...)
;:include default inherited

(pickup-year x1 + 79
:::
;;; Example 4
;;: use of BOA constructors
. . . 1..

(defstruct (dfs-boa ;BOA constructors
(:constructor rake-dfs-boa (a b c))
(:constructor create-dfs-boa

(a &optional b (c 'cc) &rest d taux e (f 'ff))))
a b c d e f) --) DFS-BOA

;a. b. and c set by position, and the rest are uninitialized
(setq x (rake-dfs-boa 1 2 3)) + t(DFS-BOA...)
(dfs-boa-a xx) -+ 1

;a and b set, c and f defaulted
(setq x (create-dfs-boa 1 2)) * #(DFS-BOA...)
(c&-boa-b x) + 2
(eq (dfs-boa-c x) ‘cc) * inhe

;a, b, and c set, and the rest are collected into d
(setq x (create-dfs-boa 1 2 3 4 5 6)) -) #C(DFS-BOA...)
(dfs-boa-d x) + (4 5 6)

Exceptional Situations :
If any two s lot names (whether present directly or inherited by the : include option) are the same
under string=, defstruct should s ignal an error of type program-error.

The consequences are undefined if the included-structure-name does not name a stractum type.

See Also:
documentation, print-object, setf, subtypep, type-of, typep, Section 3.2 (Compilation)

Notes:
The printer-name should observe the values of such printer-control var iables as *print-escape*.

The restriction against issu ing a warning for type mismatches between a s lot-initform and the
corresponding s lot’s :type option is necessary because a s lot-initform must be specified in order to
specify s lot options; in some cases, no suitable default may exist.

The mechanism by which defstruct arranges for s lot accessors to be usable with setf is
implementalion-dependent; for example, it may use selffunctions, setj expanders, or some other
implemen2ation-dependent mechanism known to that implementation’s code for s&f.

8-14 Structures

Programming Language-Common Lisp ANSI X3.226-1994

copy-structure Function

Syntax:
copy-structure structure - COPY

Arguments and Values:
sPuctufe-a structure.

copy-a copy of the structure.

Description:
Returns a copy6 of the structure.

Only the structure itself is copied; not the values of the slots.

See Also:
the : copier option to defstruct

Notes:
The copy is the same as the given structure under equalp, but not under equal.

Structures 8-15

ANSI X3.226-1994 Programming Language-Common Lisp

8-16 Structures

ANSI X3.226-1994

Programming Language-Common Lisp

9. Conditions

ANSI X3.226-1994 Programming Language-Common Lisp

.

ii Conditions

Programming Language-Common Lisp ANSI X3.226-1994

9.1 Condition System Concepts
Common Lisp constructs are described not only in terms of their behavior in situations during
which they are intended to be used (see the “Description” part of each operator specification),
but in all other situations (see the “Exceptional Situations” part of each operator specification).

A situation is the evaluation of an expression in a specific context. A condition is an object that
represents a specific situation that has been detected. Conditions are generalized instances of the
class condition. A hierarchy of condition classes is defined in Common Lisp. A condition has
slolithat contain data relevant to the situation that the condition represents.

An error is a situation in which normal program execution cannot continue correctly without
some form of intervention (either interactively by the user or under program control). Not all
errors are detected. When an error goes undetected, the effects can be implementation-dependent,
impJementa2ion-defined, unspecified, or undefined. See Section 1.4 (Definitions). All detected
errors can be represented by conditions, but not all condilions represent errors.

Signaling is the process by which a condition can alter the flow of control in a program by raising
the condition which can then be handled. The functions error, terror, signal, and warn are used
to signal conditions.

The process of signaling involves the selection and invocation of a handler from a set of active
handlers. A handler is a function of one argument (the condition) that is invoked to handle a
condition. Each handler is associated with a condition type, and a handler will be invoked only
on a condition of the handler’s associated type.

Active handlers are established dynamically (see handler-bind or handler-case). Handlers are
invoked in a dynamic environment equivalent to that of the signaler, except that the set of active
handlers is bound in such a way as to include only those that were active at the time the handler
being invoked was established. Signaling a condition has no side-effect on the condition, and there
is no dynamic state contained in a condition.

If a handler is invoked, it can address the siluaGon in one of three ways:

Decline

It can decline to handle the condition. It does this by simply returning rather than
transferring control. When this happens, any values returned by the handler are ignored
and the next most recently established handler is invoked. If there is no such handler
and the signaling function is error or cerrar, the debugger is entered in the dynamic
environment of the signaler. If there is no such handler and the signaling function is
either signal or warn, the signaling function simply returns nil.

Handle

It can handle the condition by performing a non-local transfer of control. This can be
done either primitively by using go, return, throw or more abstractly by using a function
such as abort or invoke-restart.

Defer

It can put off a decision about whether to handle or decline, by any of a number of ac-
tions, but most commonly by signaling another condition, resignaling the same condition,
or forcing entry into the debugger.

9.1.1 Condition Types
Figure 9-l lists the standardized condition types. Additional condition types can be defined by
using define-condition.

Conditions 9-l

ANSI X3.226-1994 Programming Language--Common Lisp

arithmetic-error
cell-error
condition
control-error
division-by-zero
end-of-file
error
Ale-error
floating-point-inexact
floating-point-invalid-operation

floating-point-overflow simple-type-error
floating-point-underflow simple-warning
package-error storage-condition
parse-error stream-error
print-not-readable style-warning
program-error type-error
reader-error unbound-slot
serious-condition - unbound-variable
simple-condition undefined-function
simple-error warning

Figure 9-l. Standardized Condition Types

All condition types are subtypes of type condition. That is,

(typep c ‘condition) -+ true

if and only if c is a condition.

Implementations must define all specified subtype relationships. Except where noted, all subtype
relationships indicated in this document are not mutually exclusive. A condition inherits the
structure of its supertypes.

The metaclass of the class condition is not specified. Names of condition types may be used to
specify supertype relationships in define-condition, but the consequence5 are not specified if an
attempt is made to use a condition type as a superclass in a defclass form.

Figure 9-2 shows operators that define condition types and creating conditions.

I define-condition make-condition I

Figure 9-2. Operators that define and create conditions.

Figure 9-3 shows operators that read the value of condition slots.

arithmetic-error-operands
arithmetic-error-operation
cell-error-name
Ale-error-pathname
package-error-package
print-not-readable-object

simple-condition-format-arguments
simple-condition-format-control
stream-error-stream
type-error-datum
type-error-expected-type
unbound-slot-instance

Figure 9-3. Operators that read condition slots.

9.1.1.1 Serious Conditions

A serious condition is a condition serious enough to require interactive intervention if not han-
dled. Serious conditions are typically signaled with error or terror; non-serious condiiions are
typically signaled with signal or warn.

9.1.2 Creating Conditions
The function make-condition can be used to construct a condition object explicitly. Functions
such 55 error, terror, signal, and warn operate on conditions and might create condition objects

9-2 Conditions

Programming Language-Common Lisp ANSI X3.226- 1994

implicitly. Macros such as cease, ctypecase, ecase, etypecase, check-type, and assert might also
implicitly create (and signal) conditions.

9.1.2.1 Condition Designators

A number of the functions in the condition system take arguments which are identified as condi-
tion designators. By convention, those arguments are notated as

datum &rest arguments

Taken together, the datum and the arguments are “designators for a condition of default type
default-type.” How the denoted condition is computed depends on the type of the datum:

l If the datum is a symbol naming a condition type . . .

The denoted condition is the result of

(apply #‘make-condition datum arguments)

l If the datum is a format control . . .

The denoted condition is the result of

(make-condition defaulted-type
:format-control datum
:f ox-mat-arguments arguments)

where the defaulted-type is a subtype of default-type.

l If the datum is a condition . . .

The denoted condition is the datum itself. In this case, unless otherwise specified by the
description of the operator in question, the arguments must be null; that is, the consequences
are undefined if any arguments were supplied.

Note that the default-type gets used only in the case where the datum string is supplied. In the
other situations, the resulting condition is not necessarily of type default-type.

Here’ are some illustrations of how different condition designators can denote equivalent condition
objects:

(let ((c (make-condition ‘arithmetic-error :operator ‘/ :operands ‘(7 0))))

(error c))
s (error ‘arithmetic-error :operator ‘/ :operands ‘(7 0))

(error "Bad luck.")
S (error ‘simple-error :format-control “Bad luck." :format-argwents ‘0)

9.1.3 Printing Conditions
If the :report argument to define-condition is used, a print function is defined that is called
whenever the defined condition is printed while the value of *print-escape* is false. This func-
tion is called the condition reporter; the text which it outputs is called a report message.

When a condition is printed and *print-escape* is false, the condition reporter for the condition
is invoked. Conditions are printed automatically by functions such as invoke-debugger, break,
and warn.

Conditions 9-3

ANSI X3.226-1994 Programming Language-Common Lisp

When *print-escape* is true, the object should print in an abbreviated fashion according to the
style of the implementation (e.g., by print-unreadable-object). It is not required that a condition
can be recreated by reading its printed representation.

No function is provided for directly accessing or invoking condition reporters.

9.1.3.1 Recommended Style in Condition Reporting

In order to ensure a properly aesthetic result when presenting report messages to the user, certain
stylistic conventions are recommended.

There are stylistic recommendations for the content of the messages output by condition re-
porters, but there are no formal requirements on those programs. If a program violates the
recommendations for some message, the display of that message might be less aesthetic than if
the guideline had been observed, but the program is still considered a conforming program.

The requirements on a program or implementation which invokes a condition reporter are some-
what stronger. A conforming program must be permitted to assume that if these style guidelines
are followed, proper aesthetics will be maintained. Where appropriate, any specific requirements
on such routines are explicitly mentioned below.

9.1.3.1.1 Capitalization and Punctuation in Condition Reports

It is recommended that a report message be a complete sentences, in the proper case and cor-
rectly punctuated. In English, for example, this means the first letter should be uppercase, and
there should be a trailing period.

(error This is a message”) ; Hot recommended
(error “this is a message. “1 ; got recomended

(error “This is a message. “1 ; Recommended instead

9.1.3.1.2 Leading and Trailing Newlines in Condition Reports

It is recommended that a report message not begin with any introductory text, such as
“Error : ” or “Yarning: ” or even just freshline or newline. Such text is added, if appropri-
ate to the context, by the routine invoking the condition reporter.

It is recommended that a report message not be followed by a trailing freshline or newline. Such
text is added, if appropriate to the context, by the routine invoking the condition reporter.

(error “This is a message. 3”) ; Uot recommended
(error “-&This is a message. “1 ; Bot recommended
(error “-&This is a message. ‘X”) ; Not recomended

(error “This is a message. “1 : Recommended instead

9.1.3.1.3 Embedded Newlines in Condition Reports

Especially if it is long, it is permissible and appropriate for a report message to contain one or
more embedded newlines.

If the calling routine conventionally inserts some additional prefix (such as “Error: n or
“; ; Error: “) on the first line of the message, it must also assure that an appropriate prefix
will be added to each subsequent line of the output, so that the left edge of the message output
by the condition reporter will still be properly aligned.

(defun test 0
(error “This is sn error =essage.‘%It has two lines.“))

9-4 Conditions

Programming Language-Common Lisp ANSI X3.226- 1994

;; Implementation A
(test)
This is an error message.
It has tvo lines.

;; Implementation B
(test)
;; Error: This is an error message.
;; It has tvo lines.

;; Implementation C
(test)
>> Error: This is an error message.

It has too lines.

9.1.3.1.4 Note about Tabs in Condition Reports

Because the indentation of a report message might be shifted to the right or left by an arbitrary
amount, special care should be taken with the semi-standard character (Tab) (in those implemen-
tations that support such a character). Unless the implementation specifically defines its behavior
in this context, its use should be avoided.

9.1.3.1.5 Mentioning Containing Function in Condition Reports

The name of the containing function should generally not be mentioned in report messages.
It is assumed that the debugger will make this information accessible in situations where it is
necessary and appropriate.

9.1.4 Signaling and Handling Conditions
The operation of the condition system depends on the ordering of active applicable handlers from
most recent to least recent.

Each handler is associated with a type specifier that must designate a subtype of type condition.
A handler is said to be applicable to a condition if that condition is of the type designated by the
associated type specifier.

Active handlers are established by using handler-bind (or an abstraction based on handler-bind,
such as handler-case or ignore-errors).

Active handlers can be established within the dynamic scope of other active handlers. At any
point during program execution, there is a set of active handlers. When a condition is signaled,
the most recent active applicable handler for that condition is selected from this set. Given a
condition, the order of recentness of active applicable handlers is defined by the following two
rules:

1. Each handler in a set of active handlers HI is more recent than every handler in a set Hz
if the handlers in Hz were active when the handlers in HI were established.

2. Let hr and h2 be two applicable active handlers established by the same form. Then hl is
more recent than h2 if hl was defined to the left of h2 in the form that established them.

Once a handler in a handier binding form (such as handler-bind or handler-case) has been
selected, all handlers in that form become inactive for the remainder of the signaling process.
While the selected handler runs, no other handler established by that form is active. That is, if
the handler declines, no other handler established by that form will be considered for possible
invocation.

Conditions 9-5

ANSI X3.226-1994 Programming Language-Common Lisp

Figure 9-4 shows operators relating to the handling of conditions.

I handler-bind handler-case ignore-errors I

Figure 9-4. Operators relating to handling conditions.

9.1.4.1 Signaling

When a condition is signaled, the most recent applicable active handler is invoked. Sometimes
a handler will decline by simply returning without a transfer of control. In such cases, the next
most recent applicable active handler is invoked.

If there are no applicable handlers for a condition that has been signaled, or if all applicable
handlers decline, the condition is unhandled.

The functions terror and error invoke the interactive condition handler (the debugger) rather
than return if the condition being signaled, regardless of its type, is unhandled. In contrast, signal
returns nil if the condition being signaled, regardless of its type, is unhandled.

The variable *break-on-signals* can be used to cause the debugger to be entered before the
signaling process begins.

Figure 9-5 shows defined names relating to the signaling of conditions.

I
break-on-signals error warn
terror signal I

Figure 9-5. Defined names relating to signaling conditions.

9.1.4.1.1 Resignaling a Condition

During the dynamic extent of the signaling process for a particular condition object, signaling the
same condition object again is permitted if and only if the situation represented in both cases are
the same.

For example, a handler might legitimately signal the condition object that is its argument in
order to allow outer handlers first opportunity to handle the condition. (Such a handlers is
sometimes called a “default handler.“) This action is permitted because the situation which the
second signaling process is addressing is really the same situation.

On the other hand, in an implementation that implemented asynchronous keyboard events by
interrupting the user process with a call to signal, it would not be permissible for two distinct
asynchronous keyboard events to signal identical condition objects at the same time for different
situations.

9.1.4.2 Restarts

The interactive condition handler returns only through non-local transfer of control to specially
defined restarts that can be set up either by the system or by user code. Transferring control to a
restart is called “invoking” the restart. Like handlers, active restarts are established dynamically,
and only active restarts can be invoked. An active restart can be invoked by the user from the
debugger or by a program by using invoke-restart.

A restart contains a function to be called when the restart is invoked, an optional name that
can be used to find or invoke the restart, and an optional set of interaction information for the

9-6 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

debugger to use to enable the user to manually invoke a restart.

The name of a restart is used by invoke-restart. Restarts that can be invoked only within the
debugger do not need names.

Restarts can be established by using restart-bind, restart-case, and with-simple-restart. A
restart function can itself invoke any other restart that was active at the time of establishment of
the restart of which the function is part.

The restarts established by a restart-bind form, a restart-case form, or a with-simple-restart
form have dynamic extent which extends for the duration of that form’s execution.

Restarts of the same name can be ordered from least recent to most recent according to the
following two rules:

1. Each restart in a set of active restarts RI is more recent than every restart in a set R:! if
the restarts in Rz were active when the restarts in RI were established.

2. Let r1 and r2 be two active restarts with the same name established by the same form.
Then r1 is more recent than r2 if r1 was defined to the left of r2 in the fom that estab-
lished them.

If a restart is invoked but does not transfer control, the values resulting from the restart
function are returned by the function that invoked the restart, either invoke-restart or
invoke-restart-interactively.

9.1.4.2.1 Interactive Use of Restarts

For interactive handling, two pieces of information are needed from a restart: a report function
and an interactive function.

The report function is used by a program such as the debugger to present a description
of the action the restart will take. The report function is specified and established by the
:report-function keyword to restart-bind or the :report keyword to restart-case.

The interactive function, which can be specified using the : interactive-function keyword to
restart-bind or :interactive keyword to restart-case, is used when the restart is invoked interac-
tively, such as from the debugger, to produce a suitable list of arguments.

invok+restart invokes the most recently established restarl whose name is the same as the first
argument to invoke-restart. If a restart is invoked interactively by the debugger and does not
transfer control but rather returns values, the precise action of the debugger on those values is
implementation-defined.

9.1.4.2.2 Interfaces to Restarts

Some restarts have functional interfaces, such as abort, continue, muffle-warning, store-value,
and use-value. They are ordinary functions that use find-restart and invoke-restart internally,
that have the same name as the restarts they manipulate, and that are provided simply for
notational convenience.

Figure 9-6 shows defined names relating to restarts.

abort
compute-restarts
continue
And-restart
invoke-restart

invoke-restart-interactively
mufEe-warning
restart-bind
restart-case
restart-name

store-value
use-value
with-simple-restart

Figure 9-6. Defined names relating to restarts.

Conditions Q-7

ANSI X3.226-1994 Programming Language-Common Lisp

9.1.4.2.3 Restart Tests

Each reslati has an associated test, which is a function of one argument (a condiiion or nil)
which returns true if the restari should be visible in the current situation. This test is created by
the :test-function option to restart-bind or the :test option to restart-case.

9.1.4.2.4 Associating a Restart with a Condition

A restart can be “associated with” a condition explicitly by with-condition-restarts, or implicitly
by restart-case. Such an assocation has dynamic extent.

A single r&art may be associated with several conditions at the same time. A single condition
may have several associated restarts at the same time.

Active restarts associated with a particular condition can be detected by calling a function such
as And-restart, supplying that condition as the condition argument. Active restarts can also be
detected without regard to any associated condition by calling such a function without a condition
argument, or by supplying a value of nil for such an argument.

9.1.5 Assertions
Conditional signaling of conditions based on such things as key match, form evaluation, and type
are handled by assertion operators. Figure 9-7 shows operators relating to assertions.

assert check-type
cease ctypecase

Figure O-7. Operators relating to assertions.

ease
etypecase

9.1.6 Notes about the Condition System’s Background
For a background reference to the abstract concepts detailed in this section, see Exceptional
Situations in Lisp. The details of that paper are not binding on this document, but may be
helpful in establishing a conceptual basis for understanding this material.

9-8 Conditions

Programming Language7Common Lisp ANSI X3.226-1994

condition Condition Type

Class Precedence List:
condition, t

Description:
All types of conditions, whether error or non-error, must inherit from this type.

No additional subtype relationships among the specified subtypes of type condition are allowed,
except when explicitly mentioned in the text; however implementations are permitted to intro-
duce additional types and one of these types can be a subtype of any number of the subtypes of
type condition.

Whether a user-defined condition type has slots that are accessible by with-slots is
implementation-dependent. Furthermore, even in an implementation in which user-defined
condition types would have slots, it is implementation-dependent whether any condition types
defined in this document have such slots or, if they do, what their names might be; only the
reader functions documented by this specification may be relied upon by portable code.

Conforming code must observe the following restrictions related to conditions:

a define-condition, not defclass, must be used to define new condition types.

l make-condition, not make-instance, must be used to create condition objects explicitly.

l The :report option of define-condition, not defmethod for print-object, must be used
to define a condition reporter.

l slot-value, slot-boundp, slot-maknnbound, and with-slots must not be used on condi-
tion objects. Instead, the appropriate accessor functions (defined by define-condition)
should be used.

warning Condition Type

Class Precedence List:
warning, condition, t

Description:
The type warning consists of all types of warnings.

See Also:
style-warning

Conditions 9-9

ANSI X3.226-1994 Programming Language-Common Lisp

style-warning Condition Type

Class Precedence Lit:
style-warning, warning, condition, t

Description:
The type style-warning includes those conditions that represent situations involving code that is
conforming code but that is nevertheless considered to be faulty or substandard.

See Also:
lnde-warning

Notes:
An implementation might signal such a condition if it encounters code that uses deprecated
features or that appears unaesthetic or inefficient.

An ‘unused variable’ warning must be of type style-warning.

In general, the question of whether code is faulty or substandard is a subjective decision to be
made by the facility processing that code. The intent is that whenever such a facility wishes to
complain about code on such subjective grounds, it should use this condition type so that any
clients who wish to redirect or muffle superfluous warnings can do so without risking that they
will be redirecting or muffling other, more serious warnings.

serious-condition Condition Type

Class Precedence List:
serious-condition, condition, t

Description:
All conditions serious enough to require interactive intervention if not handled should inherit from
the type serious-condition. This condition type is provided primarily so that it may be included
as a superclass of other condition types; it is not intended to be signaled directly.

Notes:
Signaling a serious condition does not itself force entry into the debugger. However, except in the
unusual situation where the programmer can sssure that no harm will come from failing to handle
a serious condition, such a condition is usually signaled with error rather than signal in order to
assure that the program does not continue without handling the condition. (And conversely, it is
conventional to use signal rather than error to signal conditions which are not serious conditions,
since normally the failure to handle a non-serious condition is not reason enough for the debugger
to be entered.)

9-10 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

error Condition Type

Class Precedence List:
error, serious-condition, condition, t

Description:
The type error consists of all conditions that represent errors.

cell-error Condition Type

Class Precedence List:
cell-error, error, serious-condition, condition, t

Description:
The type cell-error consists of error conditions that occur during a location access. The name
of the offending cell is initialized by the :name initialization argument to make-condition, and is
accessed by the function cell-error-name.

See Also:
cell-error-name

cell-error-name Function

Syntax:
cell-error-name condition + name

Arguments and Values:
condition-a condition of type cell-error.

name-an object.

Description:
Returns the name of the offending cell involved in the situation represented by condition.

The nature of the result depends on the specific type of condition. For example, if the condition
is of type unbound-variable, the result is the name of the unbound variable which was being
accessed, if the condition is of type undefined-function, this is the name of the undefined junction
which was being accessed, and if the condition is of type unbound-slot, this is the name of the
slot which was being accessed.

See Also:
cell-error, unbound-slot, unbound-variable, undefined-function, Section 9.1 (Condition System
Concepts)

Conditions 9-11

ANSI X3.226-1994 Programming Language--Common Lisp

parse-error Condition Type

Class Precedence List:
parse-error, error, serious-condition, condition, t

Description:
The type parse-error consists of error conditions that are related to parsing.

See Also:
parse-namestring , reader-error

storage-condition Condition Type

Class Precedence List:
storage-condition, serious-condition, condition, t

Description:
The type storage-condition consists of serious conditions that relate to problems with memory
management that are potentially due to implementation-dependent limits rather than semantic
errors in conforming programs, and that typically warrant entry to the debugger if not handled.
Depending on the details of the implementation, these might include such problems as stack
overflow, memory region overflow, and storage exhausted.

Notes:
While some Common Lisp operations might signal storage-condition because they are defined to
create objects, it is unspecified whether operations that are not defined to create objects create
them anyway and so might also signal storage-condition. Likewise, the evaluator itself might
create objects and so might signal storage-condition. (The natural assumption might be that
such object creation is naturally inefficient, but even that is implementation-dependent.) In
general, the entire question of how storage allocation is done is implementation-dependent, and so
any operation might signal storage-condition at any time. Because such a condition is indicative
of a limitation of the implementation or of the image rather than an error in a program, objects of
type storage-condition are not of type error.

assert Macro

Syntax:
assert test-form [({place)*) [datum-form {argument-form}*]]

+ nil

Arguments and Values:
test-form-a form; always evaluated.

place-a place; evaluated if an error is signaled.

9-12 Conditions

Programming Language-Common Lisp ANSI X3.226- 1994

datum-form-a form that evaluates to a datum. Evaluated each time an error is to be signaled, or
not at all if no error is to be signaled.

argument-form-a form that evaluates to an argument. Evaluated each time an error is to be
signaled, or not at all if no error is to be signaled.

datum, arguments-designators for a condition of default type error. (These designators are the
result of evaluating datum-form and each of the argument-forms.)

Description:
assert assures that test-form evaluates to true. If test-form evaluates to false, assert signals
a correctable error (denoted by datum and arguments). Continuing from this error using the
continue restart makes it possible for the user to alter the values of the p/aces before assert
evaluates test-form again. If the value of test-form is non-nil, assert returns nil.

The places are generalized references to data upon which test-form depends, whose values can be
changed by the user in attempting to correct the error. Subfomw of each place are only evaluated
if an error is signaled, and might be reevaluated if the error is re-signaled (after continuing
without actually fixing the problem). The order of evaluation of the p/aces is not specified; see
Section 5.1.1.1 (Evaluation of Subforms to Places). If a p/ace form is supplied that produces more
values than there are store variables, the extra values are ignored. If the supplied form produces
fewer values than there are store variables, the missing values are set to nil.

Examples:

(setq x (make-array '(3 5) :initial-element 3))
- #2A((3 3 3 3 3) (3 3 3 3 3) (3 3 3 3 3))

(setq y (make-array '(3 5) :initial-element 7))
- #2A((7 7 7 7 7) (7 7 7 7 7) (7 7 7 7 7))

(defun matrix-multiply (a b)
(let ((*print-array* nil))

(assert (and (= (array-rank a) (array-rank b) 2)
(= (array-dimension a 1) (array-dimension b 0)))

(a b)
"Cannot multiply 'S by 'S." a b)

(really-matrix-multiply a b))) + MATRIX-HULTIPLY
(matrix-multiply x y)

D Correctable error in HATRIX-MULTIPLY:
D Cannot multiply #<ARRAY . ..> by #<ARRAY . ..>.
D Restart OptiOnS:
D 1: You will be prompted for one or more new values.
D 2: Top level.
D Debug> :continue 1
D Value for A: X
D Value for B: (make-array '(5 3) :initial-element 6)
- #2A((54 54 54 54 54)

(54 54 54 54 54)
(54 54 54 54 54)
(54 54 54 54 54)
(54 54 54 54 54))

(defun double-safely (x) (assert (number-p x) (x)1 (+ x x)1
(double-safely 4)

+8

Conditions 9-13

ANSI X3.226-1994 Programming Language-Common Lisp

(double-safely t)
D Correctable error in DOUBLE-SAFELY: The value of (NUMSFJW X1 Bust be non-NIL.
D Restart options:
D 1: You oil1 be prompted for one or lore nev values.
D 2: Top level.
D Debug> : continue 1
D Value for X: 1
--) 14

Affected By:
break-on-signals

The set of active condition handlers.

See Also:
check-type, error, Section 5.1 (Generalized Reference)

Notes:
The debugger need not include the test-form in the error message, and the places should not be
included in the message, but they should be made available for the user’s perusal. If the user
gives the “continue” command, the values of any of the references can be altered. The details of
this depend on the implementation’s style of user interface.

error Function

Syntax:
emor datum &rest arguments -1

Arguments and Values:
datum, arguments-designators for a condition of default type simple-error.

Description:
error effectively invokes signal on the denoted condition.

If the condition is not handled, (invoke-debugger condition) is done. As a consequence of calling
invoke-debugger, error cannot directly return; the only exit from error can come by non-local
transfer of control in a handler or by use of an interactive debugging command.

Examples:

(defun factorial (x1
(cond ((or (not (typep x ‘integer)) (minusp x1)

(error “3 is not a valid argument to FACTORIAL.” x))
((zerop x1 1)
(t (* x (factorial (- x 1))))))

- FACTORIAL
(factorial 20)
+ 2432902008176640000
(factorial -1)
D Error: -1 is not a valid argument to FACTORIAL.
D To continue, type :CONTINIJE followed by an option number:
0 1: Return to Lisp Toplevel.
D Debug>

9-14 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

(setq a ‘fred)
*FRED

(if (numberp a) (l+ a) (error “3 is not a number.” A) 1
P Error: FRED is not a number.
D To continue, type :CONTINUE followed by an option number:
P 1: Return to Lisp Toplevel.
D Debug> :Continue 1
P Return to Lisp Toplevel.

(define-condition not-a-number (error)
((argument :reader not-a-nuber-argument :init.arg :argument))

(:report (lambda (condition stream)
(format stream “73 is not a number. ”

(not-a-number-argument condition)))))
--t NOT-A-NUHNER

(if (numberp a) (l+ a) (error ‘not-a-number :argument a))
P Error: FRED is not a number.
D To continue, type :CONTINUE followed by an option number:
D 1: Return to Lisp Toplevel.
D Debug> : Continue 1
D Return to Lisp Toplevel.

Side Effects:
Handlers for the specified condition, if any, are invoked and might have side effects. Program
execution might stop, and the debugger might be entered.

Affected By:
Existing handler bindings.

break-on-signals

Signals an error of type type-error if datum and arguments are not designators for a condition.

See Also:
terror , signal, format, ignore-errors, *break-on-signals*, handler-bind, Section 9.1 (Condition
System Concepts)

Notes:
Some implementations may provide debugger commands for interactively returning from indi-
vidual stack frames. However, it should be possible for the programmer to feel confident about
writing code like:

(defun vargames:no-vin-scenario 0
(if (error “pushing the button vould be stupid.“))
(push-the-button))

In this seenario, there should be no chance that error will return and the button will get pushed.

While the meaning of this program is clear and it might be proven ‘safe’ by a formal theorem
prover, such a proof is no guarantee that the program is safe to execute. CompiIers have been
known to have bugs, computers to have signal glitches, and human beings to manually intervene
in ways that are not always possible to predict. Those kinds of errors, while beyond the scope of
the condition system to formally model, are not beyond the scope of things that should seriously
be considered when writing code that could have the kinds of sweeping effects hinted at by this
example.

Conditions 9-15

ANSI X3.226-1994 Programming Language-Common Lisp

terror Function

Syntax:
terror continua-format-control datum treat arguments -+ nil

Arguments and Values:
Continua-format-control-a fu77nai conhI.

datum, arguments-designators for a condition of default type simple-error.

Description:
terror effectively invokes error on the condition named by datum. As with any function that
implicitly calls error, if the condition is not handled, (invoke-debugger condition> is executed.
While signaling is going on, and while in the debugger if it is reached, it is possible to continue
code execution (i.e., to return from terror) using the continue rest&.

If datum is a condition, arguments can be supplied, but are used only in conjunction with the
continua-format-control.

Examples:

(defun real-sqrt (n)
(vhen (minuap n)

(setq n (- n))
(terror “Return sqrt(‘D) instead.” “Tried to take sqrt c--D) .I’ n))

(sqrt n))

(real-sqrt 4)
+ 2.0

(real-sqrt -9)
D Correctable error in REAL-SQRT: Tried to take aqrt(-9).
D Restart options:
D 1: Return sqrt(9) instead.
D 2: Top level.
D Debug> : cant inue 1
+ 3.0

(define-condition not-a-number (error)
((argument : reader not-a-number-argument : initarg : argwent 1)
(:report (lambda (condition stream)

(format stream “‘S is not a number. ”
(not-a-number-argument condition)))))

(defun assure-number (n)
(loop (when (numberp n) (return n))

(terror “Enter a number. I’
‘not-a-numbsr : argument n)

(format t ‘*‘&Type a number: “1
(setq n (read))
(fresh-line)) 1

9-16 Conditions

Programming Language-Common Lisp ANSI X3.226- 1994

(assure-number 'a)
D Correctable error in ASSURE-RUHRER: A is not a number.
D Restart options:
D 1: Enter a number.
D 2: Top level.
D Debug> :continue 1
D Type a number: l/2 -
--+ l/2

(defun assure-large-number (n)
(loop (when (and (numberp n) (> n 73)) (return n))

(terror "Enter a number':['; a bit larger than 'D-1."
"-*-A is not a large number."
(numberp n) n)

(format t It- &Type a large number: '0
(setq n (read))
(fresh-line)))

(assure-large-number 10000)
+ 10000

(assure-large-number 'a)
D Correctable error in ASSIJRE-LARGE-RDHRER: A is not a large number.
D Restart options:
D 1: Enter a number.
D 2: Top level.
D Debug> :continue 1
D Type a large number: 88
* 88

(assure-large-number 37)
D Correctable error in ASSURE-LARGE-WIRER: 37 is not a large number.
D Restart options:
D 1: Enter a number a bit larger than 37.
D 2: Top level.
D Debug> :continue 1
D Type a large number: 259
+ 259

(define-condition not-a-large-number (error)
((argument :reader not-a-large-number-argument :initarg :argument))
(:report (lambda (condition stream)

(format stream "-S is not a large number."
(not-a-large-number-argument condition)))))

(defun assure-large-number (n)
(loop (vhen (and (numberp n) (> n 73)) (return n))

(terror "Enter a number-3*-:[-; a bit larger than -*-D-l."
'not-a-large-number
:argument n
:iguore (nuuberp n)
:ignore n
:allov-other-keys t)

(format t "-tType a large number: ")
(setq n (read))

Conditions 9-17

ANSI X3.226-1994 Programming Language-Common Lisp

(fresh-line)))

(assure-large-number 'a)
D Correctable error in ASSURE-LARGE-lNK8E: A is not a large number.
D Restart options:
D 1: Enter a number.
D 2: Top level.
D Debug> : continue 1
D Type a large number: 88
+ 88

(assure-large-number 37)
D Correctable error in ASSURE-LARGE-HUHBE: A is not a large number.
D Restart options:
D 1: Enter a number a bit larger than 37.
D 2: Top level.
D Debug> : continue 1
D Type a large number: 259
+ 259

Affected By:
break-on-signals.

Existing handler bindings.

See Also:
error, format, handler-bind, *break-on-signals*, simple-type-error

Notes:
If datum is a condition type rather than a string, the format directive -* may be especially useful
in the continue-format-control in order to ignore the keywords in the initialization argument list.
For example:

(terror "enter a neu value to replace -*-8"
'not-a-number
:argument a)

check-type

Syntax:
check-type p/ace typespec [string] + nil

Arguments and Values:
p/ace-a place.

typespec-a type specifier.

string-a string; evaluated.

9-18 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

Description:
check-type signals a correctable error of type type-error if the contents of place are not of the
type typespec.

check-type can return only if the store-value restart is invoked, either explicitly from a han-
dler or implicitly as one of the options offered by the debugger. If the store-value restart is
invoked, check-type stores the new value that is the argument to the restart invocation (or that
is prompted for interactively by the debugger) in p/ace and starts over, checking the type of the
new value and signaling another error if it is still not of the desired type.

The first time p/ace is evaluated, it is evaluated by normal evaluation rules. It is later evaluated as
a place if the type check fails and the store-value restart is used; see Section 5.1 .l.l (Evaluation
of Subforms to Places).

string should be an English description of the type, starting with an indefinite article (“a” or
“an”). If string is not supplied, it is computed automatically from typcspcc. The automatically
generated message mentions place, its contents, and the desired type. An implementation may
choose to generate a somewhat differently worded error message if it recognizes that place is of
a particular form, such as one of the arguments to the function that called check-type. string is
allowed because some applications of check-type may require a more specific description of what
is wanted than can be generated automatically from typespec.

Examples:

(setq aardvarks '(sarn harry fred))
+ (SAN HARRY FRED)

(check-type aardvarks (array * (3)))
P Error: The value of AARDVARKS, (SAM HARRY FRED),
D is not a 3-long array.
D To continue, type :CONTINDE followed by an option number:
D 1: Specify a value to use instead.
D 2: Return to Lisp Toplevel.
D Debug> :CONTINDE 1
D Use Value: #(SW FRED HARRY)
+ NIL

aardvarks
+ #<ARRAY-T-3 13571>

(map 'list *'identity aardvarks)
* (SAM FRED HARRY)

(setq aardvark-count 'foe)
---) FOO

(check-type aardvark-count (integer 0 *) “A positive integer")
D Error: The value of AARDVARK-CODNT, FOO, is not a positive integer.
D To continue, type :CONTINlJE folloved by an option number:
D 1: Specify a value to use instead.
D 2: Top level.
0 Debug> :CONTINUE 2

(defmacro define-adder (name amount)
(check-type name (and symbol (not null)) "a name for an adder function")
(check-type amount integer)
‘(defun ,name (x) (+ x ,amount)))

(macroexpand '(define-adder add3 3))
- (defun add3 (x1 (+ x 3))

Conditions 9-19

ANSI X3.226-1994 Programming Language-Common Lisp

(macroexpand ‘(define-adder 7 7))
P Error: The value of NAHE, 7, is not a nane for an adder function.
P To continue, type :CONTINUE folloved by an option nunber:
P 1: Specify a value to use inatead.
D 2: Top level.
D Debug> : Continue 1
P Specify a value to uee instead.
D Type a for-n to be evaluated and used instead: m
--) (defun add7 (x) (+ x 7))

(macroexpand ‘(define-adder add5 something))
D Error: The value of MDDNT, SDXETHING, is not an integer.
b To continue, type : CONTINUE f ollosed by an option number:
D 1: Specify a value to use instead.
D 2: Top level.
o Debug> : Continue 1
D Type a form to be evaluated and used instead: 5
+ (defun add5 (x) (+ x 5))

Control is transferred to a handler.

Side Effects:
The debugger might be entered.

Affected By:
break-on-sign&

The implementation.

See Also:
Section 9.1 (Condition System Concepts)

Notes:

(check-type p/ace typespec)
Z (assert (typep place ‘typespec) (place)

‘type-error :datua place :expected-type ’ typespec)

simple-error condition Type

Class Precedence List:
simple-error, simple-condition, error, serious-condition, condition, t

Description:
The type simple-error consists of conditions that are signaled by error or terror when a jonnot
control is supplied as the function’s first argument.

S-20 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

invalid-method-error Function

syntax:
invalid-method-error method format-control &rest args + implementation-dependent

Arguments and Values:
method-a method.

format-control-a format control.

args-format arguments for the format-control.

Description:
The junction invalid-method-error is used to signal an error of type error when there is an
applicable method whose qualifiers are not valid for the method combination type. The error
message is constructed by using the format-control suitable for format and any args to it. Because
an implementation may need to add additional contextual information to the error message,
invalid-method-error should be called only within the dynamic extent of a method combination
function.

The function invalid-method-error is called automatically when a method fails to satisfy every
qualifier pattern and predicate in a define-method-combination form. A method combination
function that imposes additional restrictions should call invalid-method-error explicitly if it
encounters a method it cannot accept.

Whether invalid-method-error returns to its caller or exits via throw is implementation-
dependent.

Side Effects:
The debugger might be entered.

Affected By:
break-on-signals

See Also:
define-method-combination

met hod-combination-error Function

Syntax:
method-combination-error format-control &rest args + implementation-dependent

Arguments and Values:
format-control-a format control.

args-format arguments for format-control.

Description:
The function method-combination-error is used to signal an error in method combination.

Conditions 9-21

ANSI X3.226-1994 Programming Language-Common Lisp

The error message is constructed by using a format-control suitable for format and any args
to it. Because an implementation may need to add additional contextual information to the
error message, method-combination-error should be called only within the dynamic extent of a
method combination function.

Whether method-combination-error returns to its caller or exits via throw is implementation-
dependent.

Side Effects:
The debugger might be entered.

Affected By:
break-on-signals

See Also:
define-method-combination

signal Function

Syntax:
signal datum &rest arguments - nil

Arguments and Values:
datum, arguments-designators for a condition of default type simple-condition.

Description:
Signals the condition denoted by the given datum and arguments. If the condition is not handled,
signal returns nil.

Examples:

(defun handle-division-conditions (condition)
(format t “Considering condition for division condition handling’%“)
(when (and (typep condition ‘arithlaetic-error)

(eq ‘/ (arithmetic-error-operation condition)))
(invoke-debugger condition)))

HANDLE-DIVISION-CONDITIONS
(defun handle-other-arithmetic-errors (condition)

(format t “Considering condition for arithmetic condition handling’%“)
(when (typep condition ‘arithmetic-error)

(abort)))
HANDLE-OTHER-ARITHMETIC-ERRORS

(define-condition a-condition-with-no-handler (condition) 0)
A-CONDITION-WITH-IO-HANDLER

(signal ‘a-condition-with-no-handler)
NIL

(handler-bind ((condition #‘handle-division-conditions)
(condition #‘handle-other-arithmetic-errors))

(signal ‘a-condition-with-no-handler))
Considering condition for division condition handling
Considering condition for arithmetic condition handling
NIL

9-22 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

(handler-bind ((arithmetic-error #‘handle-division-conditions)
(arithmetic-error #‘handle-other-arithmetic-errors))

(signal ‘arithmetic-error :operation ‘* :operands ‘(1.2 b)))
Considering condition for division condition handling
Considering condition for arithmetic condition handling
Back to Lisp Toplevel

Side Effects:
The debugger might be entered due to *break-on-signals*.

Handlers for the condition being signaled might transfer control.

Affected By:
Existing handler bindings.

break-on-signals

See Also:
break-on-signals, error, simple-condition, Section 9.1.4 (Signaling and Handling Conditions)

Not es:
If (typep datum *break-on-signals*) yields Irue, the debugger is entered prior to beginning the
signaling process. The continue restart can be used to continue with the signaling process. This
is also true for all other functions and macros that should, might, or must signal conditions.

simple-condition Condition Type

Class Precedence List:
simple-condition, condition, t

Description:
The type simple-condition represents conditions that are signaled by signal whenever a format-
control is supplied as the function’s first argument. The format control and format arguments
are initialized with the initialization arguments named :f ormat-control and :format-arguments
to make-condition, and are accessed by the junctions simple-condition-format-control and
simple-condition-format-arguments. If format arguments are not supplied to make-condition,
nil is used as a default.

See Also:
simple-condition-format-control, simple-condition-formaGarguments

Conditions 9-23

ANSI X3.226-1994 Programming Language-Common Lisp

simple-condition-format-control, simple-
condition-format-arguments Function

syntzuc:
simple-condition-format-control condition -+ format-control

simple-condition-format-arguments condition -+ format-arguments

Arguments and Values:
condition-a condition of type simple-condition.

format-control-a format control.

format-arguments-a list.

Description:
simple-condition-format-control returns the format control needed to process the condition’s
fomaat arguments.

simple-condition-format-arguments returns a list of format arguments needed to process the
condition’s format control.

Examples:

(setq foo (rake-condition ‘simple-condition
: f omat-control “Hi ‘S’
:format-arguments ‘(ho)))

+ #<SIHPLE-COIVDITIOIO 26223553>
(apply #‘format nil (simple-condition-f ormat-control f oo)

(simple-condition-f ormat-arguments f oo))
-+ “Hi HO”

See Also:
simple-condition, Section 9.1 (Condition System Concepts)

Syntax:
warn datum &rest arguments + nil

Arguments and Values:
datum, arguments- designators for a condition of default type simple-warning.

Description:
Signals a condition of type warning. If the condition is not handled, reports the condition to
error output.

The precise mechanism for warning is as follows:

9-24 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

The warning condition is signaled

While the warning condition is being signaled, the mu&-warning restart is established
for use by a handler. If invoked, this restart bypasses further action by warn, which in
turn causes warn to immediately return nil.

If no handler for the warning condition is found

If no handlers for the warning condition are found, or if all such handlers decline, then
the condition is reported to error output by warn in an implementation-dependent
format.

nil is returned

The value returned by warn if it returns is nil.

Examples:

(defun foo (x)
(let ((result (* x 2)))

(if hot (typep result ‘fixmm))
(uarn “You’re using very big numbers.“))

result) 1
4 FOO

(foe 3)
+6

(foo most-positive-fixnun)
D Yarning: You’re using very big numbers.
+ 4294967294

(setq *break-on-signals* t)
+T

(foe most-positive-fixnum)
D Break: caveat emptOr.

D To continue, type :CONTINUE folloved by an option number.
D 1: Return from Break.
D 2: Abort to Lisp Toplevel.
D Debug> :continue 1
D Uarning: You’re using very big nrubers.
-) 4294967294

Side Effects:
A warning is issued. The debugger might be entered.

Affected By:
Existing handler bindings.

break-on-signals, *error-output*.

Exceptional Situations:
If datum is a condition and if the condition is not of type warning, or arguments is non-nil, an
error of type type-error is signaled.

If datum is a condition type, the result of (apply #‘~&e-condition datum arguments) must be of

type warning or an error of type type-error is signaled.

Conditions 9-25

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
break-on-signals, muffle-warning, signal

simple-warning Condition Type

Class Precedence List:
simple-warning, simple-condition, warning, condition, t

Description:
The type simple-warning represents conditions that are signaled by warn whenever a format
control is supplied as the function’s first argument.

invoke-debugger Function

Syntax:
invoke-debugger condition -1

Arguments and Values:
condition-a condition object.

Description:
invoke-debugger attempts to enter the debugger with condition.

If *debugger-hook* is not nil, it should be a function (or the name of a function) to be
called prior to entry to the standard debugger. The function is called with *debugger-hook*
bound to nil, and the function must accept two arguments: the condition and the value of
debugger-hook prior to binding it to nil. If the function returns normally, the standard
debugger is entered.

The standard debugger never directly returns. Return can occur only by a non-local transfer of
control, such as the use of a restart function.

Examples:

(ignore-errors ;Normally, this vould suppress debugger entry
(handler-bind ((error #'invoke-debugger)) ;But this forces debugger entry

(error "Foe.")))
Debug: Foo.
To continue, type :CONTINUE folloved by an option number:

1: Return to Lisp Toplevel.
Debug>

Side Effects:
debugger-hook is bound to nil, program execution is discontinued, and the debugger is en-
tered.

Affected By:
debug-io and *debugger-hook*.

9-26 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
error, break

break Function

Syntax:
break toptional format-control &rest format-arguments + nil

Arguments and Values:
format-control-a format conhol. The default is implemenfalion-dependent.

format-arguments-format arguments for the format-control.

Description:
break formats format-control and format-arguments and then goes directly into the debugger
without allowing any possibility of interception by programmed error-handling facilities.

If the continue restart is used while in the debugger, break immediately returns nil without
taking any unusual recovery action.

break binds *debugger-hook* to nil before attempting to enter the debugger.

Examples:

(break “You got here with arguments: -:S.” ‘(FOO 37 A))
D BREAK: You got here with these arguments: FOO. 37. A.
D To continue, type :CONTINlJE followed by an option number:
D 1: Return front BREAK.
D 2: Top level.
D Debug> :CDNTINUE 1
D Return from BREAK.
+ NIL

Side Effects:
The debugger is entered.

Affected By:
debug-io.

See Also:
error, invoke-debugger.

Notes:
break is used as a way of inserting temporary debugging “breakpoints” in a program, not as a
way of signaling errors. For this reason, break does not take the continue-format-control argument
that terror takes. This and the lack of any possibility of interception by condition handling are
the only program-visible differences between break and terror.

The user interface aspects of break and terror are permitted to vary more widely, in order to
accomodate the interface needs of the implementation. For example, it is permissible for a Lisp
read-eval-print loop to be entered by break rather than the conventional debugger.

break could be defined by:

Conditions 9-27

_- - - - _-.. -. _ -I -1 _ -. - - -

ANSI X3.2261994 Programming Language-Common Lisp

(defun break (&optional (format-control "Break") treat format-arguments)
(with-simple-restart (continue "Return from BREAK.")

(let ((*debugger-hooti nil))
(invoke-debugger

(make-condition 'simple-condition
:format-control format-control
:format-arguments format-arguments))))

nil)

debugger-hook Variable

Value Type:
.

a designator for afunciion of two arguments (a condition and the value of *debugger-hook* at
the time the debugger was entered), or nil.

Initial Value:
nil.

Description:
When the value of *debugger-hook* is non-nil, it is called prior to normal entry into the debug-
ger, either due to a call to invoke-debugger or due to automatic entry into the debugger from
a call to error or terror with a condition that is not handled. The function may either handle
the condition (transfer control) or return normally (allowing the standard debugger to run). To
minimize recursive errors while debugging, *debugger-hook* is bound to nil by invoke-debugger
prior to calling the function.

Examples:

(defun one-of (choices &optional (prompt "Choice"))
(let ((n (length choices)) (9)

(do ((c choices (cdr c)) (i 1 (+ i 1)))
((null c))

(format t "'&C-D] ‘A’% ” i (car c)))
(do 0 ((typep i ‘(integer 1 .n)))

(format t “‘&‘A: " prompt)
(setq i (read))
(fresh-line))

(nth (- i 1) choices)))

(defun my-debugger (condition me-or-my-encapsulation)
(format t "XPooey: -A” condition)
(let ((restart (one-of (compute-restarts))))

(if (not restart) (error "Hy debugger got an error."))
(let ((*debugger-hook* me-or-my-encapsulation))

(invoke-restart-interactively restart))))

(let ((*debugger-hook* #'my-debugger))
(+ 3 'a))

D Fooey: The argument to +, A, is not a number.
D Cl] Supply a replacenent for A.
D [2] Return to Cloe Toplevel.
D Choice: 1

9-28 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

D Fork to evaluate and use: (+ 5 ‘b)
D Fooey: The argument to +, B. is not a number.
D [l] Supply a replacement for B.
D [2] Supply a replacement for A.
D [3] Return to Cloe Toplevel.
D Choice: 1
D Form to evaluate and use: 1
-9

Affected By:
invoke-debugger

Notes:
When evaluating code typed in by the user interactively, it is sometimes useful to have the hook
function bind *debugger-hook* to the function that was its second argument so that recursive
errors can be handled using the same interactive facility.

break-on-signals Variable

Value Type:
a type specifier.

Initial Value:
nil.

Description:
When (typep condition *break-on-signals+) returns true, calls to signal, and to other operators
such as error that implicitly call signal, enter the debugger prior to signaling the condition.

The continue restart can be used to continue with the normal signaling process when a break
occurs process due to *break-on-signals*.

Examples:

break-on-signals + HIL
(ignore-errors (error ‘simple-error :format-control “Fooey!“))

+ BIL. #CSIBPLE-ERROR 32207172D

(let ((*break-on-signals* ‘error))
(ignore-errors (error ‘simple-error :format-control “Fooey!“)))

D Break: fooey!
D BBEAK entered because of +BBEAK-OB-SIGBALS*.
D To continue, type :COHTIKUE followedby an option number:
D i: Continue to signal.
D 2: Top level.
D Debug> :COATIBUE 1
D Continue to signal.
+ BIL, #<SIHPLE-ERROR 32212257D

(let ((*break-on-signals* ‘error))
(error ‘simple-error :format-control “Fooey!“))

D Break: Fooey!
D BREAK entered because of *BREAK-OK-SIGBALS*.

Conditions 9-29

ANSI X3.226-1994 Programming Language-Common Lisp

P To continue, type :CONTINUE folloved by an option number:
D 1: Continue to signal.
D 2: Top level.
D Debug> :CONTINDE 1
D Continue to signal.
D Error: Fooey !
D To continue, type :CONTINUE folloved by an option number:
D 1: Top level.
D Debug> :CDNTINUE 1
D Top level.

See Also:
break, signal, warn, error, typep, Section 9.1 (Condition System Concepts)

Notes:
break-on-signals is intended primarily for use in debugging code that does signaling. When
setting *break-on-signals*, the user is encouraged to choose the most restrictive specification
that suffices. Setting *break-on-signals* effectively violates the modular handling of condition
signaling. In practice, the complete effect of setting *break-on-signals* might be unpredictable in
some cases since the user might not be aware of the variety or number of calls to signal that are
used in code called only incidentally.

break-on-signals enables an early entry to the debugger but such an entry doea not preclude
an additional entry to the debugger in the case of operations such as error and terror.

handler-bind Macro

Syntax:
handler-bind ({ Jbinding}*) {form}* + {result)*

binding:.=(type handler)

Arguments and Values:
type-a type specifier.

handler-a form; evaluated to produce a handler-function.

handler-function-a designator for a function of one argument.

forms-an implicit progn.

results-the values returned by the forms.

Description:
Executes forms in a dynamic environment where the indicated handler bindings are in effect.

Each handler should evaluate to a handler-function, which is used to handle conditions of the
given type during execution of the forms. This function should take a single argument, the
condition being signaled.

If more than one handler binding is supplied, the handler bindings are searched sequentially from
top to bottom in search of a match (by visual analogy with typecase). If an appropriate type
is found, the associated handler is run in a dynamic environment where none of these handier

9-30 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

bindings are visible (to avoid recursive errors). If the handler declines, the search continues for
another handler.

If no appropriate handler is found, other handlers are sought from dynamically enclosing con-
tours. If no handler is found outside, then signal returns or error enters the debugger.

Examples:
In the following code, if an unbound variable error is signaled in the body (and not handled by an
intervening handler), the first function is called.

(handler-bind ((unbound-variable #'(lambda . ..))
(error #'(lambda . ..))I

. . . 1

If any other kind of error is signaled, the second function is called. In either case, neither handler
is active while executing the code in the associated function.

(defun trap-error-handler (condition)
(format *error-output* "'t-A'&" condition)
(throv 'trap-errors nil))

(defmacro trap-errors (&rest forms)
'(catch 'trap-errors

(handler-bind ((error #'trap-error-handler))
,Oforms)))

(list (trap-errors (signal "Foe.") 1)
(trap-errors (error "Bar.") 2)
(+ 1 2))

I> Bar.
+ (1 NIL 3)

Note that “Foo.” is not printed because the condition made by signal is a simple condition, which
is not of type error, so it doesn’t trigger the handler for error set up by trap-errors.

See Also:
handler-case

handler-case Macro

Syntax:
handler-case expression I[{ 1 error-clause}* 1 J/w-error-clause]I + {result)*

c/ause::=J error-clause 1 1 no-error-clause

error-clause:.+ typespec ([var]) {declaration}* {form}*)

no-efror-c/ause::=(:no-error lambda-list {declaration}* {form}*)

Arguments and Values:
expression-a form.

typespec-a type specifier.

var-a variable name.

Conditions Q-31

_-. -- _ _ ;_ - -.

ANSI X3.226-1994 Programming Language-Common Lisp

lambda-list--an ordinary lambda list.

declaration--a declare ezpression; not evaluated.

form-a form.

results--In the normal situation, the values returned are those that result from the evaluation of
expression; in the exceptional situation when control is transferred to a clause, the value of the last
form in that clause is returned.

Description:
handler-case executes expression in a dynamic environment where various handlers are active.
Each error-clause specifies how to handle a condition matching the indicated typaspec. A no-
error-clause allows the specification of a particular action if control returns normally.

If a condition is signaled for which there is an appropriate error-clause during the execution
of expression (i.e., one for which (typep condition ‘typespec) returns true) and if there is no
intervening handler for a condition of that type, then control is transferred to the body of the
relevant error-clause. In this case, the dynamic state is unwound appropriately (so that the
handlers established around the expression are no longer active), and var is bound to the condition
that had been signaled. If more than one case is provided, those cases are made accessible in
parallel. That is, in

(handler-case form
(typespecl (uarl) forml)
(typespect (var2) form&>)

if the first clause (containing forml) has been selected, the handler for the second is no longer
visible (or vice versa).

The clauses are searched sequentially from top to bottom. If there is type overlap between
typespecs, the earlier of the clauses is selected.

If var is not needed, it can be omitted. That is, a clause such as:

(typespec (var) (declare (ignore var)) form)

can be written (typespec 0 form).

If there are no forms in a selected clause, the case, and therefore handler-case, returns nil. If
execution of axprcssion returns normally and no no-error-clause exists, the values returned by
expression are returned by handler-case. If execution of expression returns normally and a no-
error-clause does exist, the values returned are used as arguments to the function described
by constructing (lambda lambda-list {form}*) from the no-error-clause, and the values of that
function call are returned by handler-case. The handlers which were established around the
expression are no longer active at the time of this call.

Examples:

(defun assess-condition (condition)
(handler-case (signal condition)

(varning 0 "Lots of smoke, but no fire.")
((or arithmetic-error control-error cell-error stream-error)

(condition)
(format nil "73 looks especially bad." condition))

(serious-condition (condition)
(format nil "3 looks serious." condition))

(condition 0 "Hardly vorth mentioning.")))
-+ ASSESS-CfMDITIOIO

9-32 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

(assess-condition (make-condition ‘stream-error :strear *terminal-io+))
-+ VCSTREAH-ERROR 12352256> look5 especially bad.”

(define-condition random-condition (condition) 0
(:report (lambda (condition stream)

(declare (ignore condition))
(print “You” stream)) 1)

* RANDOH-CONDITION
(assess-condition (rake-condition ‘randoa-condition))

- “Hardly worth mentioning. ”

See Also:
handler-bind, ignore-errors, Section 9.1 (Condition System Concepts)

Notes:

(handler-case form
(type1 (uarl) . bodyf)
(type2 (vard) . body.??) . . .I

is approximately equivalent to:

(block #l=t:gOOOl
(let ((#2=#:gOOO2 nil))

(tagbody
(handler-bind ((type1 #‘(lambda (temp)

(setq tl# temp)
(go #3=t:g0003)))

(type& #’ (lambda (temp)
(setq #2# temp)
(go #4=#:gOOO4))) . ..)

(return-f ram #l* form))
t3# (return-from #IX (let ((varl #2#)) . Qodyl))
~4s (return-from#tl# (let ((uar.2#2#)) . bodyd)) . ..I)>

(handler-case form
(type1 (varl) . bodyl)
. . .
(:no-error CvarN-1 varN-2 . . .I . bodyN))

is approximately equivalent to:

(block #l=#:error-return
(multiple-value-call #‘(lambda (vat-N-1 varN-2 . ..) . bodyn?

(block #2=t:normal-return
(return-from ltlt

(handler-case (return-from S2S form)
(type1 (varl) . body11 . ..))I))

ignore-errors Macro

Syntax:
ignore-errors { form}* -+ {result}*

Conditions 9-33

ANSI X3.226-1994 Programming Language-Common Lisp

Arguments and Values:
forms-an implicit progn.

results-In the normal situation, the values of the forms are returned; in the exceptional situa-
tion, two values are returned: nil and the condition.

Description:
ignore-errors is used to prevent conditions of type error from causing entry into the debugger.

Specifically, ignore-errors executes forms in a dynamic environment where a handler for condi-
tions of type error has been established; if invoked, it handles such conditions by returning two
values, nil and the condition that was signaled, from the ignore-errors form.

If a normal return from the forms occurs, any values returned are returned by ignore-errors.

Examples:

(defun load-init-file (program)
(let ((win nil))

(ignore-errors ;if this fails, don't enter debugger
(load (merge-pathnames (make-pathname :name program :type :lisp)

(user-homedir-pathname)))
(setq vin t))

(unless win (format t "-kInit file failed to load.'%"))
win))

(load-init-file "no-such-program")
D Init file failed to load.
NIL

See Also:
handler-case, Section 9.1 (Condition System Concepts)

Notes:

(ignore-errors . forms)

is equivalent to:

(handler-case (progn . forms)
(error (condition) (values nil condition)))

Because the second return value is a condition in the exceptional case, it is common (but not
required) to arrange for the second return value in the normal case to be missing or nil so that
the two situations can be distinguished.

define-condition

Syntax:
define-condition name ({parent-type}*) ({ Jslot-spec)‘) {option}*

+ name

slot-spec::=slot-name 1 (slot-name lslot-option)

9-34 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

slot-option::=[{ :reader sy?nbo/}* 1

{ :vriter lfunction-name)* 1
{ : accessor symbol}* 1
{ :allocation ~a//oCdti0fFtype} 1

{ : initarg symbol}* 1
{ : initf orm fo7Yn) 1

{ : type typespecifier}]

option::=[(:def ault-initargs . initarg-list) 1

(:documentation siring) 1

(:report report-name)]

function-name::={symbol I (setf symbol)}

a/location-type::=: instance I : class

report-name..- *.-string I symbol I lambda expression

Arguments and Values:
name-a symbol.

parent-type-a symbol naming a condition type. If no parent-types are supplied, the parent-types
default to (condition).

default-initargs-a list of keyword/value pairs.

Slot-spec - the name of a slot or a list consisting of the slot-name followed by zero or more
slot-options.

Slot-name - a slot name (a symbol), the list of a slot name, or the list of slot name/slot form
pairs.

Option - Any of the following:

: reader

:reader can be supplied more than once for a given slot and cannot be nil.

:vriter

:vriter can be supplied more than once for a given slot and must name a generic func-
tion.

: accessor

:accessor can be supplied more than once for a given slot and cannot be nil.

:allocation

:allocation can be supplied once at most for a given slot. The default if :allocktion is
not supplied is :instance.

: initarg

:initarg can be supplied more than once for a given slot.

:initform

: initf arm can be supplied once at most for a given slot.

Conditions 9-35

ANSI X3.226-1994 Programming Language-Common Lisp

:type

: type can be supplied once at most for a given slot.

:docruentation

:documentation can be supplied once at most for a given slot.

: report

:report can be supplied once at most.

Description:
define-condition defines a new condition type called name, which is a subtype of the type or
types named by parent-type. Each parent-type argument specifies a direct supertype of the new
condition. The new condition inherits slots and methods from each of its direct supertypes, and so
on.

If a slot name/slot form pair is supplied, the slot form is a form that can be evaluated by
make-condition to produce a default value when an explicit value is not provided. If no slot
form is supplied, the contents of the slot is initialized in an implementation-dependent way.

If the type being defined and some other type from which it inherits have a slot by the same
name, only one slot is allocated in the condition, but the supplied slot form overrides any slot
form that might otherwise have been inherited from a parent-type. If no slot form is supplied, the
inherited slot form (if any) is still visible.

Accessors are created according to the same rules as used by defclass.

A description of slot-options follows:

: reader

The :reader slot option specifies that an unqualified method is to be defined on the
generic function named by the argument to :reader to read the value of the given slot.

l The : initfom slot option is used to provide a default initial value form to be used in
the initialization of the slot. This fotm is evaluated every time it is used to initialize the
slot. The lexical environment in which this form is evaluated is the lexical environment
in which the define-condition form was evaluated. Note that the lexical environment
refers both to variables and to junctions. For local slots, the dynamic environment is
the dynamic environment in which make-condition was called; for shared slots, the
dynamic environment is the dynamic environment in which the define-condition form
was evaluated.

No implementation is permitted to extend the syntax of define-condition to allow
(slot-name form) as an abbreviation for (slot-name :initfon form).

: init arg

The : initarg slot option declares an initialization argument named by its symbol ar-
gument and specifies that this initialization argument initializes the given slot. If the
initialization argument has a value in the call to initialize-instance, the value is stored
into the given slot, and the slot’s :initform slot option, if any, is not evaluated. If none
of the initialization arguments specified for a given slot has a value, the slot is initialized
according to the : initf on slot option, if specified.

9-36 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

: type

The :type slot option specifies that the contents of the slot is always of the specified type.
It effectively declares the result type of the reader generic function when applied to an
object of this condition type. The consequences of attempting to store in a slot a value
that does not satisfy the type of the slol is undefined.

:default-initargs

This option is treated the same as it would be defclass.

:doqmentation

The :docmentation slot option provides a documentahon siring for the slot.

:report

Condition reporting is mediated through the print-object method for the condition type
in question, with *print-escape* always being nil, Specifying (:report report-name) in
the definition of a condition type C is equivalent to:

(defmethod print-object ((x c) stream)
(if *print-escape* (call-next-method) (report-name x stream)))

If the value supplied by the argument to :report (report-name) is a symbol or a lambda
expression, it must be acceptable to function. (function report-name) is evaluated in the
current letical environment. It should return a funclion of two arguments, a condition
and a stream, that prints on the siream a description of the condition. This function is
called whenever the condition is printed while *print-escape* is nil.

If report-name is a string, it is a shorthand for

(lambda (condition stream)
(declare (ignore condition))
(vrite-string report-name stream) 1

This option is processed after the new condition type has been defined, so use of the
slot accessors within the :report function is permitted. If this option is not supplied,
information about how to report this type of condition is inherited from the parent-type.

The consequences are unspecifed if an attempt is made to read a slot that has not been explicitly
initialized and that has not been given a default value.

The consequences are unspecified if an attempt is made to assign the slots by using setf.

If a define-condition form appears as a top level form, the compiler must make name recog-
nizable as a valid type name, and it must be possible to reference the condition type as the
parent-type of another condition type in a subsequent define-condition jonn in the file being
compiled.

Examples:
The following form defines a condition of type peg/hole-mismatch which inherits from a condition
type called blocks-vorld-error:

Conditions 9-37

ANSI X3.226-1994 Programming LanguageCommon Lisp

(define-condition peg/hole-mismatch
(blocks-vorld-error)
((peg-shape : initarg :peg-shape

:reader peg/hole-mismatch-peg-shape)
(hole-shape : initarg :hole-shape

:reader peg/hole-mismatch-hole-shape))
(:report (lambda (condition stream)

(format stream “A ‘A peg cannot go in a ‘A hole. ”
(peg/hole-mismatch-peg-shape condition)
(peg/hole-mismatch-hole-shape condition)))))

The new type has slots peg-shape and hole-shape, so make-condition accepts
:peg-shape and :hole-shape keywords. The readers peg/hole-mismatch-peg-shape and

peg/hole-mismatch-hole-shape apply to objects of this type, as illustrated in the :report in-
formation.

The following form defines a condition type named machine-error which inherits from error:

(define-condition machine-error
(error)
((machine-name : initarg :machine-name

:reader machine-error-machine-name))
(:report (lambda (condition stream)

(format stream “There is a problem vith ‘A. ”
(machine-error-machine-name condition)))))

Building on this definition, a new error condition can be defined which is a subtype of
machine-error for use when machines are not available:

(define-condition machine-not-available-error (machine-error) 0
(:report (lambda (condition stream)

(format stream “The machine ‘A is not available.”
(machine-error-machine-name condition)))))

This defines a still more specific condition, built upon machine-not-available-error, which
provides a slot initialization form for machine-name but which does not provide any new slots or
report information. It just gives the machine-name slot a default initialization:

(define-condition my-favorite-machine-not-available-error
(machine-not-available-error)

((machine-name :initform *‘mc.lcs.mit.edu”)))

Note that since no :report clause was given, the information inherited from
machine-not-available-error is used to report this type of condition.

(define-condition ate-too-much (error)
((person :initarg :person :reader ate-too-much-person)

(veight :initarg :veight :reader ate-too-much-veight)
(kind-of-food :initarg :kind-of-food

:reader :ate-too-much-kind-of-food)))
+ ATE-TOO-HUNCH

9-38 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

(define-condition ate-too-much-ice-cream (ate-too-much)
((kind-of-food :initform 'ice-cream)

(flavor :initarg :flavor
:reader ate-too-much-ice-cream-flavor
:initform 'vanilla))

(:report (lambda (condition stream)
(format stream "-A ate too much 'A ice-cream"

(ate-too-much-person condition)
(ate-too-much-ice-cream-flavor condition)))))

- ATE-TOO-MUCH-ICE-CREW
(make-condition 'ate-too-much-ice-cream

:person 'fred
:-eight 300
:flavor 'chocolate)

+ #<ATE-TOO-MUCH-ICE-CREAM 32236100
(format t "'A" *>

D FRED ate too much CHOCOLATE ice-cream
--) NIL

See Also:
make-condition, defclass, Section 9.1 (Condition System Concepts)

make-condition Function

Syntax:
make-condition type &rest slot-initializations -+ condition

Arguments and Values:
type-a type specifier (for a subtype of condition).

slot-initialilations-an initialization argument list.

condition-a condition.

Description:
Constructs and returns a condition of type type using slot-initializations for the initial values of
the slots. The newly created condition is returned.

Examples:

(defvar *oops-count* 0)

(setq a (make-condition 'simple-error
:format-control "This is your ':R error."
:format-arguments (list (incf *oops-count*))))

+ #<SIMPLE-EMOR 32245104>

(format t "-&-A-%" a)
D This is your first error.
+ NIL

Conditions 9-39

ANSI X3.226-1994 Programming Language-Common Lisp

(error a)

D Error: This is your first error.
D To continue, type : COJ?TIRUE f ollooed by an option number:
D 1: Return to Lisp Toplevel.
D Debug>

Affected By:
The set of defined condilion types.

See Also:
deflue-conditiou, Section 9.1 (Condition System Concepts)

restart System Class

Class Precedence Lit:
restart, t

Description:
An objecf of type restart represents a funcfion that can be called to perform some form of
recovery action, usually a transfer of control to an outer point in the running program.

An implemenfafion is free to implement a resfari in whatever manner is most convenient; a
restart has only dynamic eztenf relative to the scope of the binding form which establishes it.

compute-restarts Function

Syntax:
compute-restarts &optional condition + restarts

Arguments and Values:
condition-a condition object, or nil.

restarts-a lisf of restarts.

Description:
compute-restarts uses the dynamic state of the program to compute a list of the resfarfs which
are currently active.

The resulting lid is ordered so that the innermost (more-recently established) restarts are nearer
the head of the lisf.

When condition is non-nil, only those restarts are considered that are either explicitly associated
with that condition, or not associated with any condition; that is, the excluded restarts are those
that are associated with a non-empty set of conditions of which the given condition is not an
element. If condition is nil, all resfarfs are considered.

9-40 Conditions

Programming Language-Common Lisp ANSI X3.226- 1994

compute-restarts returns all applicable restarts, including anonymous ones, even if some of them
have the same name as others and would therefore not be found by And-restart when given a
symbol argument.

Implementations are permitted, but not required, to return distinct lists from repeated calls to
compute-restarts while in the same dynamic environment. The consequences are undefined if the
list returned by compute-restarts is every modified.

Examples:

;; One possible way in which an interactive debugger right present
;; restarts to the user.
(defun invoke-a-restart 0

(let ((restarts (compute-restarts)))
(do ((i 0 (+ i 1)) (r restarts (cdr r))) ((null r))

(format t "'t-D: 'A-X" i (car r)))
(let ((n nil) (k (length restarts)))

(loop (when (and (typep n 'integer) (>= n 0) (< n k))
(return Ii))

(format t "'&Option: ")
(setq n (read))
(fresh-line))

(invoke-restart-interactively (nth n restarts)))))

(restart-case (invoke-a-restart)
(one 0 1)
ctvo 0 2)
(nil 0 :report Who knovs?” ‘anonymous)
(one 0 ‘I)
ctvo 0 ‘II))

D 0: ONE
D 1: mo

D 2: kiho knovs?
D 3: OlfE
D 4: TWO
D 5: Return to Lisp Toplevel.
D Option: 3
+ II

;; Bate that in addition to user-defined restart points, COHPDTEHESTARTS
:; also returns information about any system-supplied restarts, such as
;; the Vleturn to Lisp Toplevel" restart offered above.

Affected By:
Existing restarts.

See Also:
And-restart, invoke-restart, restart-bind

Conditions 941

- -._ ..-. __- _.__ _. _ _ - .

ANSI X3.226-1994 Programming Language-Common Lisp

find-restart Function

syntax:
find-restart identifier &optional condition

restart

Arguments and Values:
identifier-a non-nil symbol, or a restart.

condition-a condition object, or nil.

restart-a resta or nil.

Description:
And-restart searches for a particular restart in the current dynamic environment.

When condition is non-nil, only those restarts are considered that are either explicitly associated
with that condition, or not associated with any condition; that is, the excluded restarts are those
that are associated with a non-empty set of conditions of which the given condition is not an
element. If condition is nil, all restarts are considered.

If identifier is a symbol, then the innermost (most recently established) applicable restart with
that name is returned. nil is returned if no such restart is found.

If identifier is a currently active restart, then it is returned. Otherwise, nil is returned.

Examples:

(restart-case
(let ((r (find-restart ‘my-restart)))

(format t "'S is named 'S" r (restart-name r)))
(my-restart 0 nil))

D #GlESTART 3230732D is named HY-RESTART
+ NIL

(find-restart 'my-restart)
* NIL

Affected By:
Existing restarts.

restart-case, restart-bind, with-condition-restarts.

See Also:
compute-restarts

Notes:

(find-restart identifier)
E (find identifier (compute-restarts) :key :restart-name)

Although anonymous restarts have a name of nil, the consequences are unspecified if nil is given
as an identifier. Occasionally, programmers lament that nil is not permissible as an identifier
argument. In most such cases, compute-restarts can probably be used to simulate the desired
effect.

9-42 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

invoke-restart Function

syntax:
invoke-restart restart &rest arguments + {re.~/t}*

Arguments and Values:
restart-a restart designator.

argument-an object.

results-the values returned by the function associated with restart, if that function returns.

Description:
Calls the funciion associated with restart, passing arguments to it. Restart must be valid in the
current dynamic environment.

Examples:

(defun add3 (x) (check-type x number) (+ x 3))

(foe 'seven)
D Error: The value SEVEN was not of type ??U?BER.
D To continue, type :COIYTINUE followed by an option number:
D 1: Specify a different value to use.
D 2: Return to Lisp Toplevel.
D Debug> (invoke-restart 'store-value 7)
+ 10

Side Effects:
A non-local transfer of control might be done by the restart.

Affected By:
Existing restarts.

Exceptional Situations:
If restart is not valid, an error of type control-error is signaled.

See Also:
find-restart, restart-bind, restart-case, invoke-restart-interactively

Notes:
The most common use for invoke-restart is in a handler. It might be used explicitly, or implicitly
through invoke-restart-interactively or a restart function.

Restart functions call invoke-restart, not vice versa. That is, invoke-restart provides primitive
functionality, and restart functions are non-essential “syntactic sugar.”

Conditions 9-43

ANSI X3.226-1994 Programming Language-Common Lisp

invoke-restart-interactively Function

syntax:
invoke-restart-interactively restart 4 { rasdt}*

Arguments and Values:
restart-a restart designator.

results-the values returned by the function associated with restart, if that function returns.

Description:
invoke-restart-interactively calls the function associated with restart, prompting for any neces-
sary arguments. If restart is a name, it must be valid in the current dynamic environmeni.

invoke-restart-interactively prompts for arguments by executing the code provided in the
: interactive keyword to restart-case or : interactive-function keyword to restart-bind.

If no such options have been supplied in the corresponding restart-bind or restart-case, then the
consequences are undefined if the restart takes required arguments. If the arguments are optional,
an argument list of nil is used.

Once the arguments have been determined, invoke-restart-interactively executes the following:

(apply #8invoke-restart restart arguments)

Examples:

(defun add3 (x1 (check-type x number) (+ x 3))

(add3 ‘seven)
D Error: The value SEVEB vas not of type HUHBEFt.
D To continue, type :COBTIMIJE followed by an option number:
D 1: Specify a different value to use.
D 2: Return to Lisp Toplevel.
D Debug> (invoke-restart-interactively ‘store-value)
D Type a form to evaluate and use: 7
-+ 10

Side Effects:
If prompting for arguments is necesary, some typeout may occur (on query I/O).

A non-local transfer of control might be done by the restart.

Affected By:
query-io, active restarts

Exceptional Situations:
If r&art is not valid, an error of type control-error is signaled.

See Also:
And-restart, invoke-restart, restart-case, restart-bind

Notes:
invoke-restart-interactively is used internally by the debugger and may also be useful in imple-
menting other portable, interactive debugging tools.

944 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

restart-bind Macro

Syntax:
restart-bind ({(name function { 1 key-val-pair}*)}) { form} *

* {result}*

key-val-pair::= : interactive-f unction interactivcfunction 1

:report-function report-function 1

: test-function test-function

Arguments and Values:
name-a symbol; not evaluated.

function-a form; evaluated.

forms-an implicit progn.

interactive-function-a form; evaluated.

report-function-a form; evaluated.

test-function-a form; evaluated.

results-the values returned by the forms.

Description:
restart-bind executes the body of forms in a dynamic environment where resiarts with the given
names are in effect.

If a name is nil, it indicates an anonymous restart; if a name is a non-nil symbol, it indicates a
named restart.

The function, interactivcfundion, and report-function are unconditionally evaluated in the current
lexical and dynamic environment prior to evaluation of the body. Each of these forms must
evaluate to a function.

If invoke-restart is done on that restart, the function which resulted from evaluating func-
tion is called, in the dynamic environment of the invoke-restart, with the arguments given to
invoke-restart. The function may either perform a non-local transfer of control or may return
normally.

If the restart is invoked interactively from the debugger (using invoke-restart-interactively),
the arguments are defaulted by calling the fundion which resulted from evaluating interactive
function. That function may optionally prompt interactively on query I/O, and should return a
list of arguments to be used by invoke-restart-interactively when invoking the restart.

If a restart is invoked interactively but no interactive-function is used, then an argument list of nil
is used. In that case, the function must be compatible with an empty argument list.

If the restart is presented interactively (e.g., by the debugger), the presentation is done by calling
the fundion which resulted from evaluating report-function. This function must be a function of
one argument, a stream. It is expected to print a description of the action that the restart takes
to that stream. This function is called any time the restart is printed while *print-escape* is nil.

In the case of interactive invocation, the result is dependent on the value of

Conditions 9-45

ANSI X3.226-1994 Programming Language-Common Lisp

: interactive-function as foll0WS.

:interactive-function

Value is evaluated in the current lexical environment and should return a
function of no arguments which constructs a list of arguments to be used by
invoke-restart-interactively when invoking this restart. The function may prompt
interactively using query I/O if necessary.

:report-function

Value is evaluated in the current lexical environment and should return a function of
one argument, a stream, which prints on the stream a summary of the action that this
restart takes. This function is called whenever the restart is reported (printed while
print-escape is nil). If no :report-function option is provided, the manner in which
the restart is reported is implementation-dependent.

:teat-function

Value is evaluated in the current lexical environment and should return a function of one
argument, a condition, which returns true if the restart is to be considered visible.

Affected By:
query-io.

See Also:
restart-case, with-simple-restart

Notes:
restart-bind is primarily intended to be used to implement restart-case and might be useful in
implementing other macros. Programmers who are uncertain about whether to use restart-case
or restart-bind should prefer restart-case for the cases where it is powerful enough, using
restart-bind only in cases where its full generality is really needed.

restart-case Macro

Syntax:
restart-case restartable-form { Jclause} --, {few/t}*

c/ause::=(case-name lambda-list

[: interactive interactive-expression 1 : report report-expression 1 : teat test-,expression]

{ declaration} * { form} *)

Arguments and Values:
restartable-form-a form.

case-name-a symbol or nil.

lambda-list-an ordinary lambda list.

interactive-expression-a symbol or a lambda expression.

report-expression-a string, a symbol, or a lambda expression.

9-46 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

test-expression-a symbol or a lambda expression.

declaration-a declare expression; not evaluated.

form-a form.

results-the values resulting from the evaluation of restartablcform, or the values returned by the
last form executed in a chosen clause, or nil.

Description:
restart-case evaluates restartabie-form in a dynamic environment where the clauses have special
meanings as points to which control may be transferred. If restartablcform finishes executing and
returns any values, all values returned are returned by restart-case and processing has completed.
While restartable-form is executing, any code may transfer control to one of the clauses (see
invoke-restart). If a transfer occurs, the forms in the body of that clause is evaluated and any
values returned by the last such form are returned by restart-case. In this case, the dynamic
state is unwound appropriately (so that the restarts established around the restartable-form are no
longer active) prior to execution of the clause.

If there are no forms in a selected clause, restart-case returns nil.

If case-name is a symbol, it names this restart.

It is possible to have more than one clause use the same cast-name. In this case, the first
clause with that name is found by And-restart. The other clauses are accessible using
compute-restarts.

Each arglist is an ordinary lambda list to be bound during the execution of its corresponding
forms. These parameters are used by the restart-case clause to receive any necessary data from a
call to invoke-restart.

By default, invoke-restart-interactively passes no arguments and all arguments must be optional
in order to accomodate interactive restarting. However, the arguments need not be optional if
the : interactive keyword has been used to inform invoke-restart-interactively about how to
compute a proper argument list.

Keyword options have the following meaning.

:interactive

The value supplied by :interactive value must be a suitable argument to function.
(function value) is evaluated in the current lexical environment. It should return a func-
tion of no arguments which returns arguments to be used by invoke-restart-interactively
when it is invoked. invoke-restart-interactively is called in the dynamic environment
available prior to any restart attempt, and uses query I/O for user interaction.

If a restart is invoked interactively but no :interactive option was supplied, the argu-
ment list used in the invocation is the empty list.

:report

If the value supplied by :report value is a lambda expression or a symbol, it must be
acceptable to function. (function value) is evaluated in the current lexical environment.
It should return a function of one argument, a stream, which prints on the stream a
description of the restart. This function is called whenever the restart is printed while
print-escape is nil.

If value is a string, it is a shorthand for

(lambda (stream) (write-string value stream))

Conditions 9-47

ANSI X3.226-1994 Programming Language-Common Lisp

If a named restart is asked to report but no report information has been supplied, the
name of the restart is used in generating default report text.

When *print-escape* is nil, the printer uses the report information for a restart. For
example, a debugger might announce the action of typing a “continue” command by:

(foruat t '9-S -- 'A-X" ~:continue sore-restart)

which might then display as something like:

:CCMTIIIUS -- Return to couuand level

The consequences are unspecified if an unnamed restart is specified but no :report option
is provided.

: test

The value supplied by : test value must be a suitable argument to function.
(function value) is evaluated in the current lexical environment. It should return a
function of one argument, the condition, that returns true if the restart is to be consid-
ered visible.

The default for this option is equivalent to (lambda Cc) (declare (ignore c)) t).

If the restartabltform is a list whose car is any of the symbols signal, error, terror, or warn
(or is a macro form which macroexpands into such a Z&l), then with-condition-restarts is used
implicitly to associate the indicated restarts with the condition to be signaled.

Examples:

(restart-case
(handler-bind ((error #'(la&da (c)

(declare (ignore condition))
(invoke-restart 'uy-restart 7))))

(error "Foe ")) .
(my-restart (&optional v) v))

-7

(define-condition food-error (error) 0)
4 FOOD-ERROR

(define-condition bad-tasting-sundae (food-error)
((ice-cream :initarg :ice-crean :reader bad-tasting-sundae-ice-cream)

(sauce :initarg :sauce :reader bad-tasting-sundae-sauce)
(topping :initarg :topping :reader bad-tasting-sundae-topping))

(:report (lambda (condition streau)
(foruat stream "Bad tasting sundae with -S, 'S, and 'S"

(bad-tasting-suudae-ice-cream condition)
(bad-tasting-sundae-sauce condition)
(bad-tasting-sundae-topping condition)))))

+ BAD-TASTIDG-SUDDAS
(defuu all-start-vith-saue-letter (syuboll symbol2 syubold)

(let ((first-letter (char (syubol-naue syuboll) 0)))
(and (eql first-letter (char (syubol-naue symboll) 0))

(eql first-letter (char (symbol-nsme symbol31 0)))))
4 ALL-START-UITS-SA-LglTgR

(defuu read-new-value 0
(format t "Enter a nev value: ")
(uultiple-value-list (eval (read))))

- READ-HEY-VALDE

9-48 Conditions

Programming Language-Common Lisp ANSI X3.226- 1994

(defun verify-or-fix-perfect-sundae (ice-cream sauce topping)
(do ()

((all-start-uith-same-letter ice-crea sauce topping))
(restart-case

(error ‘bad-tasting-sundae
:ice-cream ice-cream
: sauce sauce
: topping topping)

(use-nev-ice-cream (new-ice-cream)
:report “Use a new ice creaa.”
: interactive read-nev-value
(setq ice-cream new-ice-cream))

(use-new-sauce (new-sauce)
:report “Use a nerr sauce. ‘I
:interactive read-nev-value
(setq sauce new-sauce))

(use-nev-topping (new-topping)
:report “Use a new topping.”
:interactive read-nev-value
(aetq topping new-topping))))

(values ice-cream sauce topping))
--r) VERIFY-OR-FIX-PERFECT-SINDAE

(verify-or-fix-perfect-sundae ‘vanilla ‘caramel ‘cherry)
D Error: Bad tasting sundae vith VANILLA, CARAHEL. and CHERRY.
o To continue, type :CONTINUE followed by an option nmber:
D 1: Use a new ice cream.
D 2: Use a new sauce.
D 3: Use a nev topping.
D 4: Return to Lisp Toplevel.
D Debug> : cant inue 1
D Use a new ice cream.
D Enter a new ice cream: ‘chocolate
-) CHOCOLATE, CARAHEL, CHERRY

See Also:
restart-bind, with-simple-restart.

Notes:

(restart-case expression
(name1 arglistl . . . optionsl.. . . bodyl)
(name2 arglist2 . . . options2.. . . body2) I

is essentially equivalent to

Conditions 949

ANSI X3.226-1994 Programming Language-Common Lisp

(block tl=#:gOOOl
(let ((*2=#:gOOO2 nil))

(t agbody
(restart-bind ((name1 #‘(lambda &rest temp)

(setq #2# temp)
(go #34b:g0003))

. . . slightly-transformed-optionsl.. .)
(name2 t'clsmbda (&rest temp)

(setq 112s temp)
(go #44I:gOOO4))

. . . slightly-transformed-option&‘. . .))
(return-f ran #lS expression) 1

#3# (return-from #1#
(apply S’ (lambda arglistl . body11 XZS))

#4# (return-from Xl*
(apply S’(lambda arglist2 . bodyi) #2#c)))))

Unnamed restarts are generally only useful interactively and an interactive option which has no
description is of little value. Implementations are encouraged to warn if an unnamed restart is
used and no report information is provided at compilation time. At runtime, this error might be
noticed when entering the debugger. Since signaling an error would probably cause recursive en-
try into the debugger (causing yet another recursive error, etc.) it is suggested that the debugger
print some indication of such problems when they occur but not actually signal errors.

(restart-case (signal fred)
(a . ..I
(b . ..)I

E
(restart-case

(vith-condition-restarts fred
(list (find-restart 'a)

(find-restart 'b))
(signal fred))

(a . ..)
(b . ..)I

restart-name Function

Syntax:
restart-name r&aft -i name

Arguments and Values:
restart-a restart.

name-a symbol.

Description:
Returns the name of the restart, or nil if the restart is not named.

9-50 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(restart-case
(loop for restart in (compute-restarts)

collect (restart-name restart))
(case1 0 :report Yleturn 1.” 1)
(nil 0 :report “Return 2. ” 2)
(case3 0 :report “Return 3.” 3)
(case1 0 :report “Return 4.” 4))

+ (CASE1 BIL CASE3 CASE1 ABORT)
;; In the example above the restart named ABORT vas not created
;; explicitly. but vas implicitly supplied by the system.

See Also:
compute-restarts find-restart

with-condition-restarts Macro

Syntax:
with-condition-restarts condition-form restarts-form {form}*

- {result}*

Arguments and Values:
condition-form-a form; evaluated to produce a condition.

condition-a condition object resulting from the evaluation of condition-form.

restart-form-a form; evaluated to produce a restart-list.

restart-list-a list of restart objects resulting from the evaluation of restart-form.

forms-an implicit prbgn; evaluated.

results-the values returned by forms.

Description:
First, the condition-form and restarts-form are evaluated in normal left-to-right order; the primary
values yielded by these evaluations are respectively called the condition and the restart-list.

Next, the forms are evaluated in a dynamic environment in which each restart in restart-list is
associated with the condition. See Section 9.1.4.2.4 (Associating a Restart with a Condition).

See Also:
restart-case

Notes:
Usually this macro is not used explicitly in code, since restart-case handles most of the common
cases in a way that is syntactically more concise.

Conditions 9-51

ANSI X3.226-1994 Programming Language-Common Lisp

with-simple-restart

syntax:
with-simple-restart (name format-control {format-argument}*) {form}*

+ {result)*

Arguments and Values:
name-a symbol.

format-control-a format control.

format-argument-an object (i.e., a format argument).

forms-an implicit progn,

results-in the normal situation, the values returned by the forms; in the exceptional situation
where the reslarl named name is invoked, two values-nil and t.

Description:
with-simple-restart establishes a restart.

If the restart designated by name is not invoked while executing forms, all values returned by the
last of forms are returned. If the restart designated by name is invoked, control is transferred to
with-simple-restart, which returns two values, nil and t.

If name is nil, an anonymous restart is established.

The format-control and format-arguments are used report the restart.

Examples:

(defun read-eval-print-loop (level)
(with-simple-restsrt (abort “Exit comssnd level ‘D.” level)

(loop
(with-simple-restart (abort “Return to coarsnd level ‘D.” level)

(let ((form (prog2 (fresh-line) (read) (fresh-line))))
(prinl (eval form)))))))

-+ READ-EVIL-PRIHT-LOOP
(read-eval-print-loop 1)
(+ ‘a 3)

I> Error: The argruent, A, to the function + vas of the vrong type.
P The function expected a number.
P To continue, type :COITIDUE folloved by an option number:
D 1: Specify a value to use this tire.
D 2: Return to co-and level 1.
D 3: Exit comssnd level 1.
D 4: Return to Lisp Toplevel.

(defun compute-fixnus-pover-of-2 (x)
(vith-simple-restart (nil “Give up on computing 2A’D.” x)

(let ((result I))
(dotires (i x result)

(setq result (* 2 result))
(unless (fixnsmp result)

(error “Paver of 2 is too large.“))))))

9-52 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

COHPUTF+FIXIIW-POUER-OF-2
(defun compute-pover-of-2 (x)

(or (compute-fixuum-pover-of-2 x1 ‘something big))
COHIWTE-POUER-OF-2

(compute-pover-of-2 10)
1024

(compute-pover-of-2 10000)
D Error: Pover of 2 is too large.
D To continue, type : COlDTIlIDE f olloved by an option number.
D 1: Give up on computing 2AlGGGG.
D 2: Return to Lisp Toplevel
D Debug> :contiuue 1
+ SOlETgIUG-BIG

See Also:
restart-case

Notes:
with-simple-restart is shorthand for one of the most common uses of restart-case.

with-simple-restart could be defined by:

(defracro vith-simple-restart ((restart-uame format-control
&rest for-vat-arguments)

&body forvs)
‘ (restart-case (progn ,Qf orms)

(,restart-naae 0
:report (lambda (stream)

(for-sat stream , f ormat-control , Of ormat%quments))
(values nil t))))

Because the second return value is t in the exceptional case, it is common (but not required)
to arrange for the second return value in the normal case to be missing or nil so that the two
situations can be distinguished.

abort Restart

Data Arguments Required:
None.

Description:
The intent of the abort restart is to allow return to the innermost “command level.” Implemen-
tors are encouraged to make sure that there is always a restart named abort around any user
code so that user code can call abort at any time and expect something reasonable to happen;
exactly what the reasonable thing is may vary somewhat. Typically, in an interactive listener,
the invocation of abort returns to the Lisp reader phase of the Lisp read-eual-print loop, though
in some batch or multi-processing situations there may be situations in which having it kill the
running process is more appropriate.

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, abort (func-
tion)

Conditions 9-53

ANSI X3.226-1994 Programming Language-Common Lisp

cant inue Restart

Data Arguments Required:
None.

Description:
The continue reslati is generally part of protocols where there is a single “obvious” way to
continue, such as in break and terror. Some user-defined protocols may also wish to incorporate
it for similar reasons. In general, however, it is more reliable to design a special purpose restart
with a name that more directly suits the particular application.

Examples:

(let ((x 3))
(handler-bind ((error #'(lavbda (c)

(let ((r (find-restart 'continue c)))
(vhen r (invoke-restart r))))))

(cond ((not (floatp x))
(terror "Try floating it." 'I'D is not a float." x)
(float x)1

(t x))>> - 3.0

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, continue
(fvmAiofl), assert, terror

muffle-warning Restart

Data Arguments Required:
None.

Description:
This restart is established by warn so that handlers of warning condilions have a way to tell
warn that a warning has already been dealt with and that no further action is warranted.

Examples:

(defvar *all-quiet* nil) + *ALL-QUIET*
(defvar *saved-varnings* '0) + *SAVED-WARNINGS*
(defun quiet-varning-handler (c)

(vhen *all-quiet*
(let ((r (find-restart 'muffle-varning c)))

(vhen r
(push c *saved-varnings*)
(invoke-restart r)))))

+ CUSTOH-YARNING-HANDLER

9-54 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

(defmacro with-quiet-varnings &body foras)
‘ (let ((*all-quiet* t)

(*saved-varnings* ’ 0))
(handler-bind ((varning #‘quiet-varning-handler))

, Qf orns
saved-varnings)))

* WITH-QUIET-YARNINGS
(setq saved

(vith-quiet-varnings
(varn “Situation $1. ‘I)
(let ((*all-quiet* nil))

(varn “Situation t2.“))
(varn “Situation t3. “1) 1

D Uarning: Situation #2.
- (#<SIHPLE-WARNING 42744421> #<SIHPLE-YARNING 42744365))

(dolist (8 saved) (format t “-&-A-%” 8))
D Situation #3.
D Situation #l.
+ NIL

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart,
muffle-warning (fundion), warn

store-value

Data Arguments Required:
a value to use instead (on an ongoing basis).

Description:
The store-value rest& is generally used by handlers trying to recover from errors of types
such as cell-error or type-error, which may wish to supply a replacement datum to be stored
permanently.

Examples:

(defun type-error-auto-coerce (c)
(vhen (typep c ‘type-error)

(let ((r (find-restart ‘store-value c)))
(handler-case (let ((v (coerce (type-error-datum c)

(type-error-expected-type c))))
(invoke-restart r v))

(error 0))))) 4 TYPE-ERROR-AUTO-COERCE
(let ((x 3) 1

(handler-bind ((type-error #‘type-error-auto-coerce))
(check-type x float)
x)> -L 3.0

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, store-value
(function), cease, check-type, ctypecase, use-value (funcfion and reslarf)

Conditions 9-55

ANSI X3.226- 1994 Programming Language-Common Lisp

use-value Restart

Data Arguments Required:
a value to use instead (once).

Description:
The use-value resfati is generally used by handlers trying to recover from errors of iypes such as
cell-error, where the handler may wish to supply a replacement datum for one-time use.

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, use-value
(function), store-value (function and resfori)

abort, continue, muffle-warning, store-value, use-
value Function

syntax:
abort &optional condition 4

continue aoptional condition * nil

muf&+warning &opt ional condition 4

store-value value &optional condition -) nil

use-value value &optional condition + nil

Arguments and Values:
value-an object.

condition-a condition object, or nil.

Description:
Transfers control to the most recently established applicable restart having the same name as
the function. That is, the function abort searches for an applicable abort restart, the function
continue searches for an applicable continue rvstmt, and so on.

If no such restart exists, the functions continue, store-value, and use-value return nil, and the
functions abort and mufHe-warning signal an err5 of type control-error.

When condition is non-nil, only those restarts are considered that are either explicitly associated
with that condition, or not associated with any condition; that is, the excluded restarts are those
that are associated with a non-empty set of condilions of which the given condition is not an
element. If condition is nil, all restarts are considered.

9-56 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

;;; Example of the ARORT retart

(defmacro abort-on-error &body forms)
‘(handler-bind ((error *'abort))

,Oforms)) -* ARORT-ON-ERROR
(abort-on-error (+ 3 5)) + 8
(abort-on-error (error "Tou lose."))

D Returned to Lisp Top Level.

;;; Example of the CONTINDE restart

(defun real-sqrt (n)
(vhen (minusp n)

(setq n (- n))
(terror "Return sqrt('D) instead." "Tried to take sqrt(-'D)." II))

(sqrt n))

(real-sqrt 4) * 2
(real-sqrt -9)

D Error: Tried to take sqrt(-9).
P To continue, type :CONTINDE folloved by an option number:
D 1: Return sqrt(9) instead.
D 2: Return to Lisp Toplevel.
P Debug> (continue)
P Return sqrt(9) instead.
--,3

(handler-bind ((error #'(lambda (c) (continue))))
(real-sqrt -9)) -+ 3

;;; Example of the RUFFLE-YARNING restart

(defun count-dorm (x)
(do ((counter x (l- counter)))

((5 counter 0) 'done)
(vhen (= counter 1)

(varn "Almost done"))
(format t V"t'D'Xt' counter)))

-+ CODNT-DOYN
(count-dovn 3)

03

02
D Yarning: Almost done
01
4 DONE

(defun ignore-varnings-vhile-counting (x1
(handler-bind ((varning #'ignore-varning))

(count-dovn x1))
+ IGNORE-WARNINGS-WHILE-CODNTING

(defun ignore-varning (condition)
(declare (ignore condition))
(muffle-varning))

+ IGNORE-UARNIRG

Conditions 9-57

ANSI X3.226-1994 Programming Language-Common Lisp

(ignore-warnings-vhile-counting 3)
P3
D2
Dl

+ DONE

;;; Example of the STORE-VALUE and USE-VALUE restarts

(defun careful-symbol-value (symbol)
(check-type symbol symbol)
(restart-case (if (boundp symbol)

(return-from careful-symbol-value
(symbol-value symbol))

(error 'unbound-variable
:nsme symbol))

(use-value (value)
:report "Specify a value to use this time."
value)

(store-value (value)
:report "Specify a value to store and use in the future."
(setf (symbol-value symbol) value))))

(setq a 1234) -+ 1234
(careful-symbol-value 'a) -* 1234
(makunbound 'a) -+ A
(careful-symbol-value 'a)

D Error: A is not bound.
D To continue, type :COHTIDUE folloved by an option number.
D 1: Specify a value to use this time.
b 2: Specify a value to store and use in the future.
D 3: Return to Lisp Toplevel.
D Debug> (use-value 12)
4 12

(careful-symbol-value 'a)
D Error: A is not bound.
D To continue, type :COITIMUE folloved by an option number.
D 1: Specify a value to use this time.
D 2: Specify a value to store and use in the future.
D 3: Return to Lisp Toplevel.
D Debug> (store-value 24)
-) 24

(careful-symbol-value 'a)
+ 24

;;; Example of the USE-VALUE restart

(defun add-symbols-with-default (default &rest symbols)
(handler-bind ((sys:unbound-symbol

#'(lambda (c)
(declare (ignore c)>
(use-value default))))

(apply t'+ (mapcar *'careful-symbol-value symbols))))
-* ADD-STHDOLS-WITH-DEFAULT

(setq x 1 y 2) --+ 2
(add-symbols-Pith-default 3 'x 'y '2) -+ 6

9-58 Conditions

Programming Language-Common Lisp ANSI X3.226-1994

Side Effects:
A transfer of control may occur if an appropriate restar2 is available, or (in the case of the
fundion abort or the fun&ion muffle-warning) execution may be stopped.

Affected By:
Each of these functions can be affected by the presence of a restart having the same name.

Exceptional Situations:
If an appropriate abort redart is not available for the fundion abort, or an appropriate
muf&+warning redart is not available for the fvnction mufEe-warning, an error of type
control-error is signaled.

See Also:
invoke-restart, Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), assert, cease,
terror, check-type, ctypecase, use-value, warn

Notes:

(abort condition) Z (invoke-restart 'abort)
(muffle-varning) Z (invoke-restart 'muffle-warning)
(continue) Z (let ((r (find-restart 'continue))) (if r (invoke-restart r)))
(use-value X) E (let ((r (find-restart 'use-value))) (if r (invoke-restart r x)))
(store-value x) I (let ((r (find-restart 'store-value))) (if r (invoke-restart r x)))

No functions defined in this specification are required to provide a use-value resiart.

Conditions 9-59

_ -._ _.. - . _ -i-._-

ANSI X3.226-1994 Programming Language-Common Lisp

9-60 Conditions

ANSI X3.226-1994

Programming Language-Common Lisp

10. Symbols

ANSI X3.226-1994 Programming Language-Common Lisp

ii Symbols

Programming Language-Common Lisp ANSI X3.226-1994

10.1 Symbol Concepts
Figure 10-l lists some defined names that are applicable to the property lists of symbols.

get remprop symbol-plist

Figure 10-l. Property list defined names

Figure 10-2 lists some defined names that are applicable to the creation of and inquiry about
symbols.

copy-symbol keywordp
gensym makw3ymbol
gentemp symbol-name

Figure 10-2. Symbol creation and inquiry defined names

symbol-package
symbol-value

Symbols lo-l

_ _ ..-, _., -_____ __- ..-.- .._i _--

ANSI X3.226-1994 Programming Language-Common Lisp

symbol System Class

Class Precedence List:
symbol, t

Description:
Symbols are used for their object identity to name various entities in Common Lisp, including
(but not limited to) linguistic entities such as uariables and functions.

Symbols can be collected together into packages. A symbol is said to be interned in a package if
it is accessible in that package; the same symbol can be interned in more than one package. If a
symbol is not interned in any package, it is called uninfemed.

An interned symbol is uniquely identifiable by its name from any package in which it is accessible.

Symbols have the following attributes. For historical reasons, these are sometimes referred
to as cells, although the actual internal representation of symbols and their attributes is
implementation-dependent.

Name

The name of a symbol is a string used to identify the symbol. Every symbol has a name,
and the consequences are undefined if that name is altered. The name is used as part of
the external, printed representation of the symbol; see Section 2.1 (Character Syntax).
The function symbol-name returns the name of a given symbol. A symbol may have any
character in its name.

Package

The object in this cell is called the home package of the symbol. If the home package is
nil, the symbol is sometimes said to have no home package.

When a symbol is first created, it has no home package. When it is first interned, the
package in which it is initially interned becomes its home package. The home package of
a symbol can be accessed by using the function symbol-pa&age.

If a symbol is unintemed from the package which is its home package, its home package
is set to nil. Depending on whether there is another package in which the symbol is
interned, the symbol might or might not really be an unintemed symbol. A symbol with
no home package is therefore called apparently unintemed.

The consequences are undefined if an attempt is made to alter the home package of a
symbol external in the COHHOlbLISP package or the KEYWORD package.

Property list

The property list of a symbol provides a mechanism for associating named attributes
with that symbol. The operations for adding and removing entries are destmctive to the
property list. Common Lisp provides operators both for direct manipulation of property
list objects (e.g., see getf, remf, and symbol-plist) and for implicit manipulation of
a symbol’s property list by reference to the symbol (e.g., see get and remprop). The
property list associated with a f&h symbol is initially null.

Value

If a symbol has a value attribute, it is said to be bound, and that fact can be detected

lo-2 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

by the function boundp. The object contained in the value cell of a bound symbol is the
value of the global variable named by that symbol, and can be accessed by the function
symbol-value. A symbol can be made to be unbound by the function makunbound.

The consequences are undefined if an attempt is made to change the value of a symbol
that names a constant variable, or to make such a symbol be unbound.

Function

If a symbol has a function attribute, it is said to be fbound, and that fact can be de-
tected by the function fboundp. If the symbol is the name of a function in the global
environment, the function cell contains the function, and can be accessed by the function
symbol-function If the symbol is the name of either a macro in the global environ-
ment (see macro-function) or a special operator (see special-operator-p), the symbol is
fbound, and can be accessed by the function symbol-function, but the object which the
function cell contains is of implementation-dependent type and purpose. A symbol can be
made to be funbound by the function fmakuubound.

The consequences are undefined if an attempt is made to change the functional value of a
symbol that names a special form.

Operations on a symbol’s value cell and function cell are sometimes described in terms of their
effect on the symbol itself, but the user should keep in mind that there is an intimate relation-
ship between the contents of those cells and the global variable or global function definition,
respectively.

Symbols are used as identifiers for lezical variables and lexical function definitions, but in that
role, only their object identity is significant. Common Lisp provides no operation on a symbol
that can have any effect on a lezical variable or on a lexical function definition.

See Also:
Section 2.3.4 (Symbols as Tokens), Section 2.3.1.1 (Potential Numbers as Tokens), Section
22.1.3.3 (Printing Symbols)

keyword

Supertypes:
keyword, symbol, t

Description:
The type keyword includes all symbols interned the KEYUDRD package.

Interning a symbol in the KEYWORD package has three automatic effects:

1. It causes the symbol to become bound to itself.

2. It causes the symbol to become an external symbol of the KEYYORD package.

3. It causes the symbol to become a constant variable.

See Also:
keywordp

Symbols lo-3

ANSI X3.226-1994 Programming Language-Common Lisp

symbolp Function

Syntax:
symbolp object -, generalized-boolean

Arguments and Values:
object-an objecf .

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of fype symbol; otherwise, returns false.

Examples:

(symbolp ‘elephant) -+ true
(symbolp 12) -+ false
(symbolp nil) -+ true
(symbolp ‘0) -* ifue
(symbolp :test) -) true
(symbolp “hello”) + false

See Also:
keywordp, symbol, typep

Notes:

(symbolp object 1 z (typep object ‘symbol)

keywordp Function

Syntax:
keywordp object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is a keywordI; otherwise, returns false.

Examples:

(keyvordp ‘elephant) -+ fake
(keyvordp 12) -+ false
(keyvordp :test) -* true
(keyvordp ‘:test) + he
(keyvordp nil) -+ fake

10-4 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

(keyvordp :nil) -+ hXe
(keyvordp ‘(:test)) + false
(keyvordp “hello”) - false
(keyvordp *‘:hello”) + false
(keyvordp ‘&optional) + false

See Also:
constantp, keyword, symbolp, symbol-package

make-symbol Function

Syntax:
make-symbol name + new-symbol

Arguments and Values:
name-a string.

new-symbol-a fresh, unintemed symbol.

Description:
make-symbol creates and returns a fresh, unintemed symbol whose name is the given name. The
new-symbol is neither bound nor fbound and has a null property list.

It is implementation-dependent whether the string that becomes the new-symbol’s name is the
given name or a copy of it. Once a string has been given as the name argument to make-symbol,
the consequences are undefined if a subsequent attempt is made to alter that string.

Examples:

(setq temp-string “temp”) + “temp”
(setq temp-symbol (make-symbol temp-string)) + #:ItempI
(symbol-name temp-symbol) + “tamp”
(eq (symbol-name temp-symbol) temp-string) 4 implementation-dependent
(find-symbol “temp”) + NIL, NIL
(eq (make-symbol temp-string) (rake-symbol tamp-string)) + false

Exceptional Situations:
Should signal an error of type type-error if name is not a string.

See Also:
copy-symbol

Notes:
No attempt is made by make-symbol to convert the case of the name to uppercase. The only
case conversion which ever occurs for symbols is done by the Lisp reader. The program interface
to symbol creation retains case, and the program interface to interning symbols is case-sensitive.

Symbols m-5

ANSI X3.226-1994 Programming Language-Common Lisp

copy-symbol Function

syntax:
copy-symbol symbol &optional copy-properties + new-symbol

Arguments and Values:
symbol-a symbol.

copy-properties-a generalized boolean. The default. is false.

new-symbol-a fresh, uniniemed symbol.

Description:
copy-symbol returns a fresh, unintemed symbol, the name of which is string= to and possibly
the same as the name of the given symbol.

If copy-properties is false, the new-symbol is neither bound nor fbound and has a nulZ property
list. If copy-properties is true, then the initial value of new-symbol is the value of symbol, the
initial function definition of new-symbol is the functional value of symbol, and the property Ii& of
new-symbol is a copy2 of the properiy list of symbol.

Examples:

(setq fred 'fred-smith) -) FRED-SMITH
(setf (symbol-value fred) 3) -+ 3
(setq fred-clone-la (copy-symbol fred nil)) 4 #:FRED-SHITH
(setq fred-clone-lb (copy-symbol fred nil)) + #:FRED-SHITH
(setq fred-clone-2a (copy-symbol fred t)) --+ #:FREwSHITH
(setq fred-clone-2b (copy-symbol fred t)) 4 #:FRED-SHIM
(eq fred fred-clone-la) 3 fake
(eq fred-clone-la fred-clone-lb) + fake
(eq fred-clone-la fred-clone-2b) + false
(eq fred-clone-la fred-clone-2a) + fake
(symbol-value fred) -+ 3
(boundp fred-clone-la) -+ fake
(symbol-value fred-clone-2a) -+ 3
(setf (symbol-value fred-clone-2a) 4) -$ 4
(symbol-value fred) -, 3
(symbol-value fred-clone-2a) -+ 4
(symbol-value fred-clone-2b) -+ 3
(boundp fred-clone-la) * f&e
(setf (symbol-function fred) #'(lambda (x1 x)) + #tFWCTIOli anonymous>
(fboundp fred) + true
(fboundp fred-clone-la) 4 false
(fboundp fred-clone-2a) + false

Except ional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
make-symbol

Notes:
Implementors are encouraged not to copy the string which is the symbol’s name unnecessar-

10-6 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

ily. Unless there is a good reason to do so, the normal implementation strategy is for the new-
symbol’s name to be identical to the given symbol’s name.

gensym Function

Syntax:
gensym toptional x -+ new-symbol

Arguments and Values:
x-a string or a non-negative integer. Complicated defaulting behavior; see below.

new-symbol-a fresh, uninterned symbol.

Description:
Creates and returns a fresh, unintemed symbol, as if by calling make-symbol. (The only differ-
ence between gensym and make-symbol is in how the new-symbol’s name is determined.)

The name of the new-symbol is the concatenation of a prefix, which defaults to “G”, and a sufhx,
which is the decimal representation of a number that defaults to the value of *gensym-counter*.

If x is supplied, and is a string, then that string is used as a prefix instead of “G” for this call to
gensym only.

If x is supplied, and is an integer, then that integer, instead of the value of *gensym-counter*, is
used as the suffix for this call to gensym only.

If and only if no explicit s&x is supplied, *gensym-counter* is incremented after it is used.

Examples:

(setq syml (gem&) + t:G3142
(symbol-package syml) -+ NIL
(setq sym2 (gensym 100)) -) t:GlOO
(setq sym3 (gensp 100)) - t:GlOO
(eq sp2 8ym3) - false
(find-symbol "GlOO") -+ NIL, NIL
(gensym "T") + #:T3143
(gensyd -, t:G3144

Side Effects:
Might increment *gensym-counter*.

Affected By:
gensym-counter

Exceptional Situations:
Should signal an error of type type-error if x is not a string or a non-negative integer.

See Also:
gentemp, *gensym-counter*

Notes:
The ability to pass a numeric argument to gensym has been deprecated; explicitly binding
gensym-counter is now stylistically preferred. (The somewhat baroque conventions for the

Symbols lo-7

- --- -- _ _ ._ _

ANSI X3.226-1994 Programming Language-Common Lisp

optional argument are historical in nature, and supported primarily for compatibility with older
dialects of Lisp. In modern code, it is recommended that the only kind of argument used be
a string prefix. In general, though, to obtain more flexible control of the new-symbol’s name,
consider using make-symbol instead.)

gensym-counter Variable

Value Type:
a non-negative infeger.

Init ial Value:
implementation-dependent.

Description:
A number which will be used in constructing the name of the next symbol generated by the
function gensym.

gensym-counter can be either assigned or bound at any time, but its value must always be a
non-negative integer.

Affected By:
gensym.

See Also:
gensym

Notes:
The ability to pass a numeric argument to gensym has been deprecated; explicitly binding
gensym-counter is now stylistically preferred.

gentemp Function

Syntax:
gentemp aoptiondl prefix package + new-symbol

Arguments and Values:
prefix-a string. The default is “T”.

package-a package designator. The default is the current package.

new-symbol-a fresh, interned symbol.

Description:
gentemp creates and returns a fresh symbol, interned in the indicated package. The symbol
is guaranteed to be one that was not previously accessible in package. It is neither bound nor
fbound, and has a null property list.

The name of the new-symbol is the concatenation of the prefix and a s&x, which is taken from
an internal counter used only by gentemp. (If a symbol by that name is already accessible in

10-8 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

package, the counter is incremented as many times as is necessary to produce a name that is not
already the name of a symbol accessible in package.)

Examples:

(gentemp) - T1298
(gentemp "FOCI") -+ FOO1299
(find-symbol "F001300") + NIL, NIL
(gentemp "FOO") + FOO1300
(find-symbol "FOO1300") -+ F001300, :INTEFtNAL
(intern "FOO1301") + F001301, :INTFXNAL
(gentemp "FOO") + FOO1302
(gentemp) * T1303

Side Effects:
Its internal counter is incremented one or more times.

Interns the new-symbol in package.

Affected By:
The current state of its internal counter, and the current state of the package.

Exceptional Situations:
Should signal an error of type type-error if prefix is not a string. Should signal an error of type
type-error if package is not a package designator.

See Also:

Notes:
The function gentemp is deprecated.

If package is the KEYWORD package, the result is an edema1 symbol of package. Otherwise, the
result is an internal symbol of package.

The gentemp internal counter is independent of *gensym-counter*, the counter used by
gensym. There is no provision for accessing the gentemp internal counter.

Just because gentemp creates a symbol which did not previously exist does not mean that such
a symbol might not be seen in the future (e.g., in a data file-perhaps even created by the same
program in another session). As such, this symbol is not truly unique in the same sense as a
gensym would be. In particular, programs which do automatic code generation should be careful
not to attach global attributes to such generated symbols (e.g., special declara2ions) and then
write them into a file because such global attributes might, in a different session, end up applying
to other symbols that were automatically generated on another day for some other purpose.

symbol-function Accessot

Syntax:
symbol-function symbol + contents

(setf (symbol-function symbol) new-contents)

Symbols 19-9

ANSI X3.226-1994 Programming Language-Common Lisp

Arguments and Values:
symbol-a symbol.

contents- If the symbol is globally defined as a macro or a special operator, an object of
implemedation-dependent nature and identity is returned. If the symbol is not globally de-
fined as either a macn, or a special operator, and if the symbol is Bound, a function object is
returned.

new-contents-a function.

Description:
Accesses the symbol’s function cell.

Examples:

(smbol-function 'car) + #GUIKTIOAl CAD
(symbol-function 'tvice) is an error ;because TWICE isn't defined.
(defun twice (n) (* n 2)) -, TWICE
(symbol-function 'tvice) + t<FUMCTIOIS TWX>
(list (tvice 3)

(fuucall (function twice) 3)
(funcall (symbol-function 'toice) 3))

+ (6 6 6)
(flet ((tvice (XL) (list x x1))

(list (tvice 3)
(funcall (function tvice) 3)
(funcall (smbol-function 'toice) 3)))

* ((3 3) (3 3) 6)
(setf (symbol-function 'tvice) #*(la&da (x1 (list x x)))

-+ ItWJMCTIOI anon~ous>
(list (tvice 3)

(funcall (function tvice) 3)
(funcall (symbol-function 'tvice) 3))

- ((3 3) (3 3) (3 3))
(fboundp 'defun) + true
(spbol-function 'defun)

-+ implementation-dependent
(functionp (syhol-function 'defun))

-+ implementation-dependent
(defun symbol-function-or-nil (spbol)

(if (and (fboundp symbol)
(not (macro-function symbol))
(not (special-operator-p symbol)))

(symbol-function smbol)
nil)) * SYHBOL-FUKTIOIS-OR-IIL

(spbol-function-or-nil 'car) -+ #<FU?ICTIOB CAU
(symbol-function-or-nil 'defrm) -+ IiIL

Affected By:
defun

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

Should signal undefined-function if symbol is not fbound and an attempt is made TV wad iti
definition. (No such error is signaled on an attempt to write its definition.)

lo-10 Symbols

Programming Language-Common Lisp ANSI X%2%-1994

See Also:
fboundp, fmakuubound, macro-function, special-operator-p

Notes:
symbol-function cannot access the value of a lexical function name produced by flet or labels; it
can access only the global function value.

setf may be used with symbol-function to replace a global function definition when the symbol’s
function definition does not represent a special operator.

(symbol-function symbol) E (fdefinition symbol)

However, fdeflnition accepts arguments other than just symbols.

symbol-name Function

syntax:
symbol-name symbol + name

Arguments and Values:
symbol-a symbol.

name-a string.

Description:
symbol-name returns the name of symbol. The consequences are undefined if name is ever
modified.

Examples:

(symbol-name 'temp) + "TEKP"
(symbol-name :start) + "START"
(symbol-name (gensym)) 4 "G1234" :for example

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

symbol-package Function

Syntax:
symbol-package symbol + contents

Arguments and Values:
symbol-a symbol.

contents-a package object or nil.

Description:
Returns the home package of symbol.

Symbols lo-11

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(in-package "CL-USER") - #<PACKAGE "COHMIU-LISP-USER">
(symbol-package 'car) -) #<PACKAGE "COIoIOli-LISP">
(symbol-package 'bus) -+ *<PACKAGE "COWnOl-LISP-USER">
(spbol-package :optional) + #<PACKAGE "KEYWORD">
;; Gensyms are unintemed. so have no bore package.
(symbol-package (gansyr)) - PIL
(make-package 'pkl) -+ #<PACKAGE "PKl">
(intern "SAHPLEl" "PKl") + PKl::SAHPLEl, #IL
(export (find-symbol "SAHPLE1" "PKI") "PKI") w T
(make-package 'pk2 :use '(pkl)) * #<PACKAGE "PK2Q
(find-symbol "SAHPLEl" "PK2") + PKl:SAMPLEl, :IgHERITED
(symbol-package ‘pkl::samplel) + *<PACKAGE "PKl9
(spbol-package 'pk2::samplel) 4 #<PACKAGE "PKl">
(symbol-package ~pkl::sample2) -+ WPACKAGE "PKl">
(symbol-package 'pk2::sample2) + #<PACKAGE "PK2'9
;; The next several forms create a scenario in vhich a symbol
;; is not redlly unintemed, but is "apparently unintemed",
;; and so SY?BOL-PACKAGE still returns IIL.
(setq 83 'pkl::sarple3) * PKl::SAHPLE3
(import a3 'pk2) ---) T
(unintem s3 'pkl) -+ T
(symbol-package 63) -+ NIL
(eq s3 'pk2::samplet) -+ T

Affected By:
import, intern, unintern

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
intern

symbol-plist Accessor

Syntax:
symbol-plist symbol -+ plist

(setf (symbol-plist symbol) new-pkst)

Arguments and Values:
symbol-a symbol.

plist, new-plist-a property list.

Description:
Accesses the property list of symbol.

10-12 Symbols

Programming LanguageCommon Lisp ANSI X3.226-1994

Examples:

(setq sym (gem&) -+ #:G9723
(symbol-plist syn) + 0
(setf (get sym 'propi) 'vail) -+ VALl
(symbol-plist sy~) + (PROP1 VALI)
(setf (get sym 'prop21 'wa12) + VAL2
(symbol-plist sym) + (PROP2 VAL2 PROP1 VALI)
(setf (symbol-plist sym) (list 'prop3 'val3)) -+ (PROP3 VAL3)
(symbol-plist sym) -+ (PROP3 VAL3)

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
get, remprop

Notes:
The use of setf should be avoided, since a symbol’s property list is a global resource that can
contain information established and depended upon by unrelated programs in the same Lisp
image.

symbol-value Accessor

Syntax:
symbol-value symbol -+ value

(setf (symbol-value symbol) new-value)

Arguments and Values:
symbol-a symbol that must have a value.

value, new-value-an object.

Description:
Accesses the symbol’s value cell.

Examples:

(setf (symbol-value 'a) 1) + 1
(symbol-value 'a) + 1
;; SYMBOL-VALUE cannot see lexical variables.
(let ((a 2)) (symbol-value 'a)) -+ 1
(let ((a 2)) (setq a 3) (symbol-value 'a)) + 1
;; SYMBOL-VALUE can see dynamic variables.
(let ((a 2))

(declare (special a))
(symbol-value Ia)) + 2

(let ((a 2))
(declare (special a))
(setq a 3)
(symbol-value 'a)) * 3

Symbols lo-13

ANSI X3.226-1994 Programming Language-Common Lisp

(let ((a 2))
(setf (symbol-value 'a) 3)
a) + 2

a+3
(symbol-value 'a) -+ 3
(let ((a 4))

(declare (special a))
(let ((b (symbol-value 'a)))

(setf (symbol-value 'a) 5)
(values a b))) + 5, 4

a+3
(symbol-value :any-keyword) 4 :AKY-KEYUORD
(symbol-value 'nil) + BIL
(spbol-value * 0) + PIL
; ; The precision of this next one ia implementation-dependent.
(symbol-value 'pi) + 3.141592653589793dO

Affected By:
m&unbound, set, setq

Exceptional Situations:
Should signal au error of type type-error if symbol is not a symbol.

Should signal unbound-variable if symbol is unbound and an attempt is made to read its value.
(No such error is signaled on au attempt to write its value.)

See Also:
boundp, makunbound, set, setq

Notes:
symbol-value can be used to get the value of a constant variable. symbol-value cannot access
the value of a lezical variable.

Accemor

Syntax:
get symbol indicator topt ional default + value

(s&f (get symbol indicator &optional default) new-value)

Arguments and Values:
symbol-a symbol.

indicator-an object.

default-an object. The default is nil.

value-if the indicated property exists, the object that is its value; otherwise, the specified default.

new-value-an object.

lo-14 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

Description:
get finds a property on the property li& of symbol whose property indicator is identical to
indicator, and returns its corresponding property value. If there are multiple properties1 with that
properly indicator, get uses the first such properiy. If there is no property with that property
indicator, default is returned.

setf of get may be used to associate a new object with an existing indicator already on the sym-
bol’s property list, or to create a new assocation if none exists. If there are multiple properties1
with that property indicator, setf of get associates the new-value with the first such property.
When a get. form is used as a setf place, any default which is supplied is evaluated according to
normal left-to-right evaluation rules, but its value is ignored.

Examples:

(defun rake-person (first-name last-name)
(let ((person (gensym "PERSON")))

(setf (get person ‘first-narre) first-n-e)
(setf (get person 'last-name) last-name)
person)) -+ HAKE-PERSOH

(defvar l john* (make-person "John" "Dov")) -+ *JOEM*
john --, It:PERSO14603
(defvar *sally* (make-person "Sally" "Jones")) -+ *SALLY*
(get l john* 'first-name) -+ "John"
(get *sally* 'last-name) + "Jones"
(defun marry (man woman married-name)

(setf (get man 'wife) uo8an)
(setf (get voman 'husband) man)
(setf (get man 'last-name) married-name)
(setf (get woman 'last-name) married-name)
married-name) -+ HARRY

(marry *john* *sally* "Dov-Jones") -+ "Dow-Jones"
(get *john* 'last-name) -+ "Dow-Jones"
(get (get *john* 'wife) 'first-name) -* ?klly"
(symbol-plist l john*)

+ (WIFE #:PERSON4604 LAST-NAHE "Dov-Jones" FIRST-&WE "John")
(defmacro age (person &optional (default 9'thirty-something))

‘(get ,person 'age ,default)) -+ AGE
(age +john*) -) THIRTY-SOMETHING
(age l john* 20) + 20
(setf (age *john*) 25) -+ 25
(age l john*) --* 25
(age *john* 20) -c 25

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
getf, symbol-plist, remprop

Notes:

(get x y) 3 (getf (symbol-plist 10 y)

Numbers and ckaraders are not recommended for use as indicators in portable code since
get tests with eq rather than eql, and consequently the effect of using such indicators is
implementation-dependent.

Symbols lo-15

.~ .__-. .--.. .-

ANSI X3.226-1994 Programming Language-Common Lisp

There is no way using get to distinguish an absent property from one whose value is default.
However, see get-properties.

remprop

Syntax:
remprop symbol indicator -) generalized-boolean

Arguments and Values:
symbol-a symbol.

indicator-an object.

generalized-boolean-a generalized boolean.

Description:
remprop removes from the property list2 of symbol a property1 with a property indicator identical
to indicator. If there are multiple properties1 with the identical key, remprop only removes the
first such property. remprop returns false ifno such property was found,or he if a property was
found.

The property indicator and the corresponding property value are removed in an undefined order
by destructively splicing the property list. The permissible side-effects correspond to those
permitted for remf,such that:

(remprop t y) Z (remf (spbol-plist t) y)

Examples:

(setq test (make-symbol "PSEULWPI")) -, t:PSEUDO-PI
(symbol-plist test) + 0
(setf (get test 'constant) t) * T
(setf (get test 'approximation) 3.14) - 3.14
(setf (get test 'error-range) 'noticeable) -+ NOTICEABLE
(symbol-plist test)

+ (ERROR-RANGE NOTICEABLE APPROXIHATION 3.14 CONSTANT T)
(setf (get test 'approximation) nil) + NIL
(symbol-plist test)

+ (ERROR-RANGE NOTICEABLE APPROXIHATION NIL CONSTANT T)
(get test 'approximation) - NIL
(remprop test 'approximation) * true
(get test 'approximation) + NIL
(symbol-plist test)

- (ERROR-RANGE ~0ncEABu CONSTANT T)
(remprop teat 'approximation) -+ NIL
(symbol-plist test)

- (ERROR-RANGE ~0TrcEmE CONSTANT T)
(remprop test 'error-range) -+ irue
(setf (get test 'approximation) 3) + 3
(symbol-plist test)

- (APPROXIHATION 3 CONSTANT T)

lo-16 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

. . Side Effects:
The property list of symbol is modified.

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
remf, symbol-plist

Notes:
Numbers and characters are not recommended for use as indicators in portable code since
remprop tests with eq rather than eql, and consequently the effect of using such indicators is
implementaiion-dependeni. Of course, if you’ve gotten as far as needing to remove such a prop-
erty, you don’t have much choice-the time to have been thinking about this was when you used
setf of get to establish the property.

boundp Function

Syntax:
boundp symbol -+ generalized-boolean

Arguments and Values:
symbol-a symbol.

generalized-boolean-a generalized boolean.

Description:
Returns true if symbol is bound; otherwise, returns false.

Examples:

(setq x 1) - 1
(boundp ‘x) + true
&&unbound ‘x1 -+ X
(boundp ‘x1 + fake
(let ((x 2)) (boundp ‘x> 1 ---+ false
(let ((x 2)) (declare (special x1) (boundp ‘x)1 --+ he

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
set, setq, symbol-value, makunbound

Notes:
The funciion bound determines only whether a symbol has a value in the global environment; any
lexical bindings are ignored.

Symbols lo-17

ANSI X3.226-1994 Programming Language-Common Lisp

makunbound Function

Syntax:
malcunbound symbol + symbol

Arguments and Values:
symbol-a symbol

Description:
Makes the symbol be unbound, regardless of whether it was previously bound.

Examples:

(setf (symbol-value ‘a) 1)
(boundp *aI + true
a-1
h&unbound ‘a) -+ A
(boundp ‘a) + f&e

Side Effects:
The value cell of symbol is modified.

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol.

See Also:
boundp, fmakunbound

set Function

Syntax:
set symbol value + value

Arguments and Values:
symbol-a symbol.

value-an object.

Description:
set changes the contents of the value cell of symbol to the given value.

(set symbol value) s (setf (symbol-value symbol) value)

Examples:

(setf (symbol-value ‘81) 1) + 1
(set ‘n 2) + 2
(symbol-value ‘n) + 2

lo-18 Symbols

Programming Language-Common Lisp ANSI X3.226-1994

(let ((n 3))
(declare (special n))
(setq n (+ n 1))
(setf (symbol-value 'n) (* n 10))
(set 'n (+ (symbol-value 'n) n))
n) - 80

n+2
(let ((n 3))

(setq n (+ n 1))
(setf (symbol-value 'n) (* n 10))
(set 'n (+ (symbol-value 'n) n))
n) - 4

n d 44
(defvar m* 2)
(let ((*n* 3))

(setq *n* (+ *n* 1))
(setf (symbol-value '*n*) (* en* 10))
(set 'en* (+ (symbol-value '*n*) en*))
n) -) 80

n -+ 2
(defvar *even-count* 0) -+ *EVEN-COU?iT*
(defvar *odd-count* 0) -+ *ODD-COUNT*
(defun tally-list (list)

(dolist (element list)
(set (if (evenp element) '*even-count.* '*odd-count*)

(+ element (if (evenp element) *even-count* *ddd-count*)))))
(tally-list '(1 9 4 3 2 7)) + NIL
even-count --) 6
odd-count + 20

Side Effects:
The value of symbol is changed.

See Also:
setq, progv, symbol-value

Notes:
The function set is deprecated.

set. cannot change the value of a lezical variable.

unbound-variable Condition Type

Class Precedence List:
unbound-variable, cell-error, error, serious-condition, condition, t

Description:
The iype unbound-variable consists of error con&lions that represent attempts to read the value
of an unbound variable.

The name of the cell (see cell-error) is the name of the variable that was unbound.

Symbols 10-19

ANSI X3.226- 1994 Programming Language-Common Lisp

See Also:
cell-error-name

lo-20 Symbols

ANSI X3.226-1994

Programming Language-Common Lisp

11. Packages

ANSI X3.226-1994 Programming Language--Common Lisp

ii Packagea

Programming Languag+Common Lisp ANSI X3.226-1994

11.1 Package Concepts

11.1.1 Introduction to Packages
A package establishes a mapping from names to symbols. At any given time, one package is
current. The current package is the one that is the value of *package*. When using the Lisp
reader, it is possible to refer to symbols in packages other than the current one through the use of
package prefixes in the printed representation of the symbol.

Figure 11-l lists some defined names that are applicable to packages. Where an operator takes an
argument that is either a symbol or a list of symbols, an argument of nil is treated as an empty
fist of symbols. Any package argument may be either a string, a symbol, or a package. If a symbol
is supplied, its name will be used as the package name.

modules
package
defpackage
do-all-symbols
d*external-symbols
do-symbols
export
And-all-symbols
find-package
Aad-symbol

import
in-package
intern
list-all-packages
make-package
package-name
package-nicknames
package-shadowing-symbols
package-use-list
package-used-by-list

provide
rename-package
require
shadow
shadowing-import
unexport
unintern
unuse-package
use-package

11.1.1.1 Package Names and Nicknames

Each package has a nume (a string) and perhaps some nicknames (also strings). These are
assigned when the package is created and can be changed later.

There is a single namespace for packages. The function find-package translates a package name
or nickname into the associated package. The function package-name returns the name of
a package. The function package-nicknames returns a list of all nicknames for a package.
rename-package removes a package’s current name and nicknames and replaces them with new
ones specified by the caller.

11.1.1.2 Symbols in a Package

11.1.1.2.1 Internal and External Symbols

The mappings in a package are divided into two classes, external and internal. The symbols
targeted by these different mappings are called ezternal symbols and internal symboh of the
package. Within a package, a name refers to one symbol or to none; if it does refer to a symbol,
then it is either external or internal in that package, but not both. External symbols are part
of the package’s public interface to other packages. Symbols become external symbols of a given
package if they have been exported from that package.

A symbol has the same name no matter what package it is present in, but it might be an eztemal
symbol of some packages and an internal symbol of others.

Packages 11-l

ANSI X3.226-1994 Programming Language-Common Lisp

11.1.1.2.2 Package Inheritance

Packages can be built up in layers. Prom one point of view, a package is a single collection
of mappings from strings into internal symbols and external symbols. However, some of these
mappings might be established within the package itself, while other mappings are inherited from
other packages via use-package. A symbol is said to be present in a package if the mapping is in
the package itself and is not inherited from somewhere else.

There is no way to inherit the internal symbols of another package; to refer to an internal symbol
using the Lisp reader, a package containing the symbol must be made to be the current package,
a package prefix must be used, or the symbol must be imported into the current package.

11.1.1.2.3 Accessibility of Symbols in a Package

A symbol becomes accessible in a package if that is its home package when it is created, or if it
is imported into that package, or by inheritance via use-package.

If a symbol is accessible in a package, it can be referred to when using the Lisp reader without
a package prefix when that package is the current package, regardless of whether it is present or
inherited.

Symbols from one package can be made accessible in another package in two ways.

- Any individual symbol can be added to a package by use of import. After the call to
import the symbol is present in the importing package. The status of the symbol in the
package it came from (if any) is unchanged, and the home package for this symbol is
unchanged. Once imported, a symbol is present in the importing package and can be
removed only by calling unintern.

A symbol is shadowed3 by another symbol in some package if the first symbol
would be accessible by inheritance if not for the presence of the second symbol. See
shadowing-import.

- The second mechanism for making symbols from one package accessible in another is
provided by use-package. All of the external symbols of the used package are inherited
by the using package. The function unuse-package undoes the effects of a previous
use-package.

11.1.1.2.4 Locating a Symbol in a Package

When a symbol is to be located in a given package the following occurs:

- The external symbols and internal symbols of the package &e searched for the symbol.
- The external symbols of the used packages are searched in some unspecified order. The

order does not matter; see the rules for handling name conflicts listed below.

11.1.1.2.5 Prevention of Name Conflicts in Packages

Within one package, any particular name can refer to at most one symbol. A name conflict is
said to occur when there would be more than one candidate symbol. Any time a name conflict is
about to occur, a correctable error is signaled.

The following rules apply to name conflicts:

- Name conflicts are detected when they become possible, that is, when the package
structure is altered. Name conflicts are not checked during every name lookup.

- If the same symbol is accessible to a package through more than one path, there is no
name conflict. A symbol cannot conflict with itself. Name conflicts occur only between
distinct symbols with the same name (under string=).

11-2 Packages

Programming Language-Common Lisp ANSI X3.226-1994

11.1.2 Standardized Packages

- Every package has a list of shadowing symbols. A shadowing symbol takes precedence
over any other symbol of the same name that would otherwise be accessible in the
package. A name conflict involving a shadowing symbol is always resolved in favor of
the shadowing symbol, without signaling an error (except for one exception involving
import). See shadow and shadowing-import.

- The functions use-package, import, and export check for name conflicts.

- shadow and shadowing-import never signal a nam&conflict error.

- unus+package and unexport do not need to do any name-conflict checking. unintern
does name-conflict checking only when a symbol being uninterned is a shadowing symbol.

- Giving a shadowing symbol to unintern can uncover a name conflict that had previously
been resolved by the shadowing.

- Package functions signal name-conflict errors of type package-error before making any
change to the package structure. When multiple changes are to be made, it is permissible
for the implementation to process each change separately. For example, when export is
given a list of symbols, aborting from a name conflict caused by the second symbol in the
list might still export the first symbol in the list. However, a name-conflict error caused
by export of a single symbol will be signaled before that symbol’s accessibility in any
package is changed.

- Continuing from a name-conflict error must offer the user a chance to resolve the name
conflict in favor of either of the candidates. The package structure should be altered to
reflect the resolution of the name conflict, via shadowing-import, unintern, or unexport.

- A name conflict in use-package between a symbol present in the using package and an
external symbol of the used package is resolved in favor of the first symbol by making it a
shadowing symbol, or in favor of the second symbol by uninterning the first symbol from
the using package.

- A name conflict in export or unintern due to a package’s inheriting two distinct symbols
with the same name (under string=) from two other packages can be resolved in favor of
either symbol by importing it into the using package and making it a shadowing symbol,
just as with use-package.

This section describes the packages that are available in every conforming implementation. A
summary of the names and nicknames of those standardized packages is given in Figure 11-2.

Name
COHMON-LISP
COMMON-LISP-USER
KEYUORD

Nicknames
CL
CL-USER
none

Figure 11-2. Standardized Package Names

11.1.2.1 The COMMON-LISP Package
The COHHON-LISP package contains the primitives of the Common Lisp system as defined by this
specification. Its external symbols include all of the defined names (except for defined names in

Packages 11-3

ANSI X3.226199.4 Programming Language-Common Lisp

the ICEYNORD package) that are present in the Common Lisp system, such as car, cdr, *package*,
etc. The COHHOP-LISP package has the nickname CL.

The COHHO~-LISP package has as exiernal symbols those symbols enumerated in the figures in
Section 1.9 (Symbols in the COMMON-LISP Package), and no others. These external symbols are
presenf in the COMHOII-LISP package but their home pockuge need not be the COIIIIOU-LISP package.

For example, the symbol HELP cannot be an external symbol of the COHHOB-LISP package because
it is not mentioned in Section 1.9 (Symbols in the COMMON-LISP Package). In contrast, the
symbol variable must be an external symbol of the COHHOB-LISP package even though it has no
definition because it is listed in that section (to support its use as a valid second argument to the
function documentation).

The COHHOI-LISP package can have additional internal symbols.

11.1.2.1.1 Constraints on the COMMON-LISP Package for Conforming
Implementations

In a conforming implementation, a.n external symbol of the COHHOE-LISP package can have a
funciion, macro, or special operator definition, a global variable definition (or other status as a
dynamic variable due to a special proclamation), or a type definition only if explicitly permitted
in this standard. For example, fboundp yields false for any external symbol of the COHHOIJ-LISP
package that is not the name of a standardized function, macro or special operator, and boundp
returns f&e for any external symbol of the COHHOI-LISP package that is not the name of a stan-
dardized global variable. It also follows that conforming programs can use external symbols of
the COHHOIO-LISP package as the names of local lexical variables with confidence that those names
have not been proclaimed special by the implementation unless those symbols are names of
standardized global variables.

A conforming implementation must not place any property on an external symbol of the
COHHOI-LISP package using a property indicator that is either an external symbol of any stan-
dardized package or a symbol that is otherwise accessible in the COHHOB-LISP-USER package.

11.1.2.1.2 Constraints on the COMMON-LISP Package for Conforming Programs

Except where explicitly allowed, the consequences are undefined if any of the following actions are
performed on an external symbol of the COHHON-LISP package:

1. Binding or altering its value (kxically or dynamically). (Some exceptions are noted
below .)

2.

3.

Defining, undefining, or binding it as a function. (Some exceptions are noted below.)

Defining, undefining, or binding it as a macro or compiler macro. (Some exceptions are
noted below.)

4. Defining it as a type specifier (via defstruct, defclass, defiype, define-condition).

5. Defining it as a structure (via defstruct).

6. Defining it as a declaration with a declaration pnwlamation

7. Defining it as a symbol mace.

8. Altering its home package.

9. Tracing it (via trace).

11-4 Packages

Programming Language-Common Lisp ANSI X3.226-1994

10. Declaring or proclaiming it special (via declare, declaim, or proclaim).

11. Declaring or proclaiming its type or ftype (via declare, declaim, or proclaim). (Some
exceptions are noted below.)

12. Removing it from the COIMDN-LISP package.

13. Defining a setf expander for it (via defsetf or define-s&f-method).

14. Defining, undefining, or binding its setf function name.

15. Defining it as a method combination type (via define-method-combination).

16. Using it as the class-name argument to setf of And-class.

17. Binding it as a catch tag.

18. Binding it as a restart name.

19. Defining a method for a siandardized generic function which is applicable when all of the
arguments are direct instances of standardized classes.

11.1.2.1.2.1 Some Exceptions to Constraints on the COMMON-LISP Package for Conforming
Programs

If an external symbol of the COMHON-LISP package is not globally defined as a standardized dynamic
variable or constant variable, it is allowed to lexically bind it and to declare the type of that
binding, and it is allowed to locally establish it as a symbol macro (e.g., with symbol-macrolet).

Unless explicitly specified otherwise, if an external symbol of the COHHON-LISP package is globally
defined as a standardized dynamic variable, it is permitted to bind or assign that dynamic
variable provided that the “Value Type* constraints on the dynamic variable are maintained, and
that the new value of the variable is consistent with the stated purpose of the variable.

If an external symbol of the COHI¶ON-LISP package is not defined as a standardized function, macro,
or special operator, it is allowed to lexically bind it as a function (e.g., with flet.), to declare the
ftype of that binding, and (in implemeniations which provide the ability to do so) to trace that
binding.

If an external symbol of the COHUON-LISP package is not defined as a standardized function, macro,
or special operator, it is allowed to lexically bind it as a macro (e.g., with macrolet).

If an external symbol of the COIWON-LISP package is not defined as a standardized function, macro,
or special operator, it is allowed to lexically bind its setf function name as a function, and to
declare the ftype of that binding.

11.1.2.2 The COMMON-LISP-USER Package
The COHHON-LISP-USER package is the curre& package when a Common Lisp system starts up.
This package uses the COH?4ON-LISP package. The COHMON-LISP-USER package has the nickname
CL-USER. The COIMON-LISP-USER package can have additional symbols interned within it; it can tlse
other implemenfation-defined packages.

Packages 11-5

ANSI X3.226-1994 Programming Language-Common Lisp

11.1.2.3 The KEYWORD Package
The KEYWORD package contains symbols, called keywordsI, that are typically used as special mark-
ers in programs and their associated data ezpressionsl .

Symbol tokens that start with a package marker are parsed by the Lisp reader as symbols in the
KEYUORD package; see Section 2.3.4 (Symbols as Tokens). This makes it notationally convenient
to use keywords when communicating between programs in different packages. For example, the
mechanism for passing keyword parameters in a call uses keywords1 to name the corresponding
arguments; see Section 3.4.1 (Ordinary Lambda Lists).

Symbols in the KEYWORD package are, by definition, of type keyword.

11.1.2.3.1 Interning a Symbol in the KEYWORD Package

The KEYUORLI package is treated differently than other packages in that special actions are taken
when a symbol is interned in it. In particular, when a symbol is interned in the KEYYORD package,
it is automatically made to be an eztemol symbol and is automatically made to be a constant
variable with itself as a value.

11.1.2.3.2 Notes about The KEYWORD Package

It is generally best to confine the use of keywords to situations in which there are a finitely
enumerable set of names to be selected between. For example, if there were two states of a light
switch, they might be called :on and :off.

In situations where the set of names is not finitely enumerable (i.e., where name conflicts might
arise) it is frequently best to use symbols in some package other than KEYWORD so that conflicts will
be naturally avoided. For example, it is generally not wise for a program to use a keyword1 as a
property indicator, since if there were ever another program that did the same thing, each would
clobber the other’s data.

11.1.2.4 Implementation-Defined Packages

Other, implemenlahon-defined packages might be present in the initial Common Lisp environ-
ment.

It is recommended, but not required, that the documentation for a conforming implementation
contain a full list of all package names initially present in that implemen2ahon but not specified
in this specification. (See also the fundion list-all-packages.)

11-6 Packages

Programming Languag~Common Lisp ANSI X3.226-1994

package System Class

Class Precedence List:
package, t

Description:
A package is a namespace that maps symbol names to symbols; see Section 11.1 (Package Con-
cepts).

See Also:
Section 11.1 (Package Concepts), Section 22.1.3.13 (Printing Other Objects), Section 2.3.4
(Symbols as Tokens)

export Function

Syntax:
export symbols &optional package + t

Arguments and Values:
symbols-a designator for a list of symbols.

package-a package designator. The default is the current package.

Description:
export makes one or more symbols that are accessible in package (whether directly or by inheri-
tance) be external symbols of that package.

If any of the symbols is already accessible as an eztemal symbol of package, export has no effect
on that symbol. If the symbol is present in package as an internal symbol, it is simply changed
to external status. If it is accessible as an internal symbol via use-package, it is first imported
into package, then exported. (The symbol is then present in the package whether or not package
continues to use the package through which the symbol was originally inherited.)

export makes each symbol accessible to all the packages that use package. All of these packages
are checked for name conflicts: (export s p) does (find-symbol (spbol-niue s) q) for each pack-
age q in (package-used-by-list p). Note that in the usual case of an export during the initial
definition of a package, the result of package-used-by-list is nil and the name-conflict checking
takes negligible time. When multiple changes are to be made, for example when export is given a
list of symbols, it is permissible for the implementation to process each change separately, so that
aborting from a name conflict caused by any but the first symbol in the list does not unexport the
first symbol in the list. However, aborting from a name-conflict error caused by export of one of
symbols does not leave that symbol accessible to some packages and inaccessible to others; with
respect to each of symbols processed, export behaves as if it were as an atomic operation.

A name conflict in export between one of symbols being exported and a symbol already present
in a package that would inherit the newly-exported symbol may be resolved in favor of the
exported symbol by uninterning the other one, or in favor of the already-present symbol by
making it a shadowing symbol.

Packages 11-7

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(rake-package ‘terp :use nil) -t WPACKAGE "TKHP'9
(use-package ‘temp) 4 T
(intern TRIP-SW’ 9aap) + TEHP::TEHP-SYH, PIL
(find-a-01 "TEHP-SYH") --) HIL, HIL
(export (find-symbol Y'EHP-SW' ‘temp) 'tamp) -+ T
(find-symbol "TE?fP-SW') + TEHP-SYH, :IKIiKRITKD

Side Effects:
The package system is modified.

Affected By:
Accessible symbols.

Exceptional Situations:
If any of the symbols is not accessible at all in package, an error of type pachge-error is signaled
that is correctable by permitting the user to interactively specify whether that symbol should be
imported.

See Also:
import, unexport, Section 11.1 (Package Concepts)

find-symbol Function

Syntax:
And-symbol string &optional package -+ symbol, status

Arguments and Values:
string-a string.

package-a package designator. The default is the current package.

symbol-a symbol accessible in the package, or nil.

status-one of :inherite4 :external, :internal, or nil.

Description:
And-symbol locates a symbol whose name is string in a package. If a symbol named string is
found in package, directly or by inheritance, the symbol found is returned as the first value; the
second value is as follows:

:internal

If the symbol is presenf in package as an internal symbol.

: external

If the symbol is present in package as an eztemal symbol.

: inherited

If the symbol is inherited by package through use-package, but is not present in package.

If no such symbol is accessible in package, both values are nil.

11-8 Packagt?s

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(find-symbol "NEVER-BEFORE-USED") --* NIL, NIL
(find-syrbol "NEVER-BEFOBE-USEIF') -) YIL, IfIL
(intern "NEVER-BEFORE-USED") -+ BEVEB-BEFORE-USED, PIL
(intern "NEVER-BEFORE-USED") + NEVER-BEFORE-USED, :INTEBNAL
(find-symbol "NEVER-BEFORE-USED") + NEVER-BEFUBE-USED, : IllTERllAL
(find-symbol "never-before-wed") 4 BIL, NIL
(find-symbol "CAB '1 'connon-lisp-user) + CAB, :IBBEBITEB
(find-symbol “CAR” 'connon-lisp) --, CAR, :EKTEBNAL
(find-sylbol "NIL" Dconaon-lisp-mer) + BIL, :IUBEilITEB
(find-symbol "NIL" 'cormon-lisp) + NIL, :EXIFJUiAL
(find-symbol "NIL" (progl (w&e-package "JUST-TESTIBG" :use '(1)

(intern "BIL " "JUST-TESTIBG")))
+ JUST-TESTING::NIL, :INTEBNAL

(export 'jnst-testing::nil 'just-testing)
(find-symbol "NIL" 'just-testing) + JUST-TESTIBG:UIL, :EKTEBNAL
(find-symbol "NIL" "KEYWORD")

---) NIL, NIL
2 :NIL , :EKTEBNAL

(find-symbol (symbol-name :nil) "KEYVOW') + :BIL, :EKTEBNAL

Affected By:
intern, import, export, use-package, unintern, unexport, unuse-package

See Also:
intern, And-all-symbols

Notes:
And-symbol is operationally equivalent to intern, except that it never creates a new symbol.

find-package Function

Syntax:
find-package name + package

Arguments and Values:
name-a sthg designator or a package object.

package-a package object or nil.

Description:
If name is a string designator, And-package locates and returns the package whose name or
nickname is name. This search is case sensitive. If there is no such package, And-package returns
nil.

If name is a package object, that package object is returned.

Examples:

(find-package 'coamon-lisp) -+ #<PACKAGE "COBHOW-LISP">
(find-package "COIUSON-LISP-USER") + *<PACKAGE "COHHON-LISP-USER">
(find-package 'not-there) + NIL

Packages 11-9

ANSI X3.226-1994 Programming Language-Common Lisp

Affected By:
The set of packages created by the implemeniaiion.

defpackage, delete-package, make-package, rename-package

See Also:
make-package

find-all-symbols Function

Syntax:
find-all-symbols string -+ symbols

Arguments and Values:
string-a string designator.

symbols-a list of symbols.

Description:
And-all-symbols searches every registered package for symbols that have a name that is the same
(under string=) as string. A list of all such symbols is returned. Whether or how the list is
ordered is implementation-dependent.

Examples:

(find-all-symbols 'car)
+ (CAR)
5 (CAR VERICLES:CAR)
S (VEHICLES: CAR cm ,

(intern "CAR" (make-package 'temp :use nil)) -+ TEHP::CAR, PIL
(find-all-symbols 'car)

- (TFXF'::CAR CAR)
4 (CAR TEHP::CAR)
z (TEHP::CAR CAR VEHICLES:CAR)
2 (CAR TEHP::CAR VEHICLl?S:CAR)

See Also:
find-symbol

import Function

Syntax:
import symbols &optional package + t

Arguments and Values:
symbols-a designator for a list of symbols.

package-a package designator. The default is the current package.

11-10 Packages

Programming Language-Common Lisp ANSI X3.226-1994

Description:
import adds symbol or symbols to the internals of package, checking for name conflicts with ex-
isting symbols either present in package or accessible to it. Once the symbols have been impotied,
they may be referenced in the importing package without the use of a package prefix when using
the Lisp reader.

A name conflict in import between the symbol being imported and a symbol inherited from some
other package can be resolved in favor of the symbol being imported by making it a shadowing
symbol, or in favor of the symbol already accessible by not doing the import. A name conflict in
import with a symbol already present in the package may be resolved by uninterning that symbol,
or by not doing the import.

The imported symbol is not automatically exported from the current package, but if it is al-
ready present and external, then the fact that it is external is not changed. If any symbol to be
imported has no home package (i.e., (symbol-package symbol) + nil), import sets the home
package of the symbol to package.

If the symbol is already present in the importing package, import has no effect.

Examples:

(import ‘common-1isp::car (make-package ‘temp :use nil)) + T
(find-symbol “CAR” ‘temp) + CAR, : INTERNAL
(find-symbol VDR” ‘tamp) -$ NIL, NIL

The form (import ‘editor:buffer) takes the external symbol named buffer in the EDITOR package
(this symbol was located when the form was read by the Lisp reader) and adds it to the current
package as an internal symbol. The symbol buffer is then present in the current package.

Side Effects:
The package system is modified.

Affected By:
Current state of the package system.

Exceptional Situations:
import signals a correctable error of type package-error if any of the symbols to be imported has
the same name (under string=) as some distinct symbol (under eql) already accessible in the
package, even if the conflict is with a shadowing symbol of the package.

See Also:
shadow, export

list-all-packages Function

Syntax:
list-all-packages (no arguments) + packages

Arguments and Values:
packages-a list of package objects.

Description:
list-all-packages returns a fresh Iist of all registered packages.

Packages 11-11

ANSI X3.226-1994 Programming Language-Common Lisp ,

Examples:

(let ((before (list-all-packages)))
(rake-package 'temp)
(set-difference (list-all-packages) before)) -+ (#<PACKAGE "TEIlP">)

Affected By:
defpackage, deletqxwkage,make-package

rename-package Function

Syntax:
rename-package package new-name &optional new-nicknames + packageobject

Arguments and Values:
package-a package designator.

new-name-a package designator.

new-nicknames-a list of string designators. The default is the empty list.

package-object-the renamed package object.

Description:
Replaces the name and nicknames of package. The old name and all of the old nicknames of
package are eliminated and are replaced by new-name and new-nicknames.

The consequences are undefined if new-name or any new-nickname conflicts with any existing
package names.

Examples:

(make-package %emporary :nicLnaes '("TEW')) + #<PACKAGE "TEHPORARY">
(rename-package 'tenp 'ephemeral) + *<PACKAGE %PHEHERAL">
(package-nicknames (find-package 'ephemeral)) + (1
(find-package 'temporary) + YIL
(rename-package 'ephemeral 'temporary '(tamp fleeting))

--* WPACKAGE "TEHPORARY">
(packageaicknares (find-package 'teq)) + (TEHP'~ v'FLEETIIG'l)

See Also:
make-package

11-12 Package3

Programming Language-Common Lisp ANSI X3.226-1994

shadow Function

Syntax:
shadow symbol-names toptiondL package -) t

Arguments and Values:
symbol-names-a designator for a list of string designators.

package-a package designator. The default is the current package.

Description:
shadow assures that symbols with names given by symbol-names are present in the package.

Specifically, package is searched for symbols with the names supplied by symbol-names. For each
such name, if a corresponding symbol is not present in package (directly, not by inheritance),
then a corresponding symbol is created with that name, and inserted into package as an internal
symbol. The corresponding symbol, whether pre-existing or newly created, is then added, if not
already present, to the shadowing symbols list of package.

Examples:

(package-shadowing-symbols (rake-package ‘temp)) + EIL
(find-symbol ‘car ‘temp) --) CAR, :IMiERITED
(shadow ‘car ‘temp) -+ T
(find-symbol ‘car ‘tamp) -+ TEHP::CAR, :IIoTERHAL
(package-shadwing-symbols ‘temp) + (TRW: :CAR)

(make-package ‘teat- 1) -+ #<PACKAGE “TEST-l”>
(intern “TEST” (find-package ‘test-l)) -+ TEST-I::TEST, IUL
(shadov ‘test-l: :test (find-package ‘test-l)) - T
(shadov ‘TEST (find-package ‘test-l)) -+ T
(assert (not (null (member ‘test-1::test (package-shadowing-symbols

(find-package ‘test-l))))))

(make-package ‘test-2) + #<PACKAGE “TEST-29
(intern “TEST” (find-package ‘test-2)) + TEST-2: :TEST, NIL
(export ‘teat-2::test (find-package ‘test-211 + T
(use-package ‘test-2 (find-package ‘test-l)) ;should not error

Side Effects:
shadow changes the state of the package system in such a way that the package consistency rules
do not hold across the change.

Affected By:
Current state of the package system.

See Also:
package-shadowing-symbols, Section 11.1 (Package Concepts)

Packages 11-13

ANSI X3.226- 1994 Programming Language-Common Lisp

Notes:
If a symbol with a name in symbol-names already exists in package, but by inheritance, the
inherited symbol becomes shadowed3 by a newly created infernal symbol.

shadowing-import Function

Syntax:
shadowing-import symbols &optional package 4 t

Arguments and Values:
symbols-a designator for a lid of symbols.

package -a package designator. The default is the current package.

Description:
shadowing-import is like import, but it does not signal an error even if the importation of a
symbol would shadow some symbol already accessible in package.

shadowing-import inserts each of symbols into package as an internal symbol, regardless of
whether another symbol of the same name is shadowed by this action. If a different symbol of the
same name is already present in package, that symbol is first unintemed from package. The new
symbol is added to package’s shadowing-symbols list.

shadowing-import does name-conflict checking to the extent that it checks whether a distinct
existing symbol with the same name is accessible; if so, it is shadowed by the new symbol, which
implies that it must be uninterned if it was present in package.

Examples:

(in-package “COHMUK-LISP-USER”) + #<PACKAGE “COMHOH-LISP-USER”>
(setq sy~ (intern “CONFLICT”)) -+ CONFLICT
(intern “CONFLICT” (rake-package ‘temp)) -+ TEHP : : COUPLET, NIL
(package-shadowing-symbols ‘temp) + NIL
(shadoving-imPort sym ‘temp) -) T
(package-shadoving-syplbols ‘temp) -+ (CONFLICT)

Side Effects:
shadowing-import changes the state of the package system in such a way that the consistency
rules do not hold across the change.

package’s shadowing-symbols list is modified.

Affected By:
Current state of the package system.

See Also:
import, unintern, package-shadowing-symbols

11-14 Packages

Programming Language-Common Lisp ANSI X3.226-1994

delete-package Function

Syntax:
delete-package package --, generalized-boolean

Arguments and Values:
package-a package designator.

generalized-boolean-a generalized boolean.

Description:
delete-package deletes package from all package system data structures. If the operation is
successful, delete-package returns true, otherwise nil. The effect of delete-package is that the
name and nicknames of package cease to be recognized package names. The package object is
still a package (i.e., packagep is true of it) but package-name returns nil. The consequences
of deleting the COHMON-LISP package or the KEYWORD package are undefined. The consequences of
invoking any other package operation on package once it has been deleted are unspecified. In
particular, the consequences of invoking And-symbol, intern and other functions that look for a
symbol name in a package are unspecified if they are called with *package* bound to the deleted
package or with the deleted package as an argument.

If package is a package object that has already been deleted, delete-package immediately returns
nil.

After this operation completes, the home package of any symbol whose home package had previ-
ously been package is implementation-dependent. Except for this, symbols accessible in package
are not modified in any other way; symbols whose home package is not package remain un-
changed.

Examples:

(setq *foe-package* (make-package "FOO" :use nil))
(setq *foe-symbol* (intern "FOO" *foe-package*))
(export *foe-symbol* *foe-package*)

(setq *bar-package* (make-package "BAR" :use y(*SFOOt8)))
(setq *bar-symbol* (intern "BAR" *bar-package*))
(export *foe-symbol* *bar-package*)
(export *bar-symbol* *bar-package*)

(setq *baz-package* (make-package "BAZ" :use '("BAR")))

(symbol-package *foe-symbol*) + #<PACKAGE "FOO">
(symbol-package *bar-symbol*) -t #<PACKAGE "BAR'9

(prinl-to-string *foe-symbol*) -+ "FOO:FOO"
(prinl-to-str ing *bar-symbol*) * "BAR:BAR"

(find-symbol "FOO" *bar-package*) + FOO:FOO, :EXTERNAL

(find-symbol "FOO" *baz-package*) -+ FOO:FOO, :INHERITED
(find-symbol "BAR " *baz-package*) -+ BAR:BAR, :INHERITED

(packagep *foe-package*) -+ true

Packages 11-15

ANSI X3.226-1994 Programm@g Language-Common Lisp

(packagep *bar-package*) -+ irue
(packagep *baz-package*) -+ true

(package-name l f oo-package*) -+ VOO"
(package-name *bar-package*) + "EAR"
(package-name *baz-package*) + "BAiY

(package-use-list *foe-package*) --) ()
(package-use-list *bar-package*) --i (#<PACKAGE rSFOOrS>)
(package-use-list *baz-package*) -+ (#<PACKAGE "BAR*+)

(package-used-by-list *f oo-package*) -+ (#<PACKAGE WW>)
(package-used-by-list *bar-package*) 4 (#<PACKAGE VAZV)
(package-used-by-list *baz-package*) + ()

(delete-package *bar-package*)
D Rrror: Package BAZ uses package BAR.
D If continued, BAZ vi11 be made to unuse-package BAR,
D and then BAR vi11 be deleted.
D Type :COKTIRDEto continue.
D Debug> :COITIRUE
+T

(symbol-package *foe-symbol*) -+ #<PACKAGE "FOO?
(symbol-package *bar-symbol*) is unspecified

(prinl-to-string *foe-symbol*) -+ '8FOO:FO00S
(prinl-to-string *bar-symbol*) is unspecified

(find-symbol "FOO" *bar-package+) is unspecified

(find-symbol "FOO" *baz-package*) + HL, HIL
(find-symbol "BAR" *baz-package*) + NIL, RIL

(packagep *foe-package*) -+ T
(packagep *bar-package*) - T
(packagep *baz-package*) - T

(package-name *foe-package*) -+ "FOOT'
(package-name *bar-package*) -+ #IL
(package-nsme *baz-package*) -+ ‘vBAZt8

(package-use-list *foe-package*) - ()
(package-use-list *bar-package*) is unspecified
(package-use-list +baz-package+) -+ ()

(package-used-by-list *foe-package*) + (1
(package-used-by-list *bar-package+) is unspecified
(package-used-by-list *baz-package*) * 0

Exceptional Situations:
If the package designator is a name that does not currently name a package, a correctable error
of type package-error is signaled. If correction is attempted, no deletion action is attempted;
instead, delete-package immediately returns nil.

If package is used by other packages, a corrcc2able error of type package-error is signaled. If

11-16 Packages

Programming Language-Common Lisp ANSI X3.226-1994

correction is attempted, unuse-package is effectively called to remove any dependencies, caus-
ing package’s ezienol symbols to cease being accessible to those packages that use package.
delete-package then deletes package just as it would have had there been no packages that used
it.

See Also:
unuse-package

make-package Function

Syntax:
make-package packagtname kkey nicknames use -+ package

Arguments and Values:
packagtnamt-a siring designator.

nicknames-a list of string designators. The default is the empty lid.

use-a list of package designators. The default is implementation-defined.

package-a package.

Description:
Creates a new package with the name packagt-name.

Nicknames are additional names which may be used to refer to the new package.

USC specifies zero or more packages the eztemal symbols of which are to be inherited by the new
package. See the function use-package.

Examples:

bake-package 'temporary :nicknames '(TEHP" "temp")) -+ #<PACKAGE TFJWORARY">
(rake-package "OWNER" :ue.e '("temp")) + #<PACKAGE "OWNER">
(package-used-by-list 'temp) - (WPACKAGE "OWNER">)
(package-use-list 'ovner) --) (#<PACKAGE VEHPORARY~9)

Affected By:
The existence of other packages in the system.

Exceptional Situations:
The consequences are unspecified if packages denoted by use do not exist.

A correctable error is signaled if the package-name or any of the nicknamts is already the name or
nickname of an existing package.

See Also:
defpackage, use-package

Notes:
In situations where the packages to be used contain symbols which would conflict, it is necessary
to first create the package with :use ’ 0, then to use shadow or shadowing-import to address
the conflicts, and then after that to use use-package once the conflicts have been addressed.

Packages 11-17

ANSI X3.226-1994 Programming Languag~Common Lisp

When packages are being created as part of the static definition of a program rather than dynam-
ically by the program, it is generally considered more stylistically appropriate to use defpackage
rather than make-package.

with-package-iterator ilIacTo

Syntax:
with-package-iterator (name package-list-form &rest symbol-types) {declaration}’ {form)*

---) {fesu/t}*

Arguments and Values:
name-a symbol.

package-list-form-a form; evaluated once to produce a package-list.

packagtlist -a designator for a list of package designators.

symbol-type-one of the symbols : inter&l, : external, or : inherited

declaration-a declare ezpression; not evaluated.

forms-an implicit progn.

results-the values of the forms.

Description:
Within the lexical scope of the body forms, the name is defined via macrolet such that successive
invocations of (name) will return the symbols, one by one, from the packages in packaga-list.

It is unspecified whether symbols inherited from multiple packages are returned more than once.
The order of symbols returned does not necessarily reflect the order of packages in packaga-list.
When packagtlist has more than one element, it is unspecified whether duplicate symbols are
returned once or more than once.

Symbol-types controls which symbols that are accessible in a package are returned as follows:

: internal

The symbols that are present in the package, but that are not exported.

: external

The symbols that are present in the package and are ezported.

: inherited

The symbols that are exported by used packages and that are not shadowed.

When more than one argument is supplied for symbol-types, a symbol is returned if its accessi-
bility matches any one of the symbol-typa supplied. Implementations may extend this syntax by
recognizing additional symbol accessibility types.

An invocation of (name) returns four values as follows:

1. A flag that indicates whether a symbol is returned (true means that a symbol is re-
turned).

11-18 Packages

Programming Language-Common Lisp ANSI X3.226-1994

2. A symbol that is accessible in one the indicated packages.
3. The accessibility type for that symbol; i.e., one of the symbols :intemal, :extemal, or

: inherited.
4. The package from which the symbol was obtained. The package is one of the packages

present or named in packagelist.

After all symbols have been returned by successive invocations of (name), then only one value is
returned, namely nil.

The meaning of the second, third, and fourth values is that the returned symbol is accessible in
the returned package in the way indicated by the second return value as follows:

: internal

Means present and not ezported.

: external

Means present and ezported.

: inherited

Means not present (thus not shadowed) but inherited from some used package.

It is unspecified what happens if any of the implicit interior state of an iteration is returned
outside the dynamic extent of the with-package-iterator form such as by returning some closure
over the invocation form.

Any number of invocations of with-package-iterator can be nested, and the body of the inner-
most one can invoke all of the locally established macros, provided all those macros have distinct
names.

Examples:
The following function should return t on any package, and signal an error if the usage of
with-package-iterator does not agree with the corresponding usage of do-symbols.

Packages 11-19

ANSI X3.226-1994 Programming Language-Common Lisp

(defun test-package-iterator (package)
(unless (packagep package)

(setq package (find-package package)))
(let ((all-entries '0)

(generated-entries ‘0))
(do-symbols (x package)

(multiple-value-bind (symbol accessibility)
(f iud-symbol (syubol-name 10 package)

(push (list syubol accessibility) all-entries)))
(with-package-iterator (generator-fn package

: internal :external : inherited)
(loop

(multiple-value-bind (more? symbol accessibility pkg)
(generator-fn)

(unless more? (return))
(let ((1 (multiple-value-list (find-symbol (symbol-name sysbol)

package))))
(unless (equal 1 (list symbol accessibility))

(error "Symbol 'S not found as 'S in package 'A C'S1 "
symbol accessibility (package-name package) 1))

(push 1 generated-entries) 1) 1)
(unless (and (subsetp all-entries generated-entries :test *'equal)

(subsetp generated-entries all-entries :test #'equal))
(error "Generated entries and Do-Symbols entries don't correspond"))

t))

The following function prints out every present symbol (possibly more than once):

(defun print-all-symbols 0
(Pith-package-iterator (next-symbol (list-all-packages)

:internal :external)
(loop

(multiple-value-bind (more? symbol) (next-symbol)
(if Bore?

(print symbol)
(return))))))

Exceptional Situations:
with-package-iterator signals an error of type program-error if no symbol-types are supplied or if
a symbo/-type is not recognized by the implementation is supplied.

The consequences are undefined if the local function named name established by
with-package-iterator is called after it has returned false as its primary value.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

unexport

syntax:
unexport symbols &optional package -, t

Function

,-

11-20 Packages

Programming LanguageCommon Lisp ANSI X3.226-1994

Arguments and Values:
symbols-a designator for a list of symbols.

package-a package designator. The default is the current package.

Description:
unexport reverts external symbols in package to internal status; it undoes the effect of export.

unexport works only on symbols present in package, switching them back to internal status. If
unexport is given a symbol that is already accessible as an internal symbol in package, it does
nothing.

Examples:

(in-package "COHHOK-LISP-USm") + WPACKACE "COMHOH-LISP-USER">
(export (intern VOKTRABAKD" hake-package 'temp)) 'tamp) -) T
(find-symbol "COATIUBAND") + IIL, PIL
(use-package 'temp) * T
(find-symbol "COUTRABAHD") * COIITIUBAHD, :IHliERITED
(unexport 'contraband 'tamp) + T
(find-symbol "COITRABAliD") + IJIL, IIL

Side Effects:
Package system is modified.

Affected By:
Current state of the package system.

Exceptional Situations:
If unexport is given a symbol not accessibIe in package at all, an error of type package-error is
signaled.

The consequences are undefined if package is the KEYWORD package or the COMOI-LISP package.

See Also:
export, Section 11.1 (Package Concepts)

unintern Function

Syntax:
unintern symbol toptiondl package --+ generalized-boolean

Arguments and Values:
symbol-a symbol.

package-a package designator. The default is the current package.

generalized-boolean-a generalized boolean.

Description:
unintern removes symbol from package. If symbol is present in package, it is removed from
package and also from package’s shadowing symbols list if it is present there. If package is the
home package for symbol, symbol is made to have no home package. Symbol may continue to be
accessible in package by inheritance.

Packages 11-21

ANSI X3.226- 1994 Programming Languag~Common Lisp

Use of unintern can result in a symbol that has no recorded home package, but that in fact is
accessible in some package. Common Lisp does not check for this pathological case, and such
symbols are always printed preceded by s: .

unintern returns true if it removes symbol, and nil otherwise.

Examples:

(in-package VDHHO~-LISP-USER”) + #<PACKAGE “COHHOH-LISP-USER”>
(setq temps-unpack (intern “UNPACK” (rake-package ‘temp))) -, TEHP: :U?iPACK
(unintern temps-unpack 'temp) + T
(find-symbol "UIOPACR" 'temp) + IIL, NIL
temps-unpack + 4l:UUPACK

Side Effects:
unintern changes the state of the package system in such a way that the consistency rules do not
hold across the change.

Affected By:
Current state of the package system.

Exceptional Situations:
Giving a shadowing symbol to unintern can uncover a name conflict that had previously been
resolved by the shadowing. If package A uses packages B and C, A contains a shadowing symbol
x, and B and C each contain external symbols named x, then removing the shadowing symbol x
from A will reveal a name conflict between b:x and c:x if those two symbols are distinct. In this
case unintern will signal an error.

See Also:
Section 11.1 (Package Concepts)

in-package Macro

Syntax:
in-package name + package

Arguments and Values:
name-a string designator; not evaluated.

package-the package named by name.

Description:
Causes the the package named by name to become the current package-that is, the value of
package. If no such package already exists, an error of type package-error is signaled.

Everything in-package does is also performed at compile time if the call appears as a top level
f 07-m.

Side Effects:
The variable *package* is assigned. If the in-package form is a top level form, this assignment
also occurs at compile time.

11-22 Packages

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
An error of type package-error is signaled if the specified package does not exist.

See Also:
package

unuse-package Function

Syntax:
unuse-package packages-to-unuse toptiondL package + t

Arguments and Values:
packages-ttwnuse-a designator for a list of package designators.

package-a package designator. The default is the current package.

Description:
unuse-package causes package to cease inheriting all the external symbols of packages-tcwnuse;
unuse-package undoes the effects of use-package. The packages-to-unuse are removed from the
use list of package.

Any symbols that have been imported into package continue to be present in package.

Examples:

(in-package "CCMMON-LISP-USER") + #<PACKAGE "COI'lMON-LISP-USER">
(export (intern "SHOES" hake-package 'temp)) %emp> + T
(find-symbol WiOES’) -+ NIL, NIL
(use-package 'temp) + T
(find-symbol WIOES") -+ SHOES, :INIiERITED
(find (find-package 'temp) (package-use-list 'common-lisp-user)) + #<PACKAGE "TEHP">
(unuse-package 'temp) --* T
(find-symbol WiOES") -+ NIL, NIL

Side Effects:
The use list of package is modified.

Affected By:
Current state of the package system.

See Also:
use-package, package-use-list

Packages 11-23

ANSI X3.226-1994 Programming Languagt+Common Lisp

use-package Function

syntax:
use-package packagas-to-use toptional package -+ t

Arguments and Values:
packages-to-use-a design&or for a Zisi of pnckoge designators. The KEYWORD package may not be
supplied.

package-a package designator. The default is the current package. The package cannot be the
KEYYORD package.

Description:
use-package causes package to inherit all the edernal symbols of packages-to-use. The inherited
symbols become accessible as internal symbols of package.

Packager-&use are added to the use lisi of package if they are not there already. All external
symbols in packages-to-use become occessibZe in package as internal symbols. usepackage does
not cause any new symbols to be pnsent in package but only makes them accessible by inheri-
tance.

use-package checks for name conflicts between the newly imported symbols and those already
accessible in package. A name conflict in use-pa&age between two external symbols inherited by
package from packages-to-use may be resolved in favor of either symbol by importing one of them *
into package and making it a shadowing symbol.

Examples:

(export (intern "LAXD-FILL" (rake-package 'trash)) 'trash) + T
(find-symbol "LAND-FILL" (rake-package 'temp)) -, KIL, NIL
(package-use-list ' temp) -+ (#<PACKAGE "TEKP">)
(use-package 'trash 'temp) -* T
(package-use-list *temp) --, @<PACKAGE TEHP9 #<PACKAGE T'RASH9)
(find-symbol "LAND-FILL" ' temp) + TRASH:LAND-FILL, :INSiERITED

Side Effects:
The use list of package may be modified.

See Also:
unuse-package, package-use-list, Section 11.1 (Package Concepts)

Notes:
It is permissible for a package Pr to use a package Ps even if P2 already rises Pr. The using of
packages is not transitive, so no problem results from the apparent circularity.

defpackage iUacro

Syntax:
defpackage defined-packagcname [loption] -* package

11-24 Packages

Programming Language-Common Lisp ANSI X3.226-1994

option::={(:nicknames {nickname}*))* 1

(: documentation stn’ng) 1

{(:uae {package-name}*)}* 1

{(:shadow {lsymbo/-name}*)}* 1
{(:shadoving-import-from package-name (lsymbo/-name}*))* 1

{ (: import-from package-name { Jsymbol-name}*)}* 1

{ (: export { lsymboCname}*)}* I

{ (: intern { ~symboCname}*)}* I
(: size integer)

Arguments and Values:
defined-package-name-a string designator.

package-name-a package designator.

nickname-a string designator.

symbol-name-a string designator.

package-the package named package-name.

Description:
defpackage creates a package as specified and returns the package.

If defined-package-name already refers to an existing package, the name-topackage mapping
for that name is not changed. If the new definition is at variance with the current state of that
package, the consequences are undefined; an implementation might choose to modify the existing
package to reflect the new definition. If defined-packagc-name is a symbol, its name is used.

The standard options are described below.

: nicknames

The arguments to :nicknames set the package’s nicknames to the supplied names.

:documentation

The argument to :documentation specifies a documentation string; it is attached as a
documentation string to the package. At most one :documentation option can appear in a
single defpackage form.

:use

The arguments to :use set the packages that the package named by packagtname will
inherit from. If :use is not supplied, it defaults to the same implementation-dependent
value as the :use argument to make-package.

: shadow

The arguments to :shadov, symbol-names, name symbols that are to be created in the
package being defined. These symbols are added to the list of shadowing symbols effec-
tively as if by shadow.

:shadoving-import-from

The symbols named by the argument symbol-names are found (involving a lookup as
if by And-symbol) in the specified packagename. The resulting symbols are imported

Packages 11-25

ANSI X3.226-1994 Programming Language-Common Lisp

into the package being defined, and placed on the shadowing symbols list as if by
shadowing-import. In no case are symbols created in any package other than the one
being defined.

:import-from

The symbols named by the argument symbol-names are found in the package named
by package-name and they are imported into the package being defined. In no case are
symbols created in any package other than the one being defined.

: export

The symbols named by the argument symbol-names are found or created in the package
being defined and exported. The :export option interacts with the :use option, since
inherited symbols can be used rather than new ones created. The :export option interacts
with the : import-from and : shadowing-import-from options, since imported symbols can
be used rather than new ones created. If an argument to the :export option is accessible
as an (inherited) internal symbol via use-package, that the symbol named by symbol-
name is first imported into the package being defined, and is then exported from that
package.

* intern .

The symbols named by the argument symbol-names are found or created in the package
being defined. The : intern option interacts with the :use option, since inherited symbols
can be used rather than new ones created.

:size

The argument to the :size option declares the approximate number of symbols expected
in the package. This is an efficiency hint only and might be ignored by an implementa-
tion.

The order in which the options appear in a defpackage form is irrelevant. The order in which
they are executed is as follows:

1. : shadow and : shadoving-import-f rom.
2. :use.
3. : import-from and : intern
4. : export.

Shadows are established first, since they might be necessary to block spurious name conflicts
when the :use option is processed. The :use option is executed next so that :intern and :export
options can refer to normally inherited symbols. The :export option is executed last so that it
can refer to symbols created by any of the other options; in particular, shadowing symbols and
imported symbols can be made external.

If a defpackage form appears as a top level form, all of the actions normally performed by this
macro at load time must also be performed at compile time.

11-26 Packages

Programming Language-Common Lisp ANSI X3.226- 1994

Examples:

(def package ‘WV-PACKAGE”
(:nicknanes ‘WPKG” ‘WV-PKG”)
(:use WDlMON-LISP”)
(:shadov “CAR” “CDR”)
(: shadoving-import-from “VENDOR-COHHON-LISP” “CONS”)
(: import-from “VENDOR-COHHON-LISP” “GC”)
(: export “EQ” “CONS” ‘TROBOLA”)
)

(defpackage my-package
(:nicknames mypkg :HV-PKG) ; remember Common Lisp conventions for case
(:use common-lisp) ; conversion on symbols
(:shadov CAR :cdr #:cons)
(: export “CONS”) ; this is the shadowed one.
>

Affected By:
Existing pachges.

Exceptional Situations:
If one of the supplied :nicknames already refers to an existing package, an error of type
package-error is signaled.

An error of type program-error should be signaled if :sixe or :documentation appears more than
once.

Since implementations might allow extended options an error of type program-error should be
signaled if an option is present that is not actually supported in the host implementation.

The collection of symbol-name arguments given to the options :shadov, : intern, :import-from,
and : shadowing-import-from must all be disjoint; additionally, the symbol-name arguments given
to :export and :intern must be disjoint. Disjoint in this context is defined as no two of the
symbol-names being string= with each other. If either condition is violated, an error of type
program-error should be signaled.

For the :shadoving-import-from and :import-from options, a correctable error of type
package-error is signaled if no symbol is accessible in the paclcage named by package-name for
one of the argument symbol-names.

Name conflict errors are handled by the underlying calls to make-package, use-package, import,
and export. See Section 11.1 (Package Concepts).

See Also:
documentation, Section 11.1 (Package Concepts), Section 3.2 (Compilation)

Notes:
The : intern option is useful if an : import-from or a : shadowing-import-from option in a subse-
quent call to defpaekage (for some other package) expects to find these symbols accessible but not
necessarily external.

It is recommended that the entire package definition is put in a single place, and that all
the package definitions of a program are in a single file. This file can be loaded before load-
ing or compiling anything else that depends on those packages. Such a file can be read in the
COMMON-LISP-USE3 packa.ge, avoiding any initial state issues.

defpackage cannot be used to create two “mutually recursive” packages, such as:

Packages 11-27

ANSI X3.226-1994 Programming Language-Common Lisp

(defpackage my-package
(:use co-on-lisp your-package) ;requires your-package to exist first
(: export “l4Y-FlJ?l”) 1

(defpackage your-package
(:use co-on-lisp)
(:iaport-fror my-package WY-FUP) ;requires my-package to exist first
(: export WY-FIW’))

However, nothing prevents the user from using the package-affecting functions such as
use-package, import, and export to establish such links after a more standard use of defpackage.

The macroexpansion of defpa&age could usefully canonicalize the names into strings, so that
even if a source file has random symbols in the defpackage form, the compiled file would only
contain strings.

Frequently additional implementation-dependent options take the form of a keyword standing
by itself as an abbreviation for a list (keyword T); this syntax should be properly reported as an
unrecognized option in implementations that do not support it.

do-symbols, do-external-symbols, do-all-symbols
Macro

Syntax:
do-symbols (var [package [fesult-form]])

{declaration}* {tag 1 statement}*

do-external-symbols (vaf [package [result-form]])
{declaration)* (tag j statement}*

* {fesult)*

do-all-symbols (vaf [result-fofm])
{declaration}* {tag 1 statement}*

+ {fault)*

Arguments and Values:
vaf-a variable name; not evaluated.

package-a package designator; evaluated, The default in do-symbols and do-external-symbols
is the current package.

result-form-a form; evaluated as described below. The default is nil.

declafatiorr-a declare ezpression; not evaluated.

tag-a go tag; not evaluated.

statement-a compound form; evaluated as described below.

results-the values returned by the result-form if a normal return occurs, or else, if an ezplicit
return occurs, the values that were transferred.

11-28 Packages

Programming Language-Common Lisp ANSI X3.226-1994

Description:
do-symbols, do-external-symbols, and do-all-symbols iterate over the symbols of packages. For
each symbol in the set of packages chosen, the war is bound to the symbol, and the statements in
the body are executed. When all the symbols have been processed, result-form is evaluated and
returned as the value of the macro.

dc+symbols iterates over the symbols accessible in package. Statements may execute more than
once for symbols that are inherited from multiple packages.

do-all-symbols iterates on every registered package. do-all-symbols will not process every symbol
whatsoever, because a symbol not accessible in any registered package will not be processed.
do-all-symbols may cause a symbol that is present in several packages to be processed more than
once.

do-external-symbols iterates on the external symbols of package.

When result-form is evaluated, war is bound and has the value nil.

An implicit block named nil surrounds the entire desymbols, do-external-symbols, or
do-all-symbols form. return or return-from may be used to terminate the iteration prema-
turely.

If execution of the body affects which symbols are contained in the set of packages over which
iteration is occurring, other than to remove the symbol currently the value of war by using
unintern, the consequences are undefined.

For each of these macros, the scope of the name binding does not include any initial value form,
but the optional result forms are included.

Any tag in the body is treated as with tagbody.

Examples:

(make-package 'temp :use nil) -+ #<PACKAGE "TEHP">
(intern "SHY" 'temp) + TFJlP::SHY, IIL ;SIiY will be an internal symbol

;in the package TRfP
(export (intern "BOLD" 'temp) 'temp) + T ;BOLD vi11 be external
(let ((1st 0))

(do-symbols (s (find-package 'temp)) (push s 1st))
1st)

- (TEXP::SHY TMP:BOLD)
4 (TEHP:BOLD TEXP::SHY)

(let ((1st 0))
(do-external-symbols (8 (find-package 'tarp) 1st) (push s 1st))
1st)

--) (TEHP:BOLD)
(let ((1st 0))

(do-all-symbols (8 1st)
(when (eq (find-package 'temp) (symbol-package 8)) (push s 1st)))

1st)
-) (TEHP::SHY TEHP:BOLD)
2 (TEHP:BOLD Tl34P::SHY)

See Also:
intern, export, Section 3.6 (Traversal Rules and Side Effects)

Packages 11-29

ANSI X3.226-1994 Programming Language-Common Lisp

intern Function

Syntax:
intern string &optional package - symbol, status

Arguments and Values:
string-a string.

package-a package designator. The default is the current package.

symbol-a symbol.

status--one of : inherited, :externa& :internal, or nil.

Description:
intern enters a symbol named string into package. If a symbol whose name is the same as string
is already accessible in package, it is returned. If no such symbol is accessible in package, a new
symbol with the given name is created and entered into package as an internal symbol, or as an
external symbol if the package is the KEYUOBD package; package becomes the home package of the
created symbol.

The first value returned by intern, symbol, is the symbol that was found or created. The meaning
of the secondary value, status, is as follows:

:internal

The symbol was found and is present in package as an internal symbol.

: external

The symbol was found and is present as an external symbol.

:inherited

The symbol was found and is inherited via use-package (which implies that the symbol ia
internal).

nil

No preexisting symbol was found, so one was created.

It is implementation-dependent whether the string that becomes the new symbol’s name
is the given string or a copy of it. Once a string has been given as the string argument to
intern in this situation where a new symbol is created, the consequences are undefined if
a subsequent attempt is made to alter that string.

Examples:

(in-package WIHHON-LISP-USEW) * *<PACKAGE "COMMON-LISP-USER">
(intern "Never-Before") - INever-BeforeI, NIL
(intern "Never-Before") -+ INever-Beforei, :INTEBNAL
(intern "NEVER-BEFORE" ~'KEWOBD") + :NEVEB-BEFORE, NIL
(intern "NEVER-BEFORE" "KEYVOW') --* :NEVEB-BEFORE. :EXTEBNAL

11-30 Packages

Programming Language-Common Lisp ANSI X3.226- 1994

See Also:
And-symbol, read, symbol, unintern, Section 2.3.4 (Symbols as Tokens)

Notes:
intern does not need to do any name conflict checking because it never creates a new symbol if
there is already an accessible symbol with the name given.

package-name Function

syntax:
package-name package + name

Arguments and Values:
package-a package designator.

name-a string or nil.

Description:
package-name returns the string that names package, or nil if the package designator is a
package object that has no name (see the function delete-package).

Examples:

(in-package "CO!MlN-LISP-USER") * #<PACKAGE "COWnON-LISP-USER">
(package-name *package*) + "COH?JON-LISP-USER"
(package-name (symbol-package :test.)) -+ "KEYYORO"
(package-name (find-package 'common-lisp)) + "COHHON-LISP"

(defvar *foe-package* (make-package "'000"))
(rename-package "FOO" "FOOO")
(package-name *foe-package*) + "FOOO"

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator.

package-nicknames Function

Syntax:
package-nicknames package -* nicknames

Arguments and Values:
package-a package designator.

nicknames-a list of strings.

Description:
Returns the list of nickname strings for package, not including the name of package.

Packages 11-31

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(package-nicknames (make-package ‘temporary
:niclmzues ‘(YEHP” ” tamp”)))

4 (“tempt’ “m”)

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator.

package-shadowing-symbols Function

Syntax:
pa&age-shadowing-symbols package 4 symbols

Arguments and Values:
package---a package designator.

symbols-a list of symbols.

Description:
Returns a list of symbols that have been declared as shadowing symbols in package by shadow or
shadowing-import (or the equivalent defjxxkage options). All symbols on this list are present in
package.

Examples:

(package-shadoving-symbols (rake-package ‘terp)) + 0
(shadov ‘cdr ‘temp) -+ T
(package-shadoving-smbols ‘temp) -) (TEIIP::CDR)
(intern “PILL” ‘tamp) -+ TgHP::PILL, BIL
(shadoving-import ‘pill ‘temp) -+ T
(package-shadoving-syrbols ‘tarp) + (PILL TEHP::CDR)

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator.

See Also:
shadow, shadowing-import

Notes:
Whether the list of symbols is fresh is implementation-dependent.

11-32 Packages

Programming Language-Common Lisp ANSI X3.226-1994

package-use-list Function

Syntax:
package-use-list package + usa-list

Arguments and Values:
package-a package designaior.

use-list-a list of package objects.

Description:
Returns a list of other packages used by package.

Examples:

(package-use-list (make-package 'temp)) + (WPACKAGE WJHHOlV-LISP?)
(use-package acommon-lisp-uaer 'temp) -+ T
(package-use-list 'temp) + (#<PACKAGE VOMIOII-LISP'*> #<PACKAGE YOWnON-LISP-USER">)

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator.

See Also:
use-package,unuse-package

package-used-by-list Function

Syntax:
package-used-by-list package * used-by-list

Arguments and Values:
package-a package designator.

used-by-list-a list of package objects.

Description:
package-used-by-list returns a list of other packages that we package.

Examples:

(package-used-by-list (make-package *temp)) -, 0
(make-package 'trash :uae '(tamp)) + #<PACKAGE WlASH'*>
(package-used-by-list 'tamp) + (#<PACKAGE "TRASH">)

Exceptional Situations:
Should signal an error of type type-error if package is not a package.

See Also:
use-package,unuse-package

Packages 11-33

ANSI X3.226-1994 Programming Language-Common Lisp

paCl=wP Function

Syntax:
packagep object 4 generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns trve if object is of type package; otherwise, returns false.

Examples:

(packagep *package*) * true
(packagep 'cornon-lisp) -+ false
(packagep (find-package 'common-lisp)) -+ true

Notes:

(packagep object) z (typep object ‘package)

package Variable

Value Type:
a package object.

Init ial Value:
the Co~oB-LISP-USERpackage.

Description:
Whatever package object is currently the value of *package* is referred to as the current package.

Examples:

(in-package "COMMON-LISP-USER") + #<PACKAGE "COHF!ON-LISP-USER">
package -r #<PACKAGE "COMMON-LISP-USER">
(rake-package "SAHPLE-PACKAGE" :use '("COMFION-LISP"))

--+ #<PACKAGE "SAHPLE-PACKAGE">
(List

(symbol-package
(let ((*package* (find-package 'sample-package)))

(setq *some-symbol* (read-from-string "just-testing"))))
package)

+ (#<PACKAGE mm~-PACKAGED #<PACKAGE V~HH~N-LISP-USERV)
(list (symbol-package (read-from-string "just-testing"))

package)
-+ @<PACKAGE vomo~-LISP-umw ~KPMXAGE "COH~~ON-LISP-USERS)

11-34 Packages

Programming Language-Common Lisp ANSI X3.226-1994

(eq 'foe (intern "FDD")) 4 he
(eq 'foe (let ((*package* (find-package 'sample-package)))

(intern "FOO")))
-+ false

Affected By:
load, compile;flle, in-package

See Also:
compile-file, in-package, load, package

package-error Condition Type

Class Precedence List:
package-error, error, serious-condition, condition, t

Description:
The type package-error consists of error conditions related to operations on packages. The
offending package (or package name) is initialized by the :package initialization argument to
make-condition, and is accessed by the function package-error-package.

See Also:
package-error-package, Chapter 9 (Conditions)

package-error-package Function

Syntax:
package-error-package condition -+ package

Arguments and Values:
condition-a condition of type package-error.

package-a package designator.

Description:
Returns a designator for the offending package in the situation represented by the condition.

Examples:

(package-error-package
(make-condition 'package-error

:package (find-package VOH?!ON-LISP")))
* #<Package "COHHON-LISP">

See Also:
package-error

Packages 11-35

ANSI X3.226-1994 Programming Language-Common Lisp

11-36 Packages

ANSI X3.226-1994

Programming Language-Common Lisp

12. Numbers

ANSI X3.226-1994 Programming Language-Common Lisp

ii Numbers

Programming Language-Common Lisp ANSI X3.226-1994

12.1 Number Concepts

12.1.1 Numeric Operations
Common Lisp provides a large variety of operations related to numbers. This section provides
an overview of those operations by grouping them into categories that emphasize some of the
relationships among them.

Figure 12-1 shows operators relating to arithmetic operations.

*
+

;

1+
l-
conjugate
decf

gcd
incf
lcm

Figure 12-1. Operators relating to Arithmetic.

Figure 12-2 shows dejned names relating to exponential, logarithmic, and trigonometric opera-
tions.

abs CO8

aces cash
acosh exp
asin expt
asinh isqrt
atan log
atanh phase
cis Pi

Signum
sin
sinh
sqrt
tan
tanh

Figure 12-2. Defined names relating to Exponentiais, Logarithms, and Trigonometry.

Figure 12-3 shows operators relating to numeric comparison and predication.

/= >- - oddp
< evenp PlusP
<= max zerop
= min
> minusp

Figure 12-3. Operators for numeric comparison and predication.

Figure 12-4 shows defined names relating to numeric type manipulation and coercion.

ceiling
complex
decode-float
denominator
fceiling
ffloor
float
float-digits
float-precision

float-radix
float-sign
floor
fround
ftruncate
imagpart
integer-decode-float
mod
numerator

rational
rationalize
realpart
rem
round
scale-float
truncate

Figure 124. Defined names relating to numeric type manipulation and coercion.

Numbers 12-1

ANSI X3.226-1994 Programming Language-Common Lisp

12.1.1.1 Associativity and Commutativity in Numeric Operations

For functions that are mathematically associative (and possibly commutative), a conforming
implementation may process the arguments in any manner consistent with associative (and
possibly commutative) rearrangement. This does not affect the order in which the argument
forms are evaluated; for a discussion of evaluation order, see Section 3.1.2.1.2.3 (Function Forms).
What is unspecified is only the order in which the parameter values are processed. This implies
that implementations may differ in which automatic coercions are applied; see Section 12.1.1.2
(Contagion in Numeric Operations).

A conforming program can control the order of processing explicitly by separating the operations
into separate (possibly nested) function forms, or by writing explicit calls to functions that
perform coercions.

12.1.1.1.1 Examples of Associativity and Commutativity in Numeric Operations

Consider the following expression, in which we assume that I .O and I .oe-15 both denote single
floats:

(+ l/3 2/3 l.OdO 1.0 i.Oe-15)

One conforming implementation might process the arguments from left to right, first adding
1/3 and 2/3 to get I, then converting that to a double float for combination with 1. OdO, then
successively converting and adding 1.0 and l.Oe-15.

Another conforming implementation might process the arguments from right to left, first per-
forming a single float addition of 1.0 and l.Oe-15 (perhaps losing accuracy in the process), then
converting the sum to a double float and adding l.OdO, then converting 2/3 to a double float and
adding it, and then converting 1/3 and adding that.

A third conforming implementation might first scan all the arguments, process all the rationals
first to keep that part of the computation exact, then find an argument of the largest floating-
point format among all the arguments and add that, and then add in all other arguments, con-
verting each in turn (all in a perhaps misguided attempt to make the computation as accurate as
possible).

In any case, all three strategies are legitimate.

A conforming program could control the order by writing, for example,

(+ (+ l/3 2/3) (+ l.OdO l.Oe-15) 1.0)

12.1.1.2 Contagion in Numeric Operations

For information about the contagion rules for implicit coercions of arguments in numeric opera-
tions, see Section 12.1.4.4 (Rule of Float Precision Contagion), Section 12.1.4.1 (Rule of Float and
Rational Contagion), and Section 12.1.5.2 (Ruie of Complex Contagion).

12.1.1.3 Viewing Integers as Bits and Bytes

12.1.1.3.1 Logical Operations on Integers

Logical operations require integers as arguments; an error of type type-error should be signaled
if an argument is supplied that is not an integer. Integer arguments to logical operations are
treated as if they were represented in two&complement notation.

Figure 12-5 shows defined names relating to logical operations on numbers.

12-2 Numbers

Programming Language-Common Lisp ANSI X3.226- 1994

ash
boole
boole-1
boole-2
boole-and
boole-andcl
boole-andc2
boole-cl
book+c2
boole-clr
boole-eqv

boole-ior
boole-nand
boo&nor
boole-orcl
boole-orc2
boo&set
boole-xor
integer-length
logand
logandcl
logandc2

logbitp
logcount
logeqv
logior
lognand
lognor
1ognot
logorcl
logorc2
logtest
logxor

Figure 12-5. Defined names relating to logical operations on numbers.

12.1.1.3.2 Byte Operations on Integers

The byte-manipulation functions use objects called byte specifiers to designate the size and posi-
tion of a specific byte within an integer. The representation of a byte specifier is implementation-
dependent; it might or might not be a number. The function byte will construct a byte specifier,
which various other byte-manipulation functions will accept.

Figure 12-6 shows defined names relating to manipulating bytes of numbers.

byte
byte-position
byte-size

deposit-field
dpb
ldb

ldb-test
mask-field

Figure 12-6. Defined names relating to byte manipulation.

12.1.2 Implementation-Dependent Numeric Constants
Figure 12-7 shows defined names relating to implementation-dependent details about numbers.

double-float-epsilon
double-float-negative-epsilon
least-negative-double-float
least-negative-long-float
least-negative-short-float
least-negative-single-float
least-positive-double-float
least-positive-long-float
least-positive-short-float
least-positive-single-float
long-float-epsilon
long-float-negative-epsilon
most-negative-double-float

most-negative-fixnum
most-negative-long-float
most-negative-short-float
most-negative-singlefloat
most-positive-double-float
most-positive-fixnum
most-positive-long-float
most-positive-short-float
most-positive-singlefloat
short-float-epsilon
short-float-negative-epsilon
single-float-epsilon
single-float-negative-epsilon

Figure 12-7. Defined names relating to implementation-dependent details about numbers.

Numbers 12-3

ANSI X3.226-1994 Programming Language-Common Lisp

12.1.3 Rational Computations
The rules in this section apply to rational computations.

12.1.3.1 Rule of Unbounded Rational Precision

Rational computations cannot overflow in the usual sense (though there may not be enough
storage to represent a result), since integers and ratios may in principle be of any magnitude.

12.1.3.2 Rule of Canonical Representation for Rationals
If any computation produces a result that is a mathematical ratio of two integers such that the
denominator evenly divides the numerator, then the result is converted to the equivalent integer.

If the denominator does not evenly divide the numerator, the canonical representation of a
rational number is as the ratio that numerator and that denominator, where the greatest common
divisor of the numerator and denominator is one, and where the denominator is positive and
greater than one.

When used as input (in the default syntax), the notation -O always denotes the integer O. A
conforming implementation must not have a representation of “minus zero” for integers that is
distinct from its representation of zero for integers. However, such a distinction is possible for
floats; see the type float.

12.1.3.3 Rule of Float Substitutability
When the arguments to an irrational mathematical function are all rational and the true math-
ematical result is also (mathematically) rational, then unless otherwise noted an implementation
is free to return either an accurate rational result or a single float approximation. If the argu-
ments are all rational but the result cannot be expressed as a rational number, then a single float
approximation is always returned.

If the arguments to an irrational mathematical function are all of type (or rational (complex ratlc
and the true mathematical result is (mathematically) a complex number with rational real and
imaginary parts, then unless otherwise noted an implementation is free to return either an ac-
curate result of type (or rational (complex rational)) or a single float (permissible only if the
imaginary part of the true mathematical result is zero) or (complex single-float). If the argu-
ments are all of type (or rational (complex rational)) but the result cannot be expressed as a
rational or complet rational, then the returned value will be of type single-float (permissible only
if the imaginary part of the true mathematical result is zero) or (complex single-float).

Float substitutability applies neither to the rational functions +, -, *, and / nor to the related
operators I+, I-, incf, decf, and conjugate. For rational functions, if all arguments are rational,
then the result is rational; if all arguments are of type (or rational (complex rational)), then
the result is of type (or rational (complex rational)).

12-4 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

Function
abs

Sample Results
(abs Xc(3 4)) + 5 of 5.0

aces
acosh
asin
asinh
atan
atanh
cis
cos
cash
exp
expt
1%

phase
Signum
sin
sinh
sqrt

tan

tacos 1) -+ 0 Or 0.0
(acosh 1) -+ 0 OP 0.0
(aain 0) -+ 0 Of 0.0
(asinh 0) -+ 0 Or 0.0
(atan 0) -+ 0 Of 0.0
(atanh 0) -+ 0 Of 0.0
(cis 0) -+ 1 or tc(l.0 0.0)
(cos 0) + 1 or 1.0
(cash 0) -+ 1 or 1.0
(exp 0) + 1 or 1.0
(expt 8 l/3) --$ 2 or 2.0
(log 1) 3 0 or 0.0
(log 8 2) -+ 3 or 3.0
(phase 7) + 0 or 0.0
(Signum tc(3 4)) -+ #c(3/5 4/5) or Xc(O.6 0.8)
(sin 0) -+ 0 or 0.0
(sinh 0) + 0 or 0.0
(sqrt 4) + 2 or 2.0
(sqrt 9/16) * 3/4 or 0.75
(tan 0) + 0 or 0.0

tanh (tenh 0) -+ 0 or 0.0

Figure 12-8. Functions Affected by Rule of Float Substitutability

12.1.4 Floating-point Computations
The following rules apply to floating point computations.

12.1.4.1 Rule of Float and Rational Contagion

When rationals and floats are combined by a numerical function, the rational is first converted
to a float of the same format. For functions such as + that take more than two arguments, it is
permitted that part of the operation be carried out exactly using rationals and the rest be done
using floating-point arithmetic.

When rationals and floats are compared by a numerical function, the function rational is effec-
tively called to convert the float to a rational and then an exact comparison is performed. In the
case of complex numbers, the real and imaginary parts are effectively handled individually.

12.1.4.1 .l Examples of Rule of Float and Rational Contagion

;;;; Combining rationals vith floats.
:;; This example assumes an implementation in vhich
;;; (float-radix 0.5) is 2 (as in IEEE) or 16 (as in IBM/360),
;;; or else some other implementation in vhich l/2 has an exact
. . . ,,. representation in floating point.
(+ l/2 0.5) -+ 1.0
(- l/2 0.5dO) + O.OdO
(+ 0.5 -0.5 l/2) * 0.5

Numbers 12-5

ANSI X3.226-1994 Programming Language-Common Lisp

;;;; Comparing rational8 with floats.
:;: This example assumes an implementation in which the default float
;;; format is IEEE single-float, IEEE double-float, or some other format
;;; in which 5/7 is rounded upwards by FLOAT.
(< S/7 (float S/7)) + true
(< 5/7 (rational (float S/7))) - irue
(< (float 5/7) (float S/7)) -+ false

12.1.4.2 Rule of Float Approximation

Computations with fIonls are only approximate, although they are described as if the results
were mathematically accurate. Two mathematically identical expressions may be computa-
tionally different because of errors inherent in the floating-point approximation process. The
precision of a float is not necessarily correlated with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to ?r than 3.14159, but the latter is more
accurate. The precision refers to the number of bits retained in the representation. When an
operation combines a short float with a long float, the result will be a long float. Common Lisp
functions assume that the accuracy of arguments to them does not exceed their precision. There-
fore when two small floats are combined, the result is a small jloat. Common Lisp functions never
convert automatically from a larger size to a smaller one.

12.1.4.3 Rule of Float Underflow and Overflow

An error of type floating-point-overflow or floating-point-underflow should be signaled if a
floating-point computation causes exponent overflow or underflow, respectively.

12.1.4.4 Rule of Float Precision Contagion

The result of a numerical function is a float of the largest format among all the floating-point
arguments to the function.

12.1.5 Complex Computations
The following rules apply to complex computations:

12.1.5.1 Rule of Complex Substitutability

Except during the execution of irrational and transcendental junctions, no numerical junction
ever yields a complex unless one or more of its arguments is a complex.

12.1.5.2 Rule of Complex Contagion

When a real and a complex are both part of a computation, the real is first converted to a
complex by providing an imaginary part of O.

12-6 Numbers

Programming Language-Common Lisp ANSI X3.226- 1994

12.1.5.3 Rule of Canonical Representation for Complex Rationals
If the result of any computation would be a complex number whose real part is of type rational
and whose imaginary part is zero, the result is converted to the rational which is the real part.
This rule does not apply to complex numbers whose parts are pouts. For example, ~(5 0) and 5
are not diflerent objects in Common Lisp(they are always the same under eqi); ~~(5.0 0.0) and
5.0 are always diflerent objects in Common Lisp (they are never the same under eqI, although
they are the same under equaIp and =).

12.1.5.3.1 Examples of Rule of Canonical Representation for Complex Rationals

Itc(l.0 1.0) + W(l.0 1.0)
#c(O.O 0.0) - K(O.0 0.0)
k(l.0 1) -+ SC(1.0 1.0)
k(O.0 0) - ItC(O.0 0.0)
#CC1 1) - #CC1 1)
#c(O 0) -) 0
(typep #ccl 1) '(complex (eql 1))) - true
(typep +c(O 0) ‘(complex (eql 0))) - false

12.1.5.4 Principal Values and Branch Cuts
Many of the irrational and transcendental functions are multiply defined in the complex domain;
for example, there are in general an infinite number of complex values for the logarithm function.
In each such case, a principal value must be chosen for the function to return. In general, such
values cannot be chosen so as to make the range continuous; lines in the domain called branch
cuts must be defined, which in turn define the discontinuities in the range. Common Lisp defines
the branch cuts, principal values, and boundary conditions for the complex functions following
“Principal Values and Branch Cuts in Complex APL.” The branch cut rules that apply to each
function are located with the description of that function.

Figure 12-9 lists the identities that are obeyed throughout the applicable portion of the complex
domain, even on the branch cuts:

sin i z = i sinh z
cos i z = cash z
tan i z = i tanh z

sinh i z = i sin z
cash i z = cos z
arcsin i z = i arcsinh z

arctan i z = i arctanh z
arcsinh i z = i arcsin z
arctanh i z = i arctan z

Figure 12-9. Trigonometric Identities for Complex Domain

The quadrant numbers referred to in the discussions of branch cuts are as illustrated in Figure
12-10

Numbers 12-7

ANSI X3.226-1994 Programming Language-Common Lisp ,

12.1.6

Positive
Imaginary Axis

II i I
Negative Real Axis positive

III : IV

Negative
Imaginary Axis

Figure 12-10. Quadrant Numbering for Branch Cuts

Interval Designators
The compound type specifier form of the numeric type spec$ers
interval on the real number line which describe a subtype of the
the corresponding atomic type specifier. A subtype of some type
pair of objects called interval designators for type T.

Real Axis

permit the user to specify an
type which would be described by
T is specified using an ordered

The first of the two interval designators for type T can be any of the following:

a number N of type T

This denotes a lower inclusive bound of N. That is, elements of the subtype of T will be
greater than or equal to N.

a singleton list whose element is a number M of type T

This denotes a lower exclusive bound of M. That is, elements of the subtype of T will be
greater than M.

the symbol *

This denotes the absence of a lower bound on the interval.

The second of the two interval designators for type T can be any of the following:

a number N of type T

This denotes an upper inclusive bound of N. That is, elements of the subtype of T will be
less than or equal to N.

a singleton list whose element is a number M of type T

This denotes an upper exclusive bound of M. That is, elements of the subtype of T will
be less than M.

the symbol *

This denotes the absence of an upper bound on the interval.

12-8 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

12.1.7 Random-State Operations
Figure 12-11 lists some defined names that are applicable to random stales.

random-state random
make-random-state random-state-p

Figure 12-11. Random-state defined names

Numbers 12-9

ANSI X3.226-1994 Programming Language--Common Lisp

number System Class

Class Precedence List:
number, t

Description:
The type number contains objects which represent mathematical numbers. The types real and
complex are disjoint subtypes of number.

The function = tests for numerical equality. The function eql, when its arguments are both
numbers, tests that they have both the same type and numerical value. Two numbers that are the
same under eql or = are not necessarily the same under eq.

Notes:
Common Lisp differs from mathematics on some naming issues. In mathematics, the set of
real numbers is traditionally described as a subset of the complex numbers, but in Common
Lisp, the type real and the type complex are disjoint. The Common Lisp type which includes
all mathematical complex numbers is called number. The reasons for these differences include
historical precedent, compatibility with most other popular computer languages, and various
issues of time and space efficiency.

complex System Class

Class Precedence List:
complex, number, t

Description:
The type complex includes all mathematical complex numbers other than those included in the
type rational. Complexes are expressed in Cartesian form with a real part and an imaginary part,
each of which is a real. The real part and imaginary part are either both rational or both of the
same float type. The imaginary part can be a float zero, but can never be a rational zero, for such
a number is always represented by Common Lisp as a rational rather than a complex.

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(complex [typespec 1 *I)

Compound Type Specifier Arguments:
typespec-a type specifier that denotes a subtype of type real.

Compound Type Specifier Description:
Every element of this type is a complex whose real part and imaginary part are each of type
(upgraded-complex-part-type typespec) . This type encompasses those complexes that can result
by giving numbers of type typespec to complex.

12-10 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

(complex type-specifier) refers to all complexes that can result from giving numbers of type type-
specifier to the function complex, plus all other complexes of the same specialized representation.

See Also:
Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals), Section 2.3.2 (Con-
structing Numbers from Tokens), Section 22.1.3.1.4 (Printing Complexes)

Notes:
The input syntax for a complex with real part r and imaginary part i is tC(r i). For further
details, see Section 2.4 (Standard Macro Characters).

For every float, n, there is a complex which represents the same mathematical number and which
can be obtained by (COERCE n 'COHPLEX).

real System Class

Class Precedence List:
real, number, t

Description:
The type real includes all numbers that represent mathematical real numbers, though there are
mathematical real numbers (e.g., irrational numbers) that do not have an exact representation in
Common Lisp. Only reals can be ordered using the <, >, <=, and >= functions.

The types rational and float are disjoint subtypes of type real.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(real [lower-limit [upper-/hit]1)

Compound Type Specifier Arguments:
lower-limit, upper-limit-interval designators for type real. The defaults for each of lower-limit and
upper-limit is the symbol *.

Compound Type Specifier Description:
This denotes the reals on the interval described by lower-limit and upper-limit.

Numbers 12-11

ANSI X3.226-1994 Programming Language-Common Lisp

float System Class

Class Precedence List:
float, real, number, t

Description:
A float is a mathematical rational (but not a Common Lisp rational) of the form s. f. be-P, where
s is $1 or -1, the sign; b is an integer greater than 1, the Lase or radix of the representation; p is
a positive integer, the precision (in base-b digits) of the float; f is a positive integer between VW1
and bp - 1 (inclusive), the significand; and e is an integer, the exponent. The value of p and the
range of e depends on the implementation and on the type of float within that implementation.
In addition, there is a floating-point zero; depending on the implementation, there can also be
a “minus zero”. If there is no minus zero, then 0.0 and -0.0 are both interpreted as simply a
floating-point zero. (= 0.0 -0.0) is always true. If there is a minus zero, (eql -0.0 O. O) is false,
otherwise it is true.

The types short-float, single-float, double-float, and long-float are subtypes of type float. Any
two of them must be either disjoint types or the same type; if the same type, then any other
types between them in the above ordering must also be the same type. For example, if the type
single-float and the type long-float are the same type, then the type double-float must be the
same type also.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(float [lower-limit [uppef-/imit]l)

Compound Type Specifier Arguments:
lower-limit, upper-limit-interval designators for type float. The defaults for each of lower-limit
and upper-limit is the symbol *.

Compound Type Specifier Description:
This denotes the floats on the interval described by lower-limit and upper-limit.

See Also:
Figure 2-9, Section 2.3.2 (Constructing Numbers from Tokens), Section 22.1.3.1.3 (Printing
Floats)

Notes:
Note that all mathematical integers are representable not only as Common Lisp reals, but also as
complex floats. For example, possible representations of the mathematical number 1 include the
integer I, the float 1.0, or the complex ~(1.0 0.0).

12-12 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

short-float, single-float, double-float, long-float Type

Supertypes:
short-float: short-float, ffoat, real, number, t

single-float: single-float, float, real, number, t

double-float: double-float, float, real, number, t

long-float: long-float, float, real, number, t

Description:
For the four defined subtypes of type fIoat, it is true that intermediate between the type
short-float and the type long-float are the type single-float and the type double-float. The
precise definition of these categories is implementation-defined. The precision (measured in “bits”,
computed as plog, b) and the exponent size (also measured in “bits,” computed as log,(n + l),
where n is the maximum exponent value) is recommended to be at least as great as the values in
Figure 12-12. Each of the defined subtypes of type float might or might not have a minus zero.

Format
Short
Single
Double
Long

Minimum Precision
13 bits
24 bits
50 bits
50 bits

Minimum Exponent Size
5 bits
8 bits
8 bits
8 bits

Figure 12-12. Recommended Minimum Floating-Point Precision and Exponent Size

There can be fewer than four internal representations for floats. If there are fewer distinct repre-
sentations, the following rules apply:

- If there is only one, it is the type single-float. In this representation, an object is simulta-
neously of types single-float, double-float, short-float, and long-float.

- Two internal representations can be arranged in either of the following ways:

l Two types are provided: single-float and short-float. An object is simultaneously
of types single-float, double-float, and long-float.

l Two types are provided: single-float and double-float. An object is simultane-
ously of types single-float and short-float, or double-float and long-float.

- Three internal representations can be arranged in either of the following ways:

l Three types are provided: short-float, single-float, and double-float. An object
can simultaneously be of type double+float and long-float.

l Three types are provided: single-float, double-float, and long-float. An object
can simultaneously be of types single-float and short-float.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(short-float [short-/owe&nit [short-upper-/imit]l)

Numbers 12-13

ANSI X3.226-1994 Programming Language-Common Lisp

(single-float [.Singlc/OWer-/hit [Sing/eUppdimit]] 1

(double-float [double-lower-limit [double-upper-limit]1)

(long-f loat [long-lower-limit [long-upper--limit]])

Compound Type Specifier Arguments:
short-lower-limit, short-upper-limit- interval designafors for type short-float. The defaults for each
of lower-limit and upper-limit is the symbol *.

singlelower-limit, single-upper-limit -interval designntors for type single-float. The defaults for
each of lower-limit and upper-limit is the symbol *.

double-lower-limit, doublc-upper-limit- interval designators for type double-float. The defaults for
each of lower-limit and upper-limit is the symbol *.

long-lower-limit, long-upper-limit- interval designators for type long-float. The defaults for each of
lower-limit and upper-limit is the symbol *.

Compound Type Specifier Description:
Each of these denotes the set of floats of the indicated type that are on the interval specified by
the interval designdors.

rat ional System Class

Class Precedence List:
rational, real, number, t

Description:
The canonical representation of a rational is as an integer if its value is integral, and otherwise as
a mtio.

The types integer and ratio are disjoint subtypes of type rational.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(rational [lower-limit [upper-limit]] 1

Compound Type Specifier Arguments:
lower-limit, upper-limit-interval designators for type rational. The defaults for each of lower-limit
and upper-limit is the symbol *.

Compound Type Specifier Description:
This denotes the mhonals on the interval described by lower-limit and upper-limit.

12-14 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

ratio System Class

Class Precedence List:
ratio, rationai, real, number, t

Description:
A rafio is a number representing the mathematical ratio of two non-zero integers, the numerator
and denominator, whose greatest common divisor is one, and of which the denominator is positive
and greater than one.

See Also:
Figure 2-9, Section 2.3.2 (Constructing Numbers from Tokens), Section 22.1.3.1.2 (Printing
Ratios)

integer System Class

Class Precedence List:
integer, rational, real, number, t

Description:
An integer is a mathematical integer. There is no limit on the magnitude of an integer.

The types Axnum and bignum form an ezhoustiue partition of type integer.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(integer Clowef--limit [upper-limit]])

Compound Type Specifier Arguments:
lower-limit, upper-limit-interval designators for type integer. The defaults for each of lower-limit
and upper-limit is the symbol *.

Compound Type Specifier Description:
This denotes the integers on the interval described by lower-limit and upper-limit.

See Also:
Figure 2-9, Section 2.3.2 (Constructing Numbers from Tokens), Section 22.1.3.1.1 (Printing
Integers)

Notes:
The type (integer lower upper), where lower and upper are most-negative-fixnum and
most-positive-fixnum, respectively, is also called fbumm.

The type (integer o 1) is also called bit. The type (integer 0 *) is also called unsigned-byte.

Numbers 12-15

ANSI X3.226-1994 Programming Language-Common Lisp

signed-byte TYP

Supertypes:
signed-byte, integer, rational, real, number, t

Description:
The atomic type specifier signed-byte denotes the same type as is denoted by the type specifier
integer; however, the list forms of these two type specifiers have different semantics.

Compound Type Specifier Kind:
Abbreviating.

Compouud Type Specifier Syntax:
(signed-byte [s 1 *I>

Compound Type Specifier Arguments:
s-a positive integer.

Compound Type Specifier Description:
This denotes the set of integers that can be represented in two’s-complement form in a byte
of s bits. This is equivalent to (integer -2’0’ 2”-’ - 1). The type signed-byte or the type
(signed-byte *> is the same as the type integer.

unsigned-byte

Supertypes:
unsigned-byte, signed-byte, integer, rational, real, number, t

Description:
The atomic type specifier unsigned-byte denotes the same type as is denoted by the type specifier
(integer 0 *I.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(unsigned-byte [s 1 *I)

Compound Type Specifier Arguments:
s-a positive integer.

Compound Type Specifier Description:
This denotes the set of non-negative integers that can be represented in a byte of size s (bits).
This is equivalent to (mod m) for m = 2’, or to (integer 0 n) for n = 2’ - 1. The type
unsigned-byte or the type (unsigned-byte *) is the same as the type (integer 0 *), the set
of non-negative zntegers

12-16 Numbers

Programming Language-Common Lisp ANSI x3.226-1994

Notes:
The type (unsigned-byte I) is also called bit.

Type Specifier

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(mod n)

Compound Type Specifier Arguments:
n-a positive integer.

Compound Type Specifier Description:
This denotes the set of non-negative integers less than n. This is equivalent to (integer o (n)) or
to (integer 0 m), where m = n - 1.

The argument is required, and cannot be *.

The symbol mod is not valid as a type specifier.

Supertypes:
bit, unsigned-byte, signed-byte, integer, rational, real, number, t

Description:
The type bit is equivalent to the type (integer 0 1) and (unsigned-byte I).

fixnum TYPe

Supertypes:
flxnum, integer, rational, real, number, t

Description:
A fixnum is an integer whose value is between most-negative-fixnum and most-positive-fixnum
inclusive. Exactly which integers are fixnums is implementation-defined. The type Axnum is
required to be a supertype of (signed-byte 16).

Numbers 12-17

ANSI X3.226- 1994 Programming Language-Common Lisp

bignum

Supertypes:
bignum, integer, rational, real, number, t

Description:
The type bignum is defined to be exactly (and integer (not f ixnum) 1.

=9 I =, <, >, <=, >=

Syntax:
= &rest numbers+ --) generalized-boolean

/= &rest numbers+ w generalized-boolean

< (crest numbers+ 4 generalized-boolean

> &rest numbers’ -+ generalized-boolean

<= &rest numbers’ -+ generaked-boolean

>= &rest numbers+ ---) generalized-boolean

Arguments and Values:
number-for <, >, <=, >=: a real; for =, /=: a number.

generalized-boolean-a generalized boolean.

Description:
=> /=1 <, >, <=, and >= perform arithmetic comparisons on their arguments as follows:

The value of = is he if all numbers are the same in value; otherwise it is false. Two
complexes are considered equal by = if their real and imaginary parts are equal according
to =.

/=

The value of /= is true if no two numbers are the same in value; otherwise it is false.

<

The value of < is true if the numbers are in monotonically increasing order; otherwise it is
fake.

>

The value of > is true if the numbers are in monotonically decreasing order; otherwise it is
false.

12-18 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

<- -

The value of <= is true if the numbers are in monotonically nondecreasing order; other-
wise it is false.

>- -

The value of >= is true if the numbers are in monotonically nonincreasing order; other-
wise it is false.

=, /=, <, >, <=, and >= perform necessary type conversions.

Examples:
The uses of these functions are illustrated in Figure 12-13.

(0 3 3) is true. (/= 3 3) is false.
(= 3 5) is false. (/= 3 5) is true.
(= 3 3 3 3) is true. U= 3 3 3 3) is false.
(= 3 3 5 3) is false. U= 3 3 5 3) is false.
(= 3 6 5 2) is false. (/- 3 6 5 2) is true.
C= 3 2 3) is false. (/= 3 2 3) is false.
(< 3 5) is true. (C= 3 5) is true.
(< 3 -5) is false. Cc= 3 -5) is false.
(< 3 3) is false. CC= 3 3) is true.
(< 0 3 4 6 7) is true. (<= 0 3 4 6 7) is true.
(< 0 3 4 4 6) is false. (0 0 3 4 4 6) is true.
(> 4 3) is true. O= 4 3) is true.
(> 4 3 2 1 0) is true. O= 4 3 2 1 0) is true.
(> 4 3 3 2 0) is false. (>= 4 3 3 2 0) is true.
(> 4 3 1 2 0) is false. O= 4 3 1 2 0) is false.
(= 3) is true. (/= 3) is true.
C-z 3) is true. Cc= 3) is true.
(= 3.0 tc(3.0 0.0)) is true. (/= 3.0 Sc(3.0 1.0)) is true.
(= 3 3.0) is true. (= 3.0~0 3.0dO) is true.
(5 0.0 -0.0) is true. (= 5/2 2.5) is true.
0 0.0 -0.0) is false. (= 0 -0.0) is true.
(<= 0 x 9) is true if x is between o and 9, inclusive
(< 0.0 x 1.0) is true if x is between 0.0 and 1.0, exclusive
(< -1 j (length VI) is true if j is a valid array indec for a vector v

Figure 12-13. Uses of /=, =, <, >, <=, and >=

Exceptional Situations:
Might signal type-error if some argument is not a real. Might signal arithmetic-error if other&
wise unable to fulfill its contract.

Notes:
= differs from eql in that (= 0.0 -0.0) is always true, because = compares the mathematical
values of its operands, whereas eql compares the representational values, so to speak.

Numbers 12-19

-- ,- -

ANSI X3.226-1994 Programming Language-Common Lisp

max, min Function

Syntax:
max treat reals+ -+ max-real

min &rest reals+ + min-real

Arguments and Values:
real-a real.

max-real, min-real-a real.

Description:
max returns the real that is greatest (closest to positive infinity). min returns the real that is
least (closest to negative infinity).

For max, the implementation has the choice of returning the largest argument as is or applying
the rules of floating-point coniagion, taking all the arguments into consideration for contagion
purposes. Also, if one or more of the arguments are =, then any one of them may be chosen as
the value to return. For example, if the reals are a mixture of rational5 and floats, and the largest
argument is a rational, then the implementation is free to produce either that rational or its float
approximation; if the largest argument is a float of a smaller format than the largest format of
any float argument, then the implementation is free to return the argument in its given format or
expanded to the larger format. Similar remarks apply to min (replacing “largest argument” by
“smallest argument”).

Examples:

(max 3) e 3
bin 3) * 3
(max 6 12) -t 12
(rain 6 12) - 6
(msx -6 -12) - -6
bin -6 -12) --) -12
(max 1 3 2 -7) -b 3
(min 1 3 2 -7) + -7
(max -2 3 0 7) -) 7
(min -2 3 0 7) - -2
(max 5.0 2) + 5.0
bin 5.0 2)

-+2
z 2.0

(msx 3.0 7 1)
-+7
5 7.0

(min 3.0 7 1)
-+l
2 1.0

(max 1.0~0 7.0dO) -) 7.0dO
(min 1.0~0 7.0dO)

- l.OsO
s l.OdO

12-20 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

(max 3 1 1.0~0 l.OdO)
-3
s 3.0dO

bin 3 1 1.0~0 l.OdO)
-+l
4 l.OsO
s l.OdO

Exceptional Situations:
Should signal an error of type type-error if any number is not a real.

minusp, plusp Function

Syntax:
minusp real + generahed-boolean

plusp real + generalized-boolean

Arguments and Values:
real-a real.

generalized-boolean-a generalized boolean.

Description:
minusp returns irve if real is less than zero; otherwise, returns false.

plusp returns true if real is greater than zero; otherwise, returns fake.

Regardless of whether an implemenlafion provides distinct representations for positive and
negative float zeros, (minusp -0.0) always returns false.

Examples:

(minusp -1) -+ true
(plusp 0) - false
(plusp least-positive-single-float) -+ he

Exceptional Situations:
Should signal an error of type type-error if real is not a real.

zerop Function

Syntax:
zerop number -+ generalized-boolean

Pronunciation:
I '4rW(,)P@I

Arguments and Values:
number-a number

Numbers 12-21

ANSI X3.226-1994 Programming Language-Common Lisp

generalized-boolean-a generalized boolean.

Description: ’
Returns true if number is zero (integer, float, or complex); otherwise, returns false.

Regardless of whether an implementation provides distinct representations for positive and
negative floating-point zeros, (zerop -0.0) always returns true.

Examples:

(zerop 0) --+ true
(zetop 1) + false
(zerop -0.0) + true
(zerop O/100) -+ trve
kerop #c(O 0.0)) -+ true

Exceptional Situations:
Should signal an error of type type-error if number is not a number.

Notes:

(zerop number) E (= number 01

floor, ffloor, ceiling, fceiling, truncate, ftruncate,
round, fround Function

Syntax:
floor number &optional divisor
faoor number &optional divisor
ceiling number aopt ional divisor
fceiling number &optional divisor
truncate number &optional divisor
ftruncate number &optional divisor
round number &optional divisor
fround number &optional divisor

-+ quotient, remainder
-+ quotient, remainder
+ quotient, remainder
--+ quotient, remainder
4 quotient, remainder
-+ quotient, remainder
-) quotient, remainder
-+ quotient, remainder

Arguments and Values:
number-a real.

divisor-a non-zero real. The default is the integer 1.

quotient-for floor, ceiling, truncate, and round: an integer; for ffloor, fceiling, ftruncate, and
fround: a float.

remainder-a real.

Description:
These functions divide number by divisor, returning a quotient and remainder, such that

quotient.divisor+remainder=number

12-22 Numbers

Programming LanguagwCommon Lisp ANSI X3.226- 1994

The quotient always represents a mathematical integer. When more than one mathematical inte-
ger might be possible (i.e., when the remainder is not zero), the kind of rounding or truncation
depends on the operator:

floor, feoor

floor and ffloor produce a quotient that has been truncated toward negative infinity; that
is, the quotient represents the largest mathematical integer that is not larger than the
mathematical quotient.

ceiling, fceiling

ceiling and fceiling produce a quotient that has been truncated toward positive infinity;
that is, the quotient represents the smallest mathematical integer that is not smaller than
the mathematical result.

truncate, ftruncate

truncate and ftruncate produce a quotient that has been truncated towards zero; that
is, the quotient represents the mathematical integer of the same sign as the mathematical
quotient, and that has the greatest integral magnitude not greater than that of the
mathematical quotient.

round, fround

round and fround produce a quotient that has been rounded to the nearest mathematical
integer; if the mathematical quotient is exactly halfway between two integers, (that is,
it has the form integer+;), then the quotient has been rounded to the even (divisible by
two) integer.

All of these functions perform type conversion operations on numbers.

The remainder is an integer if both x and y are iniegers, is a rational if both x and y are ratio-
nals, and is a float if either x or y is a float.

ffloor, fceiling, ftruncate, and fround handle arguments of different types in the following way: If
number is a float, and divisor is not a float of longer format, then the first result is a float of the
same type as number. Otherwise, the first result is of the type determined by contagion rules; see
Section 12.1.1.2 (Contagion in Numeric Operations).

Examples:

(floor 3/2) - 1, l/2
(ceiling 3 2) -+ 2, -1
(ffloor 3 2) -+ 1.0, 1
(ffloor -4.7) * -5.0, 0.3
(ffloor 3.6dO) + 3.0d0, 0.5dO
(fceiling 3/2) + 2.0, -l/2
(truncate 1) -+ 1, 0
(truncate .5) * 0, 0.5
(round .5) -+ 0, 0.5
(ftruncate -7 2) -+ -3.0, -1
(fround -7 2) -P -4.0, 1
(dolist (n '(2.6 2.5 2.4 0.7 0.3 -0.3 -0.7 -2.4 -2.5 -2.6))

(format t "-0'4,lOF '2,' D '2.' D -2,' D "2,' D"
n (floor n> (ceiling n) (truncate n> (round n)))

D +2.6 2 3 2 3
D +2.5 2 3 2 2
D +2.4 2 3 2 2

Numbers 12-23

_ ~ ~ _ - . . _ - . . _ . ^ . - _ - - - . _ ~ _ . . _ _ _ . - - - . ~ . - _ - - - . _ - . 1 _ :

A N S I X 3 .2 2 6 -1 9 9 4 P ro g ra m m i n g L a n g u a g e -C o m m o n L i s p

D + 0 .7 0 1 0 1
D + 0 .3 0 1 0 0
D -0 .3 -1 0 0 0
D -0 .7 -1 0 0 -1
D -2 .4 -3 -2 -2 -2
D -2 .5 -3 -2 -2 -2
D -2 .6 -3 -2 -2 -3
4 N IL

N o te s :
W h e n o n l y n u m b e r i s g i v e n , th e tw o re s u l ts a re e x a c t; th e m a th e m a ti c a l s u m o f th e tw o re s u l ts i s
a l w a y s e q u a l to th e m a th e m a ti c a l v a l u e o f n u m b e r.

(fu n c ti o n n u m b e r d i v i s o r) a n d (fu n c ti o n (/ n u m b e r d i v i s o r)) (w h e re fu n c ti o n i s a n y o f o n e o f
fl o o r, c e i l i n g , ffl o o r, fc e i l i n g , tru n c a te , ro u n d , ftru n c a te , a n d fro u n d) re tu rn th e s a m e fi rs t
v a l u e , b u t th e y re tu rn d i ffe re n t re m a i n d e rs a s th e s e c o n d v a l u e . F o r e x a m p l e :

(fl o o r 5 2) -+ 2 . 1
(fl o o r U 5 2)) -+ 2 , l /2

If a n e ffe c t i s d e s i re d th a t i s s i m i l a r to ro u n d , b u t th a t a l w a y s ro u n d s u p o r d o w n (ra th e r
th a n to w a rd th e n e a re s t e v e n i n te g e r) i f th e m a th e m a ti c a l q u o ti e n t i s e x a c tl y h a l fw a y b e tw e e n
tw o i n te g e rs , th e p ro g ra m m e r s h o u l d c o n s i d e r a c o n s tru c ti o n s u c h a s (fl o o r (+ x l /2) 1 o r
(c e i l i n g (- x l /2)).

s i n , c o s , ta n F u n c ti o n

S y n ta x :
s i n ra d i a n s - n u m b e r

c o s ra d i a n s + n u m b e r

ta n ra d i a n s + n u m b e r

A rg u m e n ts a n d V a l u e s :
ra d i a n s -a n u m b e r g i v e n i n ra d i a n s .

n u m b e r-a n u m b e r.

D e s c ri p ti o n :
s i n , c o s , a n d ta n re tu rn th e s i n e , c o s i n e , a n d ta n g e n t, re s p e c ti v e l y , o f ra d i a n s .

E x a m p l e s :

(s i n 0) -+ 0 .0
(c o s 0 .7 8 5 3 9 8 2) - - * 0 .7 0 7 1 0 7
(ta n # c (O 1)) + W (O .0 0 .7 6 1 5 9 4)

E x c e p ti o n a l S i tu a ti o n s :
S h o u l d s i g n a l a n e rro r o f ty p e ty p e -e rro r i f ra d i a n s i s n o t a n u m b e r. M i g h t s i g n a l
a r i t h m e ti c -e rro r.

S e e A l s o :
a s h , a c e s , a ta n , S e c ti o n 1 2 .1 .3 .3 (R u l e o f F l o a t S u b s ti tu ta b i l i ty)

1 2 -2 4 N u m b e rs

Programming Language-Common Lisp ANSI X3.226-1994

asin, aces, atan Function

Syntax:
asin number -+ radians

aces number + radians

atan number1 &optional number2 + radians

Arguments and Values:
number-a number.

number1 -a number if number2 is not supplied, or a real if number2 is supplied.

number2-a real.

radians-a number (of radians).

Description:
asin, aces, and atan compute the arc sine, arc cosine, and arc tangent respectively.

The arc sine, arc cosine, and arc tangent (with only number1 supplied) functions can be defined
mathematically for number or number1 specified as x as in Figure 12-14.

Function
Arc sine
Arc cosine
Arc tangent

Definition
4 log (ix +&=2-q
(n/2) - arcsin 2

Figure 12-14. Mathematical definition of arc sine, arc cosine, and arc tangent

These formulae are mathematically correct, assuming completely accurate computation. They are
not necessarily the simplest ones for real-valued computations.

If both number1 and number2 are supplied for atan, the result is the arc tangent of
numberllnumber2. The value of atan is always between -r (exclusive) and A (inclusive) when
minus zero is not supported. The range of the two-argument arc tangent when minus zero is
supported includes -rr.

For a real numberi, the result is a real and lies between -r/2 and n/2 (both exclusive). number1
can be a complex if number2 is not supplied. If both are supplied, number2 can be zero provided
number1 is not zero.

The following definition for arc sine determines the range and branch cuts:

arcsin 2 = -i log (i.2 + diY7)

The branch cut for the arc sine function is in two pieces: one along the negative real axis to the
left of -1 (inclusive), continuous with quadrant II, and one along the positive real axis to the
right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the complex plane
containing numbers whose real part is between -n/2 and z/2. A number with real part equal to
-x/2 is in the range if and only if its imaginary part is non-negative; a number with real part
equal to 7r/2 is in the range if and only if its imaginary part is non-positive.

Numbers 12-25

-._--__- - ____ -_-_- . ..--. ..--.- -.---- --~ -

ANSI X3.226 1994 Programming Language-Common Lisp

The following definition for arc cosine determines the range and branch cuts:

7r
arccos t = - - arcsin z

2

or, which are equivalent,

arccos z = -i log (z+i Ji=7)

arccosz= %mvGP+iJ
i

The branch cut for the arc cosine function is in two pieces: one along the negative real axis to
the left of -1 (inclusive), continuous with quadrant II, and one along the positive real axis to
the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut as for arc
sine. The range is that strip of the complex plane containing numbers whose real part is between
0 and rr. A number with real part equal to 0 is in the range if and only if its imaginary part is
non-negative; a number with real part equal to x is in the range if and only if its imaginary part
is non-positive.

The following definition for (one-argument) arc tangent determines the range and branch cuts:

arctan z =
log (1 + iz) - log (1 - iz)

2i

Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch cuts
or the values on the branch cuts incorrectly. The branch cut for the arc tangent function is in
two pieces: one along the positive imaginary axis above i (exclusive), continuous with quadrant
II, and one along the negative imaginary axis below -i (exclusive), continuous with quadrant IV.
The points i and -i are excluded from the domain. The range is that strip of the complex plane
containing numbers whose real part is between -n/2 and z/2. A number with real part equal to
-z/2 is in the range if and only if its imaginary part is strictly positive; a number with real part
equal to z/2 is in the range if and only if its imaginary part is strictly negative. Thus the range
of arc tangent is identical to that of arc sine with the points -7r/2 and z/2 excluded.

For atan, the signs of numberl (indicated as x) and number2 (indicated as y) are used to derive
quadrant information. Figure 12-15 details various special cases. The asterisk (*) indicates that
the entry in the figure applies to implementations that support minus zero.

12-26 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

y Condition z Condition Cartesian locus Range of result
y=o x>O Positive x-axis 0

= ;=t:
x>o Positive x-axis +0

= x>o Positive x-axis -0
Y’O x>o Quadrant I 0 < result < 7r/2
Y’O x= 0 Positive y-axis x/2
Y’O xc0 Quadrant II n/2 < result < r
y=o xc0 Negative x-axis

z i=+O
x<o Negative x-axis If-n

= -0 x<o Negative x-axis --?r
Y<O x<o Quadrant III --‘IF < result < -n/2
Y<O x= 0 Negative y-axis --R/2

1 Y<O x>o Quadrant IV -7r/2 < result < 0
y=o x= 0 Origin undefined consequences

* y=+o x = +o Origin +o
* y=-0 x = +o Origin -0
* y=+o x= -0 Origin +*
* y=-0 x= -0 Origin -r

Figure 12-15. Quadrant information for arc tangent

Examples:

(asin 0) -+ 0.0
(aces #c(O 1)) + XC(1.5707963267948966 -0.8813735870195432)
(/ (atan 1 (sqrt 3)) 6) - 0.087266
(atan #c(O 2)) -+ #C(-1.5707964 0.54930615)

Exceptional Situations:
aces and asin should signal an error of type type-error if number is not a number. atan should
signal type-error if one argument is supplied and that argument is not a number, or if two
arguments are supplied and both of those arguments are not reals.

aces, asin, and atan might signal arithmetic-error.

See Also:
log, sqrt, Section 12.1.3.3 (Rule of Float Substitutability)

Notes:
The result of either asin or aces can be a complex even if number is not a complex; this occurs
when the absolute value of number is greater than one.

Pi Constant Variable

Value:
an implemeniation-dependent long float.

Description:
The best long pool approximation to the mathematical constant A.

Numbers 12-27

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

;; In each of the follooing computations, the precision depends
;; on the implementation. Also, if ‘long float’ is treated by
;; the implementation as equivalent to some other float format
;; (e.g., ‘double float ’) the exponent marker might be the marker
;; for that equivalent (e.g., ‘D’ instead of ‘L’).
pi + 3.141592653589793LO
(cos pi) - -1.OLO

(defuu sin-of-degrees (degrees)
(let ((x (if (floatp degrees) degrees (float degrees pi))))

(sin (* x (/ (float pi x1 180)))))

Notes:
An approximation to x in some other precision can be obtained by writing (float pi x), where x
is a float of the desired precision, or by writing (coerce pi type), where type is the desired type,
such as short-float.

sinh, cash, tanh, asinh, acosh, atanh Function

Syntax:
sinh number + result

cash number + result

tanh number + result

asinh number --) result

acosh number -t result

atanh number -+ result

Arguments and Values:
number-a number.

result-a number.

Description:
These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine, and arc tangent
functions, which are mathematically defined for an argument x as given in Figure 12-16.

Function Definition
Hyperbolic sine (es - e-=)/2
Hyperbolic cosine (ez + e-=)/2
Hyperbolic tangent (ez - esz)/(ez + e+)
Hyperbolic arc sine log (z + m)
Hyperbolic arc cosine 2 1% h/m+ dF-m
Hyperbolic arc tangent (log(1+2)-log(l--))/2 ‘

Figure 12-16. Mathematical definitions for hyperbolic functions

12-28 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

The following definition for the inverse hyperbolic cosine determines the range and branch cuts:

arccosh t =21og (Jm+JG=ij-@.

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left of 1
(inclusive), extending indefinitely along the negative real axis, continuous with quadrant II and
(between 0 and 1) with quadrant I. The range is that half-strip of the complex plane containing
numbers whose real part is non-negative and whose imaginary part is between --?r (exclusive)
and r (inclusive). A number with real part zero is in the range if its imaginary part is between
zero (inclusive) and x (inclusive).

The following definition for the inverse hyperbolic sine determines the range and branch cuts:

arcsinh 2 = log (z+ LKTq.

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the positive
imaginary axis above i (inclusive), continuous with quadrant 1, and one along the negative
imaginary axis below -i (inclusive), continuous with quadrant III. The range is that strip of the
complex plane containing numbers whose imaginary part is between -a/2 and 7r/2. A number
with imaginary part equal to -n/2 is in the range if and only if its real part is non-positive;
a number with imaginary part equal to n/2 is in the range if and only if its imaginary part is
non-negative.

The following definition for the inverse hyperbolic tangent determines the range and branch cuts:

arctanh 2 =
log (1 + 2) - log (1 - z)

2

Note that:

i arctan 2 = arctanh iz.

The branch cut for the inverse hyperbolic tangent function is in two pieces: one along the neg-
ative real axis to the left of -1 (inclusive), continuous with quadrant III, and one along the
positive real axis to the right of 1 (inclusive), continuous with quadrant I. The points -1 and 1
are excluded from the domain. The range is that strip of the complex plane containing numbers
whose imaginary part is between -n/2 and ?r/2. A number with imaginary part equal to -r/2
is in the range if and only if its real part is strictly negative; a number with imaginary part equal
to n/2 is in the range if and only if its imaginary part is strictly positive. Thus the range of the
inverse hyperbolic tangent function is identical to that of the inverse hyperbolic sine function with
the points -ni/2 and k/2 excluded.

Examples:

(sinh 0) -+ 0.0
(cash (complex 0 -1)) -+ #C(O.540302 -0.0)

Exceptional Situations:
Should signal an error of type type-error if number is not a number. Might signal
arithmetic-error.

See Also:
log, sqrt, Section 12.1.3.3 (Rule of Float Substitutability)

Numbers 12-29

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
The result of acosh may be a complex even if number is not a complex; this occurs when number
is less than one. Also, the result of atanh may be a complex even if number is not a complex; this
occurs when the absolute value of number is greater than one.

The branch cut formulae are mathematically correct, assuming completely accurate computation.
Implementors should consult a good text on numerical analysis. The formulae given above are not
necessarily the simplest ones for real-valued computations; they are chosen to define the branch
cuts in desirable ways for the complex case.

Syntax:
* treat numbers + product

Arguments and Values:
number-a number.

product-a number.

Description:
Returns the product of numbers, performing any necessary type conversions in the process. If no
numbers are supplied, 1 is returned.

Examples:

(*I - 1
(* 3 5) + 15
(a 1.0 #c(22 33) 55/98) + ltC(12.346938775510203 18.520408163265305)

Exceptional Situations:
Might signal type-error if some argument is not a number. Might signal arithmetic-error.

See Also:
Section 12.1.1 (Numeric Operations), Section 12.1.3 (Rational Computations), Section 12.1.4
(Floating-point Computations), Section 12.1.5 (Complex Computations)

Function

Syntax:
+ &rest numbers + sum

Arguments and Values:
number-a number.

sum-a number.

Description:
Returns the sum of numbers, performing any necessary type conversions in the process. If no
numbers are supplied, o is returned.

12-30 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(+I - 0
(+ 1) - 1
(+ 31/100 69/100) + 1
(+ l/5 0.8) -+ 1.0

Exceptional Situations:
Might signal type-error if some argument is not a number. Might signal arithmetic-error.

See Also:
Section 12.1.1 (Numeric Operations), Section 12.1.3 (Rational Computations), Section 12.1.4
(Floating-point Computations), Section 12.1.5 (Complex Computations)

- Function

Syntax:
- number + negation

- minuend Ltest subtrahends+ + difference

Arguments and Values:
number, minuend, subtrahend-a number.

negation, difference-a number.

Description:
The function - performs arithmetic subtraction and negation.

If only one number is supplied, the negation of that number is returned.

If more than one argument is given, it subtracts all of the subtrahends from the minuend and
returns the result.

The function - performs necessary type conversions.

Examples:

(- 55.55) * -55.55
(- ltc(3 -5)) + #C(-3 5)
(- 0) - 0
(eql (- 0.0) -0.0) -+ true
(- #c(lOO 45) #c(O 45)) * 100
(- 10 1 2 3 4) --) 0

Exceptional Situations:
Might signal type-error if some argument is not a number. Might signal arithmetic-error.

See Also:
Section 12.1.1 (Numeric Operations), Section 12.1.3 (Rational Computations), Section 12.1.4
(Floating-point Computations), Section 12.1.5 (Complex Computations)

Numbers 12-31

._ ..___ -..._

ANSI X3.226-1994 Programming Language-Common Lisp

I Function

Syntax:
/ number + reciprocal

/ numerator &rest denominators+ 3 quotient

Arguments and Values:
number, denominator-a non-zero number.

numerator, quotient, reciprocal-a number.

Description:
The fin&on / performs division or reciprocation.

If no denominators are supplied, the function / returns the reciprocal of number.

If at least one denominator is supplied, the function / divides the numerator by all of the denomi-
nators and returns the resulting quotient.

If each argument is either an integer or a ratio, and the result is not an integer, then it is a ratio.

The function / performs necessary type conversions.

If any argument is a float then the rules of floating-point contagion apply; see Section 12.1.4
(Floating-point Computations).

Examples:

(/ 12 4) + 3
(/ 13 4) * 13/4
U -8) * -l/8
(/ 3 4 5) - 3/20
(/ 0.5) + 2.0
(/ 20 5) + 4
(/ 5 20) + l/4
(/ 60 -2 3 5.0) -) -2.0
(/ 2 Wc(2 2)) - W(1/2 -l/2)

Exceptional Situations:
The consequences are unspecified if any argument other than the first is zero. If there is only one
argument, the consequences are unspecified if it is zero.

Might signal type-error if some argument is not a number. Might signal division-by-zero if
division by zero is attempted. Might signal arithmetic-error.

See Also:
floor, ceiling, truncate, round

12-32 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

Function

Syntax:
I+ number + successor

I- number -+ predecessor

Arguments and Values:
number-a number.

successor, predecessor-a number.

Description:
I+ returns a number that is one more than its argument number. I- returns a number that is one
less than its argument number.

Examples:

(1+ 99) * 100
(l- 100) -+ 99
(l+ (complex 0.0)) + XC(1.0 0.0)
(l- 5/3) * 2/3

Exceptional Situations:
Might signal type-error if its argument is not a number. Might signal arithmetic-error.

See Also:
incf, decf

Notes:

(I+ number) G (+ number I)
(I- number) 2 (- number I)

Implementors are encouraged to make the performance of both the previous expressions be the
same.

abs Function

Syntax:
abs number -+ absolute-value

Arguments and Values:
number-a number.

absolute-value-a non-negative real.

Description:
abs returns the absolute value of number.

If number is a real, the result is of the same type as number.

Numbers 12-33

ANSI X3.226-1994 Programming Language-Common Lisp

If number is a complex, the result is a positive real with the same magnitude as number. The
result can be a float even if number’s components are rationals and an exact rational result would
have been possible. Thus the result of (abs #CO 4)) can be either 5 or 5.0, depending on the
implementation.

Examples:

tabs 0) + 0
tabs 12/13) + 12/13
(abs -1.09) -+ 1.09
(abs k(5.0 -5.0)) + 7.071068
(abs #c(5 5)) + 7.071068
(abs #c(3/5 4/5)) * 1 or approxirately 1.0
(eql (abs -0.0) -0.0) - he

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

Notes:
If number is a complex, the result is equivalent to the following:

(sqrt (+ (expt (realpart number) 2) (expt (imagpart number) 2)))

An implementation should not use this formula directly for all complexes but should handle very
large or very small components specially to avoid intermediate overflow or underflow.

evenp,oddp Function

Syntax:
evenp integer + generalized-boolean

oddp integer - generalized-boolean

Arguments and Values:
integer-an integer.

generalized-boolean-a generalized boolean.

Description:
evenp returns true if integer is even (divisible by two); otherwise, returns false.

oddp returns true if integer is odd (not divisible by two); otherwise, returns false.

Examples:

(evenp 0) + true
Coddp 10000000000000000000000) + false
(oddp -1) -) true

Exceptional Situations:
Should signal an error of type type-error if integer is not an integer.

12-34 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

Notes:

(evenp integer) E (not Coddp Integer))
(oddp integer> E (not (evenp integer))

exp, expt Function

Syntax:
exp number + result

expt basc-numbcr power-number -) result

Arguments and Values:
number-a number.

base-number-a number.

power-number-a number.

result-a number.

Description:
exp and expt perform exponentiation.

exp returns e raised to the power number, where e is the base of the natural logarithms. exp has
no branch cut.

expt returns bascnumber raised to the power power-number. If the base-number is a rational and
power-number is an integer, the calculation is exact and the result will be of type rational; oth-
erwise a floating-point approximation might result. For expt of a complex rational to an integer
power, the calculation must be exact and the result is of type (or rational (complex rational)).

The result of expt can be a complez, even when neither argument is a complex, if basonumber is
negative and power-number is not an integer. The result is always the principal complex value.
For example, (expt -8 l/3) is not permitted to return -2, even though -2 is one of the cube roots
of -8. The principal cube root is a complex approximately equal to #C(l .O 1.732051, not -2.

expt is defined as b” = eziogb . This defines the principal values precisely. The range of expt
is the entire complex plane. Regarded as a function of 2, with b fixed, there is no branch cut.
Regarded as a function of b, with x fixed, there is in general a branch cut along the negative real
axis, continuous with quadrant II. The domain excludes the origin. By definition, O”=l. If b=O
and the real part of x is strictly positive, then b I=O. For all other values of x, 0” is an error.

When power-number is an integer 0, then the result is always the value one in the type of base-
number, even if the base-number is zero (of any type). That is:

(expt x 0) E (coerce 1 (type-of x))

If power-number is a zero of any other type, then the result is also the value one, in the type of the
arguments after the application of the contagion rules in Section 12.1.1.2 (Contagion in Numeric
Operations), with one exception: the consequences are undefined if base-number is zero when
power-number is zero and not of type integer.

Numbers 12-35

ANSI X3.226-1994 Progmming Language-Common Lisp

Examples:

(exp 0) - 1.0
(exp 1) + 2.718282
(exp (log 5)) - 5.0
(expt 2 8) -) 256
(expt 4 .5) -+ 2.0
(expt #c(O 1) 2) + -1
(expt #cc2 2) 3) + XC(-16 16)
(expt #cc2 2) 4) -+ -64

See Also:
log, Section 12.1.3.3 (Rule of Float Substitutability)

Notes:
Implementations of expt are permitted to use different algorithms for the cases of a power-number
of type rational and a power-number of type float.

Note that by the following logic, (sqrt (expt t 3)) is not equivalent to (expt t 312).

(setq x (exp (/ (* 2 pi tc(0 1)) 3))) ;exp(2.pi.i/3)
(expt x 3) + 1 ;except for round-off error
(sqrt (expt x 3)) -+ 1 :except for round-off error
(expt x 3/2) + -1 ;except for round-off error

gcd Function

Syntax:
gcd &rest inkgem -+ greatest-common-denominator

Arguments and Values:
integer-an integer.

greatest-common-denominator-a non-negative integer.

Description:
Returns the greatest common divisor of integers. If only one integer is supplied, its absolute value
is returned. If no integers are given, gcd returns 0, which is an identity for this operation.

Examples:

(gcd) + 0
(gcd 60 42) * 6
(gcd 3333 -33 101) + 1
(gcd 3333 -33 1002001) --t 11
(gcd 91 -49) + 7
(gcd 63 -42 35) - 7
(gcd 5) -+ 5
(gcd -4) - 4

Exceptional Situations:
Should signal an error of type type-error if any integer is not an integer.

12-36 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
lcm

Notes:
For three or more arguments,

(gcd b c . . . z) E (gcd (gcd a b) c . . . 2)

incf, decf Macro

Syntax:
incf place [delta-form] -+ new-value

decf place [delta-form] + new-value

Arguments and Values:
place-a place.

delta-form-a form; evaluated to produce a delta. The default is 1.

delta-a number.

new-value-a number.

Description:
incf and decf are used for incrementing and decrementing the value of place, respectively.

The delta is added to (in the case of incf) or subtracted from (in the case of decf) the number in
place and the result is stored in place.

Any necessary type conversions are performed automatically.

For information about the evahalion of subforms of p/aces, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq n 0)
(incf n) + 1
n-1
(decf n 3) - -2
n --) -2
(decf n -5) -+ 3
(decf n> + 2
(incf n 0.5) + 2.5
(decf n> -+ 1.5
n -) 1.5

Side Effects:
Place is modified.

See Also:
+, -1 l+, l-, setf

Numbers 12-37

ANSI X3.226-1994 Programming LanguageCommon Lisp

km Function

Syntax:
lcm West integers -+ least-common-multiple

Arguments and Values:
integer--an integer.

least-common-multiple-a non-negative integer.

Description:
km returns the least common multiple of the integers.

If no integer is supplied, the integer I is returned.

If only one integer is supplied, the absolute value of that integer is returned.

For two arguments that are not both zero,

(lcm a b) E (/ tabs (* a b)) (gcd a b))

If one or both arguments are zero,

(km a 0) 3 (lcm 0 a) f 0

For three or more arguments,

(km a b c . . . z) Z (lcm (lcn a b) c . . . z)

Examples:

(lcm 10) -+ 10
(lcm 25 30) -) 150
(lcm -24 18 10) -) 360
(km 14 35) --) 70
(km 0 5) --) 0
(lcm 1 2 3 4 5 6) --) 60

Exceptional Situations:
Should signal type-error if any argument is not an integer.

See Also:
gcd

Function

Syntax:
log number &optional base -+ logarithm

Arguments and Values:
number-a non-zero number.

12-38 Numbers

Programming Language-Common Lisp ANSI X3.226- 1994

base-a number.

logarithm-a number.

Description:
log returns the logarithm of number in base base. If base is not supplied its value is e, the base of
the natural logarithms.

log may return a complez when given a real negative number.

(log -1.0) Z (complex 0.0 (float pi 0.0))

If base is zero, log returns zero.

The result of (log 8 2) may be either 3 or 3.0, depending on the implementation. An implemen-
tation can use floating-point calculations even if an exact integer result is possible.

The branch cut for the logarithm function of one argument (natural logarithm) lies along the
negative real axis, continuous with quadrant II. The domain excludes the origin.

The mathematical definition of a complex logarithm is as follows, whether or not minus zero is
supported by the implementation:

(log 2) 3 (complex (log Cabs t)) (phase ~1)

Therefore the range of the one-argument logarithm function is that strip of the complex plane
containing numbers with imaginary parts between --s (exclusive) and A (inclusive) if minus zero
is not supported, or -rr (inclusive) and rr [inclusive) if minus zero is supported.

The two-argument logarithm function is defined as

(log base number)
E (/ (log number) (log base))

This defines the principal values precisely. The range of the two-argument logarithm function is
the entire complex plane.

Examples:

(log 100 10)
4 2.0
--*2

(log 100.0 10) * 2.0
(log #CC0 1) XCCO -1))

+ XC(-1.0 0.0)
2 KC-1 0)

(log 8.0 2) -) 3.0

(log #c(-16 16) llc(2 2)) -+ 3 or approximately rc(3.0 0.0)
or approximately 3.0 (unlikely)

Affected By:
The implementation.

See Also:
exp, expt, Section 12.1.3.3 (Rule of Float Substitutability)

Numbers 12-39

ANSI X3.226-1994 Progmming Language-Common Lisp

mod, rem Function

Syntax:
mod number divisor -+ modulus

rem number divisor + remainder

Arguments and Values:
number-a real.

divisor-a real.

modulus, remainder-a real.

Description:
mod and rem are generalizations of the modulus and remainder functions respectively.

mod performs the operation floor on number and divisor and returns the remainder of the floor
operation.

rem performs the operation truncate on number and divisor and returns the remainder of the
truncate operation.

mod and rem are the modulus and remainder functions when number and divisor are integers.

Examples:

(rem -1 5) + -1
(mod -1 5) --P 4
(mod 13 4) + 1
(rem 13 4) + 1
(rod -13 4) -) 3
(rem -13 4) + -1
(mod 13 -4) + -3
(rem 13 -4) + 1
(mod -13 -4) - -1
(rem -13 -4) -* -1
(mod 13.4 I) + 0.4
(rem 13.4 I) + 0.4
(mod -13.4 1) -+ 0.6
(rem -13.4 1) + -0.4

See Also:
floor, truncate

Notes:
The result of mod is either zero or a real with the same sign as divisor.

12-40 Numbers

Programming Language-Common Lisp ANSI X3.226- 1994

signum Function

Syntax:
Signum number -+ signed-prototype

Arguments and Values:
number-a number.

signed-prototype-a number.

Description:
signurn determines a numerical value that indicates whether number is negative, zero, or positive.

For a rational, Signum returns one of -I, 0, or 1 according to whether number is negative, zero,
or positive. For a pout, the result is a float of the same format whose value is minus one, zero, or
one. For a complex number z, (Signum z) is a complex number of the same phase but with unit
magnitude, unless z is a complex zero, in which case the result is z.

For rational arguments, Signum is a rational function, but it may be irrational for complex
arguments.

If number is a float, the result is a float. If number is a rational, the result is a rational. If
number is a complex float, the result is a complex float. If number is a complex rational, the result
is a complex, but it is implementation-dependent whether that result is a complex rational or a
complex float.

Examples:

(signufo 0) + 0
(signum 99) ---) 1
(Signum 4/S) -+ 1
(signum -99/100) + -1
(Signum 0.0) + 0.0
(Signum Sc(O 33)) + tC(O.0 1.0)
(Signum #c(7.5 10.0)) -+ rC(O.6 0.8)
(Signum itc(O.0 -14.7)) -+ W(O.0 -1.0)
(eql (signum -0.0) -0.0) + true

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

Notes:

(signum x1 G (if (zerop x1 x (/ x cabs x)1)

sqrt, isqrt Function

Syntax:
sqrt number -+ root

Numbers 12-41

ANSI X3.226-1994 Programming Language-Common Lisp

isqrt natural + natural-root

Arguments and Values:
number, root-a number.

natural, natural-root-a non-negative integer.

Desckiption:
sqrt and isqrt compute square roots.

sqrt returns the principal square root of number. If the number is not a complez but is negative,
then the result is a complex.

isqrt returns the greatest integer less than or equal to the exact positive square root of natural.

If number is a positive rational, it is implementation-dependent whether root is a rational or a
float. If number is a negative rational, it is implementation-dependent whether root is a complet
rational or a complet float.

The mathematical definition of complex square root (whether or not minus zero is supported)
follows:

(sqrt 2) = (exp (/ (log 2) 2))

The branch cut for square root lies along the negative real axis, continuous with quadrant II. The
range consists of the right half-plane, including the non-negative imaginary axis and excluding the
negative imaginary axis.

Exainples:

(sqrt 9.0) -+ 3.0
(sqrt -9.0) -+ rtC(O.0 3.0)
(isqrt 9) + 3
(sqrt 12) -+ 3.4641016
(isqrt 12) -+ 3
(isqrt 300) -* 17
(isqrt 325) + 18
(sqrt 25)

-5
4 5.0

(isqrt 25) --) 5
(sqrt -1) --) #C(O.O 1.0)
(sqrt #c(O 2)) + XC(1.0 1.0)

Exceptional Situations:
The function sqrt should signal type-error if its argument is not a number.

The function isqrt should signal type-error if its argument is not a non-negative integer.

The functions sqrt and isqrt might signal arithmetic-error.

See Also:
exp, log, Section 12.1.3.3 (Rule of Float Substitutability)

Notes:

(isqrt x1 3 (values (floor (sqrt x1))

but it is potentially more efficient.

12-42 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

random-state System Class

Class Precedence List:
random-state, t

Description:
A random slate object contains state information used by the pseudo-random number generator.
The nature of a random state object is implementation-dependent. It can be printed out and
successfully read back in by the same implementation, but might not function correctly as a
random state in another implementation.

Implementations are required to provide a read syntax for objects of type random-state, but the
specific nature of that syntax is implementation-dependent.

See Also:
random-state, random, Section 22.1.3.10 (Printing Random States)

make-random-state Function

Syntax:
make-random-state &optional state + new-state

Arguments and Values:
state-a random state, or nil, or t. The default is nil.

new-state-a random state object.

Description:
Creates a fresh object of type random-state suitable for use as the value of *random-state*.

If state is a random state object, the new-state is a copy5 of that object. If state is nil, the new-
state is a copy5 of the current random state. If state is t, the new-state is a fresh random state
object that has been randomly initialized by some means.

Examples:

(let* ((rsl (make-random-state nil))
(rs2 (make-random-state t))
(rs3 bake-random-state rs2))
b-s4 nil))

(list (loop for i from 1 to 10
collect (random 100)
vhen (= i 5)

do (setq rs4 (make-random-state)))
(loop for i from 1 to 10 collect (random 100 rsl))
(loop for i from 1 to 10 collect (random 100 rs2))
(loop for i from 1 to 10 collect (random 100 rs3))
(loop for i from 1 to 10 collect (random 100 ra4))))

-) ((29 25 72 57 55 68 24 35 54 65)
(29 25 72 57 55 68 24 35 54 65)

Numbers 1243

ANSI X3.226- 1994 Programming Language-Common Lisp

(93 85 53 99 58 62 2 23 23 59)
(93 85 53 99 58 62 2 23 23 59)
(68 24 35 54 65 54 55 50 59 49))

Exceptional Situations:
Should signal an error of type type-error if state is not a random state, or nil, or t.

See Also:
random, *random-state*

Notes:
One important use of make-random-state is to allow the same series of pseudo-random numbers
to be generated many times within a single program.

random Function

Syntax:
random limit &optional random-state + random-number

Arguments and Values:
limit-a positive integer, or a positive float.

random-state-a random state. The default is the current random state.

random-number-a non-negative number less than limit and of the same type as limit.

Description:
Returns a pseudorandom number that is a non-negative number less than limit and of the same
type as limit.

The random-state, which is modified by this function, encodes the internal state maintained by
the random number generator.

An approximately uniform choice distribution is used. If limit is an integer, each of the possible
results occurs with (approximate) probability l/limit.

Examples:

(<= 0 (random 1000) 1000) + true
(let ((state1 (make-random-state))

(state2 (make-random-state)))
(= (random 1000 state11 (random 1000 state2))) + 2?W

Side Effects:
The random-state is modified.

Exceptional Situations:
Should signal an error of iype type-error if limit is not a positive integer or a positive real.

See Also:
make-random-state, *random-state*

Notes:
See Common Lisp: The Language for information about generating random numbers.

12-44 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

random-state-p Function

Syntax:
random-state-p object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type random-state; otherwise, returns false.

Examples:

(random-state-p *random-state*) + true
(random-state-p (make-random-state)) + t?W
(random-state-p ‘test-function) -+ fake

See Also:
make-random-state, *random-state*

Notes:

(random-state-p object) s (typep object ‘random-state)

random-state Variable

Value Type:
a random state.

Initial Value:
implementation-dependent.

Description:
The current random state, which is used, for example, by the function random when a random
state is not explicitly supplied.

Examples:

(random-state-p *random-state*) --) true
(setq snap-shot (make-random-state))

Numbers 12-45

ANSI X3.226-1994 Programming Language-Common Lisp

;; The series from any given point is random,
;; but if you backtrack to that point, you get the same series.
(list (loop for i from 1 to 10 collect (random))

(let ((*random-state* snap-shot))
(loop for i from 1 to 10 collect (random)))

(loop for i from 1 to 10 collect (random))
(let ((*random-state* snap-shot))

(loop for i from 1 to 10 collect (random))))
+ ((19 16 44 19 96 15 76 96 13 61)

(19 16 44 19 96 15 76 96 13 61)
(16 67 0 43 70 79 58 5 63 50)
(16 67 0 43 70 79 58 5 63 50))

Affected By:
The implementation.

random.

See Also:
make-random-state, random, random-state

Notes:
Binding *random-state* to a different mndom state object correctly saves and restores the old
random state object.

numberp Function ..~

Syntax:
numberp object w generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type number; otherwise, returns false.

Examples:

(numberp 12) -+ true
(numberp (expt 2 130)) * true
(numberp tc(5/3 7.2)) + true
(numberp nil) + fake
(numberp (cons 1 2)) -+ false

Notes:

(numberp object) E (t ypep object 'number 1

12-46 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

cis Function

Syntax:
cis radians + number

Arguments and Values:
radians-a real.

number-a complex.

Description:
cis returns the value of ei’ r”dians, which is a complex in which the real part is equal to the cosine
of radians, and the imaginary part is equal to the sine of radians.

Examples:

(cis 0) + tC(i.0 0.0)

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

complex Function

Syntax:
complex realpart &optional imagpart -) complex

Arguments and Values:
realpart-a real.

imagpart-a real.

complex-a rational or a complex.

Description:
complex returns a number whose real part is realpart and whose imaginary part is imagpart.

If realpart is a rational and imagpart is the rational number zero, the result of complex is realpart,
a rational. Otherwise, the result is a complex.

If either realpart or imagpart is a float, the non-float is converted to a float before the complex is
created. If imagpart is not supplied, the imaginary part is a zero of the same type as realpart; i.e.,
(coerce o (type-of realpart)) is effectively used.

Type upgrading implies a movement upwards in the type hierarchy lattice. In the case of com-
plexes, the type-specifier must be a subtype of (upgraded-complex-part-type type-specifier).
If typcspecifierl is a subtype of type-specifier2, then (upgraded-complex-element-type) type-
specifier1) must also be a subtype of (upgraded-complex-element-type * type-specifier2). Two
disjoint types can be upgraded into the same thing.

Numbers 12-47

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(compl.ex 0) -+ 0
(complex 0.0) -+ X(0.0 0.0)
(complex 1 i/2) - #C(l l/2)
(complex 1 .99) 4 SC(l.0 0.99)
(complex 3/2 0.0) -) XC(1.5 0.0)

See Also:
realpart, imagpart, Section 2.4.8.11 (Sharpsign C)

complexp

Syntax:
complexp object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type complex; otherwise, returns false.

Examples:

(complexp 1.2d2) -(false
(complexp #c(5/3 7.2)) + true

See Also:
complex (function and type), typep

Notes:

(complexp object) z (typep object 'complex)

conjugate

Syntax:
conjugate number --+ conjugate

Arguments and Values:
number-a number.

conjugate-a number.

Description:
Returns the complex conjugate of number. The conjugate of a real number is itself.

Function

1248 Numbers

Programming LanguageCommon Lisp ANSI X3.226-1994

Examples:

(conjugate Xc(0 -1)) + WC0 1)
(conjugate *ccl 1)) -+ *C(l -1)
(conjugate 1.5) + 1.5
(conjugate ltC(3/5 4/5)) -+ X(3/5 -4/5)
(conjugate #C(O.ODO -1.ODO)) + W(O.ODO l.ODO)
(conjugate 3.7) * 3.7

Notes:
For a complex number Z,

(conjugate 2) E (complex (realpart 2) (- (iragpart 2)))

phase Function

Syntax:
phase number -+ phase

Arguments and Values:
number-a number.

phase-a number.

Description:
phase returns the phase of number (the angle part of its polar representation) in radians, in the
range +r (exclusive) if minus zero is not supported, or -a (inclusive) if minus zero is supported,
to x (inclusive). The phase of a positive real number is zero; that of a negative real number is A.
The phase of zero is defined to be zero.

If number is a complex float, the result is a float of the same type as the components of number.
If number is a float, the result is a float of the same type. If number is a rational or a complex
rational, the result, is a single float.

The branch cut for phase lies along the negative real axis, continuous with quadrant II. The
range consists of that portion of the real axis between --x (exclusive) and 7r (inclusive).

The mathematical definition of phase is as follows:

(phase x) = (atan (iragpart 2) (realpart 2))

Examples:

(phase 1) -+ 0.080
(phase 0) -) 0 -080
(phase (cis 30)) --* -1.4159266
(phase #cc0 1)) -+ 1.5707964

Exceptional Situations:
Should signal type-error if its argument, is not a number. Might signal arithmetic-error.

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

Numbers 12-49

ANSI X3.226-1994 Programming Language-Common Lisp

realpart, imagpart

Syntax:
realpart number -+ real

imagpart number -* real

Arguments and Values:
number-a number.

real-a real.

Description:
realpart and imagpart return the real and imaginary parts of number respectively. If number
is real, then realpart returns number and imagpart returns (* o number), which has the effect
that the imaginary part of a rational is o and that of a float is a floating-point zero of the same
format.

Examples:

(realpart #cc23 41)) - 23
(imagpart Sc(23 41.0)) -+ 41.0
(realpart Sc(23 41.0)) * 23.0
(iragpart 23.0) 4 0.0

Exceptional Situations:
Should signal an error of type type-error if number is not a number.

See Also:
complex

upgraded-complex-part-type Function

Syntax:
upgraded-complex-part-type typespec &optional environment - upgraded-typespec

Arguments and Values:
typespec-a type specifier.

environment-an environment object. The default is nil, denoting the null lezical environment
and the and current global environment.

upgraded-typespec-a type specifier.

Description:
upgraded-complex-part-type returns the part type of the most specialized complex number
representation that can hold parts of type typespec.

The typespcc is a subtype of (and possibly type equivalent to) the upgraded-typespec.

12-50 Numbers

Programming Language-Common Lisp ANSI X3.226- 1994

The purpose of upgraded-complex-part-type is to reveal how an implementation does its
upgrading.

See Also:
complex (fundion and type)

Function

Syntax:
realp object -+ generalized-boolean

Arguments and Vhlues:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type real; otherwise, returns false.

Examples:

(realp 12) -i true
(realp tc(5/3 7.2)) -+ false
(realp nil) 4 false
(realp (cons 1 2)) + false

Notes:

(realp object) E (typep object ‘real)

numerator, denominator Function

Syntax:
numerator rational -+ numerator

denominator rational -+ denominator

Arguments and Values:
rational-a rational.

numerator-an integer.

denominator-a positive integer.

Description:
numerator and denominator reduce rational to canonical form and compute the numerator or
denominator of that number.

numerator and denominator return the numerator or denominator of the canonical form of
rational.

Numbers 12-51

ANSI X3.226-1994 Programming Language-Common Lisp

If rational is an integer, numerator returns rational and denominator returns 1.

Examples:

(numerator l/2) - 1
(denominator 12/36) --) 3
(numerator -1) --) -1
(denominator (/ -33)) - 33
(numerator (/ 8 -6)) + -4
(denominator (/ 8 -6)) -+ 3

See Also:
/

Notes:

(gcd (numerator x) (denominator x)) -+ 1

rational, rationalize Function

Syntax:
rational number + rational

rationalize number --, rational

Arguments and Values:
number-a real.

rational-a rational.

Description:
rational and rationalize convert reals to rationals.

If number is already rational, it is returned.

If number is a float, rational returns a rational that is mathematically equal in value to the
float. rationalize returns a rational that approximates the float to the accuracy of the underlying
floating-point representation.

rational assumes that the float is completely accurate.

rationalize assumes that the float is accurate only to the precision of the floating-point represen-
tation.

Examples:

(rational 0) + 0
(rationalize -ll/lOO) 4 -ll/lOO
(rational .l) -+ 134217?3/134217728 ;implerentation-dependent
(rationalize .l) + i/10

Affected By:
The implementation.

12-52 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
Should signal an error of type type-error if number is not a real. Might signal arithmetic-error.

Notes:
It is always the case that

(float (rational x1 x) Z x

and

(float (rationalize x1 x1 3 x

That is, rationalizing a float by either method and then converting it back to a jZoat of the same
format produces the original number.

rat ionalp Function

Syntax:
rationalp object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type rational; otherwise, returns false.

Examples:

(rationalp 12) -+ true
(rationalp 6/S) + true
(rationalp 1.212) + false

See Also:
rational

Notes:

(rationalp object) E (typep object ‘rational)

Numbers 12-53

ANSI X3.226-1994 Programming Language-Common Lisp

ash Function

Syntax:
ash integer count 4 shifted-integer

Arguments and Values:
integer-an integer.

count-an integer.

shifted-integer-an integer.

Description:
ash performs the arithmetic shift operation on the binary representation of integer, which is
treated as if it were binary.

ash shifts integer arithmetically left by count bit positions if count is positive, or right count bit
positions if count is negative. The shifted value of the same sign at integer is returned.

Mathematically speaking, ash performs the computation floor(inftgtf.2em’n’). Logically, ash
moves all of the bits in integer to the left, adding zero-bits at the right, or moves them to the
right, discarding bits.

ash is defined to behave as if integer were represented in two’s complement form, regardless of
how integers are represented internally.

Examples:

(ash 16 1) -+ 32
(ash 16 0) + 16
(ash 16 -1) -+ 8
(ash -100000000000000000000000000000000 -100) --+ -79

Exceptional Situations:
Should signal an error of type type-error if integer is not an integer. Should signal an error of
lype type-error if count is not an integer. Might signal arithmetic-error.

Notes:

(logbitp j (ash n k))
3 (and O= j k) (logbitp (- j k) I?))

integer-length Function

Syntax:
integer-length integer -+ number-of-bits

Arguments and Values:
integer-an integer.

12-54 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

number-ofbits-a non-negative integer.

Description:
Returns the number of bits needed to represent integer in binary two’scomplement format.

Examples:

(integer-length 0) --) 0
(integer-length 1) -+ 1
(integer-length 3) + 2
(integer-length 4) + 3
(integer-length 7) --) 3
(integer-length -1) - 0
(integer-length -4) -+ 2
(integer-length -7) -+ 3
(integer-length -8) + 3
(integer-length (expt 2 9)) - 10
(integer-length (l- (expt 2 9))) -+ 9
(integer-length (- (expt 2 9))) --) 9
(integer-length (- (l+ (expt 2 9)))) + 10

Exceptional Situations:
Should signal an error of type type-error if integer is not an integer.

Notes:
This function could have been defined by:

(defun integer-length (integer)
(ceiling (log (if (minusp integer)

(- integer)
(l+ integer))

2)))

If integer is non-negative, then its value can be represented in unsigned binary form in a field
whose width in bits is no smaller than (integer-length integer). Regardless of the sign of integer,
its value can be represented in signed binary two’s-complement form in a field whose width in bits
is no smaller than (+ (integer-length integer) 1).

integerp Function

Syntax:
integerp object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type integer; otherwise, returns fake.

Examples:

(integerp 1) -+ true

Numbers 12-55

ANSI X3.226-1994 Programming Language-Common Lisp

(integerp (expt 2 130)) -+ true
(integerp 6/S) -+ false
(integerp nil) -* false

Notes:

(integerp object) E (typep object ‘integer)

parse-integer Function

Syntax:
parse-integer string &key start end radix junk-allowed --+ integer, pos

Arguments and Values:
string-a string.

start, end-bounding indez designators of string. The defaults for start and end are 0 and nil,
respectively.

radix-a radix. The default is 10.

junk-allowed-a generalized boolean. The default is false.

integer-an integer or false.

pos-a bounding indet of string.

Description:
parse-integer parses an integer in the specified radix from the substring of string delimited by
start and end.

parse-integer expects an optional sign (+ or -) followed by a a non-empty sequence of digits to be
interpreted in the specified radix. Optional leading and trailing whitespacel is ignored.

parse-integer does not recognize the syntactic radix-specifier prefixes SO, #B, XX, and #no, nor
does it recognize a trailing decimal point.

If junk-allowed is false, an error of type parse-error is signaled if substring does not consist en-
tirely of the representation of a signed integer, possibly surrounded on either side by whitespacer
characters.

The first value returned is either the integer that was parsed, or else nil if no syntactically correct
rnteger was seen but junk-allowed was true.

The second value is either the index into the string of the delimiter that terminated the parse, or
the upper bounding index of the substring if the parse terminated at the end of the substring (as
is always the case if junk-a//owed is false).

Examples:

(parse-integer "123") - 123, 3
(parse-integer "123" :start 1 :radix 5) + 13, 3
(parse-integer "no-integer" :junk-allowed t) - IIL, 0

12-56 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
If junk-a//owed is false, an error is signaled if substring does not consist entirely of the representa-
tion of an integer, possibly surrounded on either side by whitespacel characters.

boole Function

Syntax:
boole op integer-l integer-2 -+ result-integer

Arguments and Values:
Op-a bit-wise logical operation specifier.

integer-l-an integer.

integer-2-an integer.

result-integer-an integer.

Description:
boole performs bit-wise logical operations on integer-l and integer-2, which are treated as if they
were binary and in two’s complement representation.

The operation to be performed and the return value are determined by op.

boole returns the values specified for any op in Figure 12-17.

OP
book-1
book2
book-andcl
book-andc2
book-and
book-cl
bookc2
book-clr
book-eqv
book-ior
booknand
book-nor
book-orcl
book-orc2
boole-set
bookxor

Result
integer-l
in tegef-2
and complement of integer-l with integer-2
and integer-l with complement of integer-2
and
complement of integer-l
complement of integer-2
always 0 (all zero bits)
equivalence (exclusive nor)
inclusive or
not-and
not-or
or complement of integer-l with integer-2
or integer-l with complement of integer-2
always -1 (all one bits)
exclusive or

Figure 12-17. Bit-Wise Logical Operations

Examples:

(boole boole-ior 1 16) - 17
(boole boole-and -2 5) -+ 4
(boole boole-eqv 17 15) -+ -31

Numbers 12-57

ANSI X3.226-1994 Programming Language-Common Lisp

;;; These exanples illustrate the result of applying BOOLE and each
..* **. of the possible values of OP to each possible combination of bits.

(progn
(fornat t "'&Results of (BOOLE Cop> XbOOll tb0101) . ..-

'X---Op-------Decird-----Binary---Bits---'X")
(dolist (synbol '(boole-1 boole-2 boole-and boole-andcl

boole-andc2 boole-cl boole-c2 boole-clr
boole-eqv boole-ior boole-nand boole-nor
boole-orcl boole-orc2 boole-set boole-xor))

(let ((result (boole (synbol-value synbol) tbOOl1 tbOlO1)))
(fornat t "'t 'A-13T'3.' D'23T':e'5,' B'3lT . ..-I.'OB-%"

synbol reault (logand result #bIllI)))))
D Results of (BOOLE Cop> tbOOl1 tb0101) . . .
D ---Op-------Dec~al-----Binary----Bits---
D BOOLE-1 3 11 . ..OOll
D BOOLE-2 5 101 . ..OlOl
D BOOLE-AND 1 1 . ..OOOl
D BOOLE-ANDCI 4 100 . ..OlOO
D BOOLE-ANDC2 2 10 . ..OOlO
D BOOLE-Cl -4 -100 . ..I100
D BOOLE-C2 -6 -110 . ..I010
D BOOLE-CLR 0 0 . ..oooo
D BOOLE-EQV -7 -111 . ..lOOl
P BOOLE-IOR 7 111 . ..Olll
D BOOLE-NAND -2 -10 . ..I110
D BOOLE-NOR -8 -1000 . ..I000
D BOOLE-ORCI -3 -11 . ..I101
D BOOLE-ORC2 -5 -101 . ..I011
D BOOLE-SET -1 -1 . ..I111
D BOOLE-XOR 6 110 . ..OllO
+ NIL

Exceptional Situations:
Should signal type-error if its first argument is not a bit-wise logical operation specifier or if any
subsequent argument is not an integer.

See Also:
logand

Notes:
In general,

(boole boole-and x y) S (logand x y)

Programmers who would prefer to use numeric indices rather than bit-wise logical operation
specifiers can get an equivalent effect by a technique such as the following:

;; The order of the values in this ‘table' are such that
;; (logand (boole (elt boole-n-vector n) XbOlOl tb0011) #bllll) => n

(defconstant boole-n-vector
(vector boole-clr boole-and boole-andcl boole-2

boole-andc2 boole-1 boole-xor boole-ior
boole-nor boole-eqv boole-cl boole-orcl
boole-c2 boole-orc2 boole-nand boole-set))

+ BOOLE-N-VECTOR

12-58 Numbers

Programming Language--Common Lisp ANSI X3.226-1994

(proclaim 'kline boole-n))
- implementation-depended

(defun boole-n (n integer &rest more-integers)
(apply #'boole (elt boole-n-vector n) integer more-integers))

+ BOOLE-P
(boole-n #bOlll 5 3) -+ 7
(boole-n tbOOO1 5 3) + 1
(boole-n tbllO1 5 3) - -3
(loop for n from tbOOO0 to #bllil collect (boole-n n 5 3))

+ (0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1)

boole-1. boole-2, boole-and, boole-andcl, boole-
andc2, boole-cl,‘boole-c2, Poole-clr, book-eqv,
boole-ior, boole-nand, boole-nor, boole-orcl,
boole-orc2, boole-set, boole-xor Constant Variable

Constant Value:
The identity and nature of the values of each of these variables is implementation-dependent,
except that it must be distinct from each of the values of the others, and it must be a valid first
argumenl to the function boole.

Description:
Each of these constants has a value which is one of the sixteen possible bit-wise logical operation
specifiers.

Examples:

(boole boole-ior 1 16) + 17
(boole boole-and -2 5) -+ 4
(boole boole-eqv 17 15) --+ -31

See Also:
boole

logand, logandcl, logandc2, logeqv, logior, lognand,
lognor, lognot, logorcl, logorc2, logxor Function

Syntax:
logand &rest integers -* result-integer

logandcl integer-l integer-2 + resdt-integer

logandc2 integer-l integer-2 -+ result-integer

logeqv &rest integers -+ result-integer

logior &rest integers -) result-integer

Numbers 12-59

ANSI X3.226- 1994 Programming Language-Common Lisp

lognand integer-l integer-2 + result-integer

lognor integer-l integer-2 + result-integer

lognot integer -+ result-integer

logorcl integer-l integer-2 + result-integer

logorc2 integer-l integer-2 -+ result-integer

logxor krest integers + rem/t-integer

Arguments and Values:
integers-integers.

integer-an integer.

integer-l -an integer.

integer-2 -an integer.

result-integer-an integer.

Description:
The functions logandcl, logandct, logand, logeqv, logier, lognand, lognor, lognot, logorcl,
logorc2, and logxor perform bit-wise logical operations on their arguments, that are treated as if
they were binary.

Figure 12-18 lists the meaning of each of the functions. Where an ‘identity’ is shown, it indicates
the value yielded by the function when no arguments are supplied.

Function
logandcl
logandc2
logand
h3eqv
logior
lognand
lognor
lognot
logorcl
logorc2
loexor

Identity
-
-
-1
-1
0
-
-
-
-
-
0

Operation performed
and complement of integer-l with integer-2
and integer-l with complement of integer-2
and
equivalence (exclusive nor)
inclusive or
complement of integer-l and integer-2
complement of integer-l or integer-2
complement
or complement of integer-l with integer-2
or integer-l with complement of integer-2
exclusive or

Figure 12-18. Bit-wise Logical Operations on Integers

Negative integers are treated as if they were in two%-complement notation.

Examples:

(logier 1 2 4 8) -+ 15
(logxor 1 3 7 15) -+ 10
(logeqv) + -1
(logand 16 31) 4 16
(lognot 0) --* -1
(lognot 1) --+ -2
(lognot -1) -+ 0
(lognot (l+ (lognot 1000))) -+ 999

12-60 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

;;; In the following example, m is a mask. For each bit in
;;; the mask that is a 1, the corresponding bits in x and y are
;;; exchanged. For each bit in the mask that is a 0. the
;;; corresponding bits of x and y are left unchanged.

(flet ((shop (1~ x y)
(format t "'%m = #o"G,'OO'Xx = #0'6,~0O'%y = to'6,'OO'X"

I x y)))
(let (Cm WoOO7750)

(x to452576)
(y *0317407))

(show m x y)
(let ((z (logand (logxor x y) 11))

(setq x (logxor z x1)
(setq y (logxor z y))
(show m x ~1)))

D m = to007750
DX = So452576
D y = #0317407
D

D m = to007750
D x = #0457426
D y = 110322557
- NIL

Exceptional Situations:
Should signal typeerror if any argument is not an integer.

See Also:
boole

Notes:
(logbitp k -1) returns true for all values of k.

Because the following functions are not associative, they take exactly two arguments rather than
any number of arguments.

(lognand nl n2) E (lognot (logand nl 172))
(lognor nl n2) Z (lognot (logier nl n2))
(logandcl nl n2) E (logand (lognot nl) 172)
(logandc2 nl n2) Z (logand nl (lognot n2))
(logiorcl nl n2) E (logier (lognot nl) n2)
(logiorc:! nl n2> Z (logier nl (lognot n2))
(logbitpj (lognot x)) E (not (logbitpj x))

logbitp Function

Syntax:
logbitp index integer + generalized-boolean

Arguments and Values:
index-a non-negative integer.

Numbers 12-61

_ __ --_ ._._ _il--l------.T

ANSI X3.226-1994 Programming Language-Common Lisp

integer-au integer.

generalized-boolean-a generalized boolean.

Description:
iogbitp is used to test the value of a particular bit in integer, that is treated as if it were binary.
The value of logbitp is true if the bit in integer whose index is index (that is, its weight is 2’nder)
is a one-bit; otherwise it is false.

Negative integer are treated as if they were in two%-complement notation.

Examples:

(logbitp 1 1) + fake
(logbitp 0 1) -, true
(logbitp 3 10) + true
(logbitp 1000000 -1) + true
(logbitp 2 6) + true
(logbitp 0 6) -+ f&e

Exceptional Situations:
Should signal an error of type type-error if index is not a non-negative integer. Should signal an
error of type type-error if integer is not an integer.

Notes:

(logbitp k n) 2 (ldb-test (byte 1 k) n)

logcount Function

syntax:
logcount integer -+ number-of-on-bits

Arguments and Values:
integer-an integer.

number-of-on-bits-a non-negative integer.

Description:
Computes and returns the number of bits in the two%complement binary representation of
integer that are ‘on’ or ‘set’. If integer is negative, the o bits are counted; otherwise, the i bits are
counted.

Examples:

(logcount 0) + 0
(logcount -1) * 0
aogcount 7) + 3
(logcount 13) -) 3 ;Tuo*s-complement binary: . ..OOOllOl
(logcount -13) + 2 ;Tvo's-complement binary: . ..lllOOll
(logcount 30) -+ 4 ;Too's-complement binary: . ..OOllllO
(logcount -30) * 4 :Tuo's-complement binary: . ..llOOOlO
(logcount (expt 2 100)) * 1

12-62 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

(logcount (- (expt 2 100))) + 100
(logcount (- Cl+ (expt 2 100)))) + 1

Exceptional Situations:
Should signal type-error if its argument is not an integer.

Notes:
Even if the implementation doea not represent integers internally in two’s complement binary,
logcount behaves as if it did.

The following identity always holds:

(logcount XI
z (logcount (- (+ x 1)))
i (logcount (lognot XI)

logtest Function

Syntax:
logtest integer-l integer-2 + generalized-boolean

Arguments and Values:
integer-l-an integer.

integer-2-an integer.

generalized-boolean-a generalized boolean.

Description:
Returns true if any of the bits designated by the l’s in integer-l is 1 in integer-2; otherwise it is
false. integer-l and integer-2 are treated as if they were binary.

Negative integer-l and integer-2 are treated as if they were represented in two%-complement
binary.

Examples:

(logtest 1 7) -b true
(logtest 1 2) + false
(logtest -2 -1) + true
(logtest 0 -1) -+ false

Exceptional Situations:
Should signal an error of type type-error if integer-l is not an integer. Should signal an error of
type type-error if integer-2 is not an integer.

Notes:

(logtest x y) 5 (not (zerop (logand x y)))

Numbers 12-63

_ -,
------.--_- __I. __ ._-.. _. _.__ - AA...._ I. -. 1

ANSI X3.226-1994 Programming Language-Common Lisp

by te, by te-s ize, by te-pos ition Function

Syntax:
byte s ize position + bytespec

byte-size bytespec + s ize

byte-position bytespec -+ position

Arguments and Values :
s ize, position-a non-negative integer.

bytespec-a byte specifier.

Descr iption:
byte returps a byte specifier.tbat indicates a byte of width s ize and whose bits have weights
2p 08itiOn+8We-1 through 2pO8St,O,l, and whose representation is implementation-dependent.

bytesize returns the number of bits specified by bytespec.

byte-position returns the position specified by bytespec.

Examples :

(setq b (byte 100 200)) -+ #<BYTE-SPECIFIER s ize 100 position 200)
(byte-size b) --) 100
(byte-position b) + 200

See Also:
Idb, dpb

Not es:

(byte-size (bytej k)) E j
(byte-position (byte j k)) E k

A byte of s ize of 0 is permissible; it refers to a byte of width zero. For example,

(ldb (byte 0 3) #07777) -+ 0
(dpb so7777 (byte 0 3) 0) -+ 0

depos it-field Function

Syntax:
deposit-field newbyte bytespec integer -+ result-integer

Arguments and Values :
newbyte-an integer.

bytespec-a byte specifier.

12-64 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

integer-an integer.

result-integer-an integer.

Description:
Replaces a field of bits within integer; specifically, returns an integer that contains the bits of
newbyte within the byte specified by bytespec, and elsewhere contains the bits of integer.

Examples:

(deposit-field 7 (byte 2 1) 0) * 6
(deposit-field -1 (byte 4 0) 0) * 15
(deposit-field 0 (byte 2 1) -3) --) -7

See Also:
byte, dpb

Notes:

(logbitpj (deposit-field m (byte s p) n))
E (if (and (>= j p) CC j (+ p ~1))

(logbitpj m)
(logbitpj n))

deposit-field is to mask-fleld as dpb is to ldb.

dPb Function

Syntax:
dpb newbyte bytespec integer + result-integer

Pronunciation:
[,dc’pib]or [,dc’pcb]or [‘dE’pE’bZ]

Arguments and Values:
newbyte-an integer.

bytespec-a byte specifier.

integer-an integer.

result-integer-an integer.

Description:
dpb (deposit byte) is used
the same as integer except

to replace a field of bits within integer. dpb returns an integer that is
in the bits specified by bytespec.

Let s be the size specified by bytespec; then the low s bits of newbyte appear in the result in the
byte specified by bytespec. Ncwbyte is interpreted as being right-justified, as if it were the result
of ldb.

Examples:

(dpb 1 (byte 1 10) 0) -+ 1024
(dpb -2 (byte 2 10) 0) + 2048

Numbers 12-65

-. I -.~-- _-. - -.- ..--. -..

ANSI X3.226-1994 Programming Language-Common Lisp

(dpb 1 (byte 2 10) 2048) -+ 1024

See Also:
byte, deposit-field, ldb

Notes:

(logbitp j (dpb m (byte s p) n))
f (if (and (>= j p) (<j (+ p s)))

(logbitp (- j p) m)
(logbitp j n))

In general,

(dpb x (byte 0 y) 2) -+ 2

for all valid values of x, y, and z.

Historically, the name “dpb” comes from a DEC PDP-10 assembly language instruction meaning
“deposit byte.”

ldb Accessor

Syntax:
ldb bytespec integer -+ byte

(eetf (ldb bytespcc place) new-byte)

Pronunciation:
[’ lidib] or [’ lidcb] or [’ el ’ de ’ &]

Arguments and Values:
bytespec-a byte specifier.

integer-an integer.

byte, new-byte-a non-negative integer.

Description:
ldb extracts and returns the byfe of integer specified by bytespec.

ldb returns an integer in which the bits with weights 2(+l) through 2O are the same as those in
integer with weights 2(P +#-l) through 2P, and all other bits zero; s is (byte-size by&pee) and p
is (byte-position bytespec) .

setf may be used with ldb to modify a byte within the integer that is stored in a given place. The
order of evaluation, when an ldb form is supplied to s&f, is exactly left-tc+right. The effect is to
perform a dpb operation and then store the result back into the place.

Examples:

(ldb (byte 2 1) 10) - 1
(setq a (list 8)) -, (8)
betf (ldb (byte 2 1) (car a)) 1) --+ 1

12-66 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

a - (10)

See Also:
byte, byte-position, byte-size, dpb

Notes:

(logbitp j (ldb (byte s p) n))
G (and (< j s) (logbitp (+j p) n))

In general,

(ldb (byte 0 x) y) + 0

for all valid values of x and y.

Historically, the name “ldb” comes from a DEC PDP-10 assembly language instruction meaning
“load byte.”

ldb-test Function

Syntax:
ldkA.est bytespec integer + generalized-boolean

Arguments and Values:
bytespec-a byte specifier.

integer-an integer.

r generalized-boolean-a generalized boolean.

Description:
Returns true if any of the bits of the byte in integer specified by bytespec is non-zero; otherwise
returns false.

Examples:

(ldb-test (byte 4 1) 16) + true
(ldb-test (byte 3 1) 16) -+ false
(ldb-test (byte 3 2) 16) + true

See Also:
byte, Idb, zerop

Notes:

(ldb-test bytespec n) L
(not (zerop (ldb bytespec n))) S
(logtest (ldb bytespec -1) n)

Numbers 12-67

ANSI X3.226-1994 Programming Language--Common Lisp

mask-field Accessor

Syntax:
mask-field bytespec integer -+ masked-integer

(setf (mask-field bytaspcc p/ace) new-masked-integer)

Arguments and Values:
bytespec--a byte specifier.

integer-an integer.

masked-integer, new-masked-integer-a non-negative integer.

Description:
mask-field performs a “mask” operation on integer. It returns an integer that has the same bits
as integer in the byte specified by bytespec, but that has zero-bits everywhere else.

setf may be used with mask-field to modify a byte within the integer that is stored in a given
p/ace. The effect is to perform a deposit-fleld operation and then store the result back into the
place.

Examples:

(mask-field (byte 1 5) -1) -, 32
(setq a 15) * 15
(mask-field (byte 2 0) a) -+ 3
a -, 15
(setf (mask-field (byte 2 0) a) 1) + 1
a ---* 13

See Also:
byte, ldb

Notes:

(ldb bs (mask-field bs n) 1 E (ldb bs n)
(logbitp j (mask-field (byte s p) n))

E (and (>= j p) CC j s) (logbitp j n))
(mask-field bs n) E (logand n (dpb -1 bs 0))

most-positive-fixnum, most-negative-fixnum
Constant Variable

Constant Value:
implementation-dependent.

12-68 Numbers

Programming Languag*Common Lisp ANSI X3.226-1994

Description:
most-positive-fixnum is that fiznum closest in value to positive infinity povided by the imple-
mentation, and greater than or equal to both 215 - 1 and array-dimension-limit.

most-negative-fixnum is that jiznum closest in value to negative infinity provided by the imple-
mentation, and less than or equal to -215.

decode-float, scale-float., float-radix, float-si n,
float-digits, float-precision, integer-decode- iii oat
Function

Syntax:
decode-float float + significand, exponent, sign

scale-float float integer - scaled-float

float-radix float + float-radix

float-sign float-l toptionti float-2 - signed-float

float-digits float -+ digits1

float-precision float - digits2

integer-decode-float float + significand, exponent, integer-sign

Arguments and Values:
digits1 -a non-negative integer.

digits2-a non-negative integer.

exponent-an integer.

float-a float.

flea t-l -a #oat.

flea t-2-a Joat.

float-radix-an integer.

integer-a non-negative integer.

integer-sign-the integer -1, or the integer 1.

scaled-float-a float.

sign-A float of the same type as float but numerically equal to 1.0 or -1.0.

signed-float-a float.

significand-a float.

Description:
decode-float computes three values that characterize float. The first value is of the same iype
as float and represents the significand. The second value represents the exponent to which the
radix (notated in this description by b) must be raised to obtain the value that, when multiplied

Numbers 12-69

ANSI X3.226-1994 Programming Language-Common Lisp

with the first result, produces the absolute value of float. If float is zero, any integer value may
be returned, provided that the identity shown for scale-float holds. The third value is of the same
type as float and is 1.0 if float is greater than or equal to zero or -1.0 otherwise.

decode-float divides float by au integral power of b so as to bring its value between l/b (in-
clusive) and 1 (exclusive), and returns the quotient as the first value. If float is zero, however,
the result equals the absolute value of float (that is, if there is a negative zero, its significand is
considered to be a positive zero).

scale-float returns (8 float (expt (float b float) integer)), where b is the radix of the floating-
point representation. ffoat is not necessarily between l/b and 1.

float-radix returns the radix of float.

float-sign returns a number z such that z and float-l have the same sign and also such that z and
f/oat-2 have the same absolute value. If float-2 is not supplied, its value is (float 1 float-1).
If an implementation has distinct representations for negative zero and positive zero, then
(float-sign -0.0) + -1.0.

float-digits returns the number of radii b digits used in the representation of float (including any
implicit digits, such as a “hidden bit”).

float-precision returns the number of significant radii b digits present in float; if float is a jbat
zero, then the result is an integer zero.

For normalized floats, the results of float-digits and float-precision are the same, but the preci-
sion is less than the number of representation digits for a denomaalized or zero number.

integer-decode-float computes three values that characterize float - the significand scaled so as
to be an integer, and the same last two values that are returned by decode-float. If float is zero,
integer-decode-float returns zero as the first value. The second value bears the same relationship
to the first value as for decode-float:

(multiple-value-bind (signif expon sign)
(integer-decode-f loat f 1

(scale-float (float signif f) expon)) Z tabs f)

Examples:

;; liote that since the purpose of this functionality is to expose
;; details of the inplenentation, all of these examples are necessarily
;; very inplenentation-dependent. Results nay vary widely.
;; Values shovn here are chosen consistently from one particular inplerentation.
(decode-float .5) * 0.5, 0, 1.0
(decode-float 1.0) -+ 0.5, I, 1.0
(scale-float 1.0 I) + 2.0
(scale-float 10.01 -2) --, 2.5025
(scale-float 23.0 0) * 23.0
(float-radix 1.0) * 2
(float-sign 5.0) + 1.0
(float-sign -5.0) + -1.0
(float-sign 0.0) + 1.0
(float-sign 1.0 0.0) + 0.0
(float-sign 1.0 -10.0) + 10.0
(float-sign -1.0 10.0) + -10.0
(float-digits 1.0) -+ 24
(float-precision 1.0) -* 24
(float-precision least-positive-single-float) -+ 1
(integer-decode-float 1.0) -+ 8388608, -23. 1

12-70 Numbers

Programming LanguageCommon Lisp ANSI X3.226-1994

Affected By:
The implementation’s representation for floats.

Exceptional Situations:
The functions decode-float, float-radix, float-digits, float-precision, and integer-decode-float
should signal an error if their only argument is not a jIoa2.

The func2ion scale-float should signal an error if its first argument is not a float or if its second
argument is not an integer.

The function float-sign should signal an error if its first argument is not a float or if its second
argument is supplied but is not a float.

Notes:
The product of the first result of decode-float or integer-decode-float, of the radix raised to the
power of the second result, and of the third result is exactly equal to the value of float.

hltiple-value-bind (signif expon sign)
(decode-f loat f)

(scale-float signif expon))
E (abs f)

(multiple-value-bind (signif expon sign)
(decode-float f)

(* (scale-float signif expon) sign))
If

float Function

Syntax:
float number toptiondl prototype -+ float

Arguments and Values:
number-a real.

prototype-a float.

float-a float.

Description:
float converts a real number to a gloat.

If a prototype is supplied, a float is returned that is mathematically equal to number but has the
same format as prototype.

If prototype is not supplied, then if the number is already a float, it is returned; otherwise, a float
is returned that is mathematically equal to number but is a single float.

Examples:

(float 0) --+ 0.0
(float 1 .5) -* 1.0

Numbers 12-b

ANSI X3.226-1994 Programming Languag~Common Lisp

(float 1.0) + 1.0
(float l/2) + 0.5

-* l.OdO
22 1.0

(eql (float 1.0 l.OdO) l.OdO) -+ ffUe

See Also:
coerce

floatp Function

Syntax:
floatp object

generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type float; otherwise, returns false.

Examples:

(floatp 1.2d2) + true
(floatp 1.212) 4 true
(floatp 1.282) + true
(floatp (expt 2 130)) -+ false

Notes:

(floatp object) z (typep object ‘float)

12-72 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

most-positive-short-float, least-positive-short-
float, least-positive-normalized-short-float, most-
positive-double-float, least-positive-double-float,
least-positive-normalized-double-float, most-
positive-long-float, least-positive-long-float, least-
positive-normalized-long-float, most-positive-
single-float, least-positive-single-float, least-
positive-normalized-single-fioat , most-negative-
short-float, least-negative-short-float, least-
negative-normalized-short-float, most-negative-
single-float, least-negative-single-float, least-
negative-normalized-single-float, most-negative-
double-float, least-negatwe-double-float , least-
negative-normalized-double-float, most-negative-
long-float, least-negative-long-float, least-negative-
normalized-long-float Constant Variable

Constant Value:
implementation-dependent.

Description:
These constant variables provide a way for programs to examine the implementation-defined
limits for the various float formats.

Of these variables, each which has “-normalized’ in its name must have a value which is a
normalized pout, and each which does not have “-normalized’ in its name may have a value
which is either a normalized float or a denormalired float, as appropriate.

Of these variables, each which has “short-float” in its name must have a value which is a short
float, each which has “single-float” in its name must have a value which is a single pout, each
which has Udouble-floatn in its name must have a value which is a double float, and each which
has “long-float” in its name must have a value which is a long float.

l most-positive-short-float, most-positive-single-float,
most-positive-doublefloat, most-positive-long-float
Each of these constant variables has as its value the positive j?oat of the largest magni-
tude (closest in value to, but not equal to, positive infinity) for the float format implied
by its name.

0 least-positive-short-float, least-positive-normalized-short-float,
least-positive-single-float, least-positive-normalized-single-fioat,
least-positive-double-float, least-positive-normalized-double-float,
least-positive-long-float, least-positive-normalized-long-float

Each of these constant variables has as its value the smallest positive (nonzero) float for
the float format implied by its name.

Numbers 12-73

^ _ _ .-- -- A- . -

A N S I X 3 .2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e - C o m m o n L isp

l least-negat ive-short- f loat, leaeenegat ive-Norman-shor t -doat ,
least-negat ive-singl*f loat, least-negat ive-normal ized-s inglef loat ,
least-negat ive-double- f loat , least -negat ive-normal ized-double- f loat ,
least-negat ive- long-f loat , least -negat ive-normal ized- long- f loat

E a c h of these constant var iab les has as its va lue the negat ive (nonzero) f loat of the
smal lest magn i tude for the f loat format impl ied by its n a m e . (If a n imp lementa t ion
suppor ts m inus zero as a di f ferent object f rom posi t ive zero, this va lue must not b e m inus
zero.)

l most-negat ive-short- f loat , most-negat ive-s ingle- f loat ,
most-negat ive-doublef loat , most-negat ive- long- f loat
E a c h of these constant var iab les has as its va lue the negat ive j?oat of the largest magn i -
tude (closest in va lue to, but not equa l to, negat ive infinity) for the f loat format impl ied
by its n a m e .

shor t-flo a t-eps i lon , shor t-flo a t-n e g a tive -eps i lon ,
s ing le- flo a t-eps i lon , s ing le- flo a t-n e g a tive -eps i lon ,
d o u b le- f loat-epsi lon, d o u b le- f loat -negat ive-epsi lon,
l ong- flo a t-eps i lon , l ong- flo a t-n e g a tive -eps i lon
C o n s ta n t V a n - a b l e

C o n s ta n t V a l u e :
imp lementa t ion-dependent .

Descr ipt ion:
T h e va lue of each of the constants short- f loat-epsi lon, s ingle-f loat-epsi lon, double- f loat -epsi lon,
a n d long- f loat-epsi lon is the smal lest posi t ive f loat c of the g iven format, such that the fo l lowing
express ion is t rue w h e n evaluated:

(not (= (f loat 1 0 (+ (f loat 1 c) c) 1)

T h e va lue of each of the constants short- f loat-negat ive-epsi lon, s ingle- f loat-negat ive-epsi ion,
double- f loat -negat ive-epsi lon, a n d long- f loat -negat ive-epsi lon is the smal lest posi t ive f loat e of
the g iven format, such that the fo l lowing express ion is t rue w h e n evaluated:

(not (= (f loat 1 C) (- (f loat 1 c) c) 1)

ar i thmet ic-error C o n d i tio n Type

C lass P recedence List:
ari thmet ic-error, error, ser ious-condi t ion, condi t ion, t

Descr ipt ion:
T h e type ar i thmet ic-error consists of er ror condi t ions that occur du r ing ar i thmet ic operat ions.
T h e opera t ion a n d ope rands a re ini t ial ized with the ini t ial izat ion a rguments n a m e d :operat ion

1 2 - 7 4 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

and :operand.s to make-condition, and are accessed by the functions arithmetic-error-operation
and arithmetic-error-operands.

See Also:
arithmetic-error-operation, arithmetic-error-operands

arithmetic-error-operands, arithmetic-error-
operation Function

Syntax:
arithmetic-error-operands condition + operands

arithmetic-error-operation condition -c operation

Arguments and Values:
condition-a condition of type arithmetic-error.

operands-a list.

operation-a function designator.

Description:
arithmetic-error-operands returns a list of the operands which were used in the offending call to
the operation that signaled the condition.

arithmetic-error-operation returns a lid of the offending operation in the offending call that
signaled the condition.

See Also:
arithmetic-error, Chapter 9 (Conditions)

division- by-zero Condition Type

Class Precedence List:
division-by-zero, arithmetic-error, error, serious-condition, condition, t

Description:
The type division-by-zero consists of error conditions that occur because of division by zero.

Numbers 12-75

ANSI X3.226-1994 Programming Language-Common Lisp

floating-point-invalid-operation Condition Type

Class Precedence List:
floating-point-invalid-operation, arithmetic-error, error, serious-condition, condition, t

Description:
The type floating-point-invalid-operation consists of error conditions that occur because of
certain floating point traps.

It is implementation-dependent whether floating point traps occur, and whether or how they may
be enabled or disabled. Therefore, conforming code may establish handlers for this condition, but
must not depend on its being signaled.

floating-point-inexact Condition Type

Class Precedence List:
floating-point-inexact, arithmetic-error, error, serious-condition, condition, t

Description:
The type floating-point-Inexact consists of error conditions that occur because of certain floating
point traps.

It is implementation-dependent whether floating point traps occur, and whether or how they may
be enabled or disabled. Therefore, conforming code may establish handlers for this condition, but
must not depend on its being signaled.

floating-point-overflow Condition Type

Class Precedence List:
floating-point-overfiow, arithmetic-error, error, serious-condition, condition, t

Description:
The type floating-point-overfiow consists of error conditions that occur because of floating-point
overflow.

12-76 Numbers

Programming Language-Common Lisp ANSI X3.226-1994

floating-point-underflow Condition Type

Class Precedence List:
floating-point-underfiow, arithmetic-error, error, serious-condition, condition, t

Description:
The type floating-point-underflow consists of error conditions that occur because of floating-
point underflow.

Numbers 12-77

-___ .^ -___.- . - . -- . ^ _ _ -- .- . ^ “.... __- : - . -Ax. .

A N S I X 3 .2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e - C o m m o n L isp

1 2 - 7 8 N u m b e r s

ANSI X3.226-1994

Programming Language--Common Lisp

13. Characters

ANSI X3.226-1994 Programming Language-Common Lisp

ii Characters

Programming Language-Common Lisp ANSI X3.226-1994

13.1 Character Concepts

13.1.1 Introduction to Characters
A character is an object that represents a unitary token (e.g., a letter, a special symbol, or a
“control character”) in an aggregate quantity of text (e.g., a string or a text stream).

Common Lisp allows an implementation to provide support for international language characfers
as well as characters used in specialized arenas (e.g., mathematics).

The following figures contain lists of defined names applicable to characters.

Figure 13-1 lists some defined names relating to character atttibutes and character predicates.

alpha-char-p
alphanumericp
both-case-p
char-code-limit
char-equal
char-greaterp
char-lessp

char-not-equal
char-not-greaterp
char-not-lessp
ChiU/=
ChtUC
char<=
Char=

Chid
char>=
digit-char-p
graphic-char-p
lower-case-p
standard-char-p
upper-case-p

Figure 13-l. Character deflned names - 1

Figure 13-2 lists some character construction and conversion defined names.

char-code char-name
char-downcase char-upcase
char-int character

Figure 13-2. Character defined names - 2

code-char
digit-char
name-char

13.1.2 Introduction to Scripts and Repertoires

13.1.2.1 Character Scripts

A script is one of possibly several sets that form an exhaustive partition of the type character.

The number of such sets and boundaries between them is implementation-defined. Common Lisp
does not require these sets to be types, but an implementation is permitted to define such types
as an extension. Since no character from one script can ever be a member of another script, it is
generally more useful to speak about character repertoires.

Although the term “script” is chosen for definitional compatibility with IS0 terminology, no
conforming implementation is required to use any particular scripts standardized by IS0 or by
any other standards organization.

Whether and how the script or scripts used by any given implementation are named is
implementation-dependent.

Characters 13-1

ANSI X3.226-1994 Programming LanguageCommon Lisp

13.1.2.2 Character Repertoires

13.1.3

13.1.4

13.1.4.1

A repertoire is a type specifier for a subtype of type character. This term is generally used when
describing a collection of characters independent of their coding. Characters in reperioires are
only identified by name, by glyph, or by character description.

A repertoire can contain characters from several scripts, and a character can appear in more than
one repertoire.

For some examples of repetioires, see the coded character standards IS0 8859/l, IS0 8859/2,
and IS0 6937/2. Note, however, that although the term “repertoire” is chosen for definitional
compatibility with IS0 terminology, no conforming implementation is required to use repertoires
standardized by IS0 or any other standards organization.

Character Attributes
Characters have only one standardized attribute: a code. A character’s code is a non-negative in-
teger. This code is composed from a character script and a character label in an implementation-
dependent way. See the functions char-code and code-char.

Additional, implementation-defined attributes of characters are also permitted so that, for exam-
ple, two characters with the same code may differ in some other, implementation-defined way.

For any implementation-defined attribute there is a distinguished value called the null value for
that attribute. A character for which each implementation-defined attribute has the null value for
that attribute is called a simple character. If the implementation has no implementation-defined
attributes, then all characters are simple characters.

Character Categories
There are several (overlapping) categories of characters that have no formally associated type but
that are nevertheless useful to name. They include graphic characters, alphabetic1 characters,
characters with case (uppercase and lowercase characters), numeric characters, alphanumeric
characters, and digits (in a given radiz).

For each implementation-defined attribute of a character, the documentation for that implemen-
tation must specify whether characters that differ only in that attribute are permitted to differ in
whether are not they are members of one of the aforementioned categories.

Note that these terms are defined independently of any special syntax which might have been
enabled in the current readtable.

Grap hit Characters
Characters that are classified as graphic, or displayable, are each associated with a glyph, a
visual representation of the character.

A graphic character is one that has a standard textual representation as a single glyph, such as A
or * or =. Space, which effectively has a blank glyph, is defined to be a graphic.

Of the standard characters, newline is non-graphic and all others are graphic; see Section 2.1.3
(Standard Characters).

Characters that are not graphic are called non-graphic. Non-graphic characters are sometimes
informally called “formatting characters” or “control characters.”

UBackspace, It\Tab, #\Rubout, t\i.inefeed, #\Return, and #\Page, if they are supported by the
tmplementation, are non-graphic.

13-2 Characters

Programming Language-Common Lisp ANSI X3.226-1994

13.1.4.2 Alphabetic Characters
The alphabeticl characters are a subset of the graphic characters. Of the standard Characters,
only these are the alphabetic1 characters:

ABCDEFGHIJKLHNDPQRSTUVUXYZ

abcdefghijklmnopqrstuvvxyz

Any implementation-defined character that has case must be alphabeticl. For each
implementation-defined graphic character that has no case, it is implementation-defined whether
that character is alphabeticl.

13.1.4.3 Characters With Case

The characters with case are a subset of the alphabetic1 characters. A character with case has
the property of being either uppercase or lowercase. Every character with case is in one-to-one
correspondence with some other Character with the opposite case.

13.1.4.3.1 Uppercase Characters

An uppercase character is one that has a corresponding lowercase character that is diflerent (and
can be obtained using char-downcase).

Of the standard characters, only these are uppercase characters:

ABCDEFGHIJKLHNDPQRSTUVVXYZ

13.1.4.3.2 Lowercase Characters

A lowercase character is one that has a corresponding uppercase character that is diflerent (and
can be obtained using char-upcase).

Of the standard characters, only these are lowercase characters:

abcdefghijklmnopqrstuvvxyz

13.1.4.3.3 Corresponding Characters in the Other Case

The uppercase standard characters A through z mentioned above respectively correspond to the
lowercase standard characters a through z mentioned above. For example, the uppercase character
E corresponds to the lowercase character e, and vice versa.

13.1.4.3.4 Case of Implementation-Defined Characters

An implementation may define that other implementation-defined graphic characters have case.
Such definitions must always be done in pairs-one uppercase character in one-to-one correspon-
dence with one lowercase character.

13.1.4.4 Numeric Characters

The numerac characters are a subset of the graphic characters. Of the standard characters, only
these are numeric characters:

0123456789

For each implementation-defined graphic character that has no case, the implementation must
define whether or not it is a numeric character.

Characters 13-3

_. _ ._ -. _ .- _

ANSI X3.226-1994 Programming Language-Common Lisp

13.1.4.5 Alphanumeric Characters

The set of alphanumeric characters is the union of the set of alphabetic1 characters and the set of
numeric characters.

13.1.4.6 Digits in a Radix

What qualifies as a digit depends on the mdiz (an integer between 2 and 36, inclusive). The
potential digits are:

0123456789ABCDEFGHIJKLHBOPQRSTUVUXYZ

Their respective weights are 0, 1, 2, . . . 35. In any given radix n, only the first n potential digits
are considered to be digits. For example, the digits in radii 2 are 0 and 1, the digits in radix 10
are 0 through 9, and the digits in radix 16 are 0 through F.

Case is not significant in digits; for example, in radix 16, both F and f are digits with weight 15.

13.1.5 Identity of Characters
Two characters that are eql, char=, or char-equal are not necessarily eq.

13.1.6 Ordering of Characters
The total ordering on characters is guaranteed to have the following properties:

l If two characters have the same implementation-defined attributes, then their ordering
by char< is consistent with the numerical ordering by the predicate < on their code
attributes.

l If two characters differ in any attribute, then they are not char=.

l The total ordering is not necessarily the same as the total ordering on the integers
produced by applying char&t to the characters.

l While alphabetic1 standard characters of a given case must obey a partial ordering, they
need not be contiguous; it is permissible for uppercase and lowercase characters to be
interleaved. Thus (char<= #\a x t\z) is not a valid way of determining whether or not x
is a lowercase character.

Of the standard characters, those which are alphanumeric obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<n(P(O(P(P<R<S<T<<V<U<X<Y<Z
a<b<c<dte<f<gch<i<j<k<l<m<n<o<p<q<r<s<t<u<v<v<x<y<z
0<1<2<3<4<5<6<7<8<9
either 9<A or Z<O
either 9<a or z<O

This implies that, for standard characters, alphabetic1 ordering holds within each case (uppercase
and lowercase), and that the numeric characters as a group are not interleaved with alphabetic
characters. However, the ordering or possible interleaving of uppercase chamcters and lowercase
characters is implementation-defined.

13-4 Characters

Programming Language-Common Lisp ANSI X3.226-1994

13.1.7 Character Names
The following character names must be present in all conforming implementations:

Neuline

The character that represents the division between lines. An implementation must
translate between #\Nevline, a single-character representation, and whatever external
representation(s) may be used.

Space

The space or blank character.

The following names are semi-standard; if an implementation supports them, they should be used
for the described characters and no others.

Rubout

The rubout or delete character.

Page

The form-feed or page-separator character.

Tab

The tabulate character.

Backspace

The backspace character.

Return

The carriage return character.

Linefeed

The line-feed character.

In some implementations, one or more of these character names might denote a standard char-
acter; for example, #\Linefeed and #\Nevline might be the same character in some implementa-
tions.

13.1.8 Treatment of Newline during Input and Output
When the character S\Nevline is written to an output file, the implementation must take the ap-
propriate action to produce a line division. This might involve writing out a record or translating
#\Nevline to a CR/LF sequence. When reading, a corresponding reverse transformation must
take place.

13.1.9 Character Encodings
A character is sometimes represented merely by its code, and sometimes by another inte-
ger value which is composed from the code and all implementation-defined attributes (in an
implementation-defined way that might vary between Lisp images even in the same implementa-
tion). This integer, returned by the function char-int, is called the character’s “encoding.” There
is no corresponding function from a character’s encoding back to the character, since its primary
intended uses include things like hashing where an inverse operation is not really called for.

Characters 13-5

ANSI X3.226-1994 Programming Language-Common Lisp

13.1.10 Documentation of Implementation-Defined Scripts
An implementation must document the character scripts it supports. For each character script
supported, the documentation must describe at least the following:

Character labels, glyphs, and descriptions. Character labels must be uniquely named
using only Latin capital letters A-Z, hyphen (-), and digits O-9.
Reader canonicalisation. Any mechanisms by which read treats different characters as
equivalent must be documented.
The impact on char-upcase, char-downcase, and the case-sensitive format directives. In
particular, for each character with case, whether it is uppercase or lowercase, and which
character is its equivalent in the opposite case.
The behavior of the case-insensitive functions char-equal, char-not-equal, char-lessp,
char-greaterp, char-not-greaterp, and char-not-lessp.

The behavior of any character predicates; in particular, the effects of alpha-char-p,
lower-case-p, upper-case-p, both-case-p, graphic-char-p, and alphanumericp.
The interaction with file I/O, in particular, the supported coded character sets (for
example, 1808859/l-1987) and external encoding schemes supported are documented.

13-6 Characters

Programming LanguagwCommon Lisp ANSI X3.226-1994

character System Class

Class Precedence List:
character, t

Description:
A character is an objecl that represents a unitary token in an aggregate quantity of text; see
Section 13.1 (Ch aracter Concepts).

The types base-char and extended-char form an exhaustive partition of the type character.

See Also:
Section 13.1 (Ch aracter Concepts), Section 2.4.8.1 (Sharpsign Backslash), Section 22.1.3.2 (Print-
ing Characters)

base-char TYPe

Supertypes:
base-char, character, t

Description:
The type base-char is defined as the upgraded array element type of standard-char. An im-
plementation can support additional subtypes of type character (besides the ones listed in this
standard) that might or might not be super-types of type base-char. In addition, an implementa-
tion can define base-char to be the same type as character.

Base characters are distinguished in the following respects:

1 The type standard-char is a subrepertoire of the type base-char.
2. The selection of base characters that are not standard characters is implementation

defined.
3. Only objects of the type base-char can be elements of a base string.
4. No upper bound is specified for the number of characters in the base-char repertoire; the

size of that repertoire is implementation-defined. The lower bound is 96, the number of
standard characters.

Whether a character is a base character depends on the way that an implementation represents
strings, and not any other properties of the implementation or the host operating system. For
example, one implementation might encode all strings as characters having 16bit encodings,
and another might have two kinds of strings: those with characters having 8-bit encodings and
those with characters having l6-bit encodings. In the first implementation, the type base-char is
equivalent to the type character: there is only one kind of string. In the second implementation,
the base characters might be those characters that could be stored in a string of characters
having 8-bit encodings. In such an implementation, the type base-char is a proper subtype of the
type character.

The type standard-char is a subtype of type base-char.

Characters 13-7

ANSI X3.226-1994 Programming Language--Common Lisp

standard-char

Supertypes:
standard-char, base-char, character, t

Description:
A fured set of 96 characters required to be present in all conforming implementations. Standard
characters are defined in Section 2.1.3 (Standard Characters).

Any character that is not simple is not a standard character.

See Also:
Section 2.1.3 (Standard Characters)

extended-char

Supertypes:
extended-char, character, t

Description:
The type extended-char is equivalent to the type (and character (not base-char)).

Notes:
The type extended-char might have no elements4 in implementations in which all characters are
of type base-char.

char= , char/=, char<, char>, char<=, char>=,
char-equal, char-not-equal, char-lessp, char-
greaterp, char-not-greaterp, char-not-lessp Function

Syntax:
char= trest characters+
char/ = trest characters+
char< trest characters+
char> trest characters+
char<= Crest characters+
char>= &rest characters+

char-equal &rest characters+
char-not-equal &rest characters+
char-lessp &rest characters+
char-greaterp &rest characters+
char-not-greaterp &rest characters+
char-not-lessp &rest characters’

y generalized-boolean
-+ generalized-boolean
+ generalized-boolean
+ generalized-boolean
--+ generalized-boolean
w generalized-boolean

+ generalized-boolean
+ generalized-boolean
+ generalized-boolean
+ generalized-boolean
-+ generalized-boolean
-+ generalized-boolean

13-8 Characters

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
character-a character.

generalized-boolean-a generalized boolean.

Description:
These predicates compare characters.

char= returns true if all characters are the same; otherwise, it returns false. If two characters
differ in any implementation-defined attributes, then they are not char=.

char/= returns true if all characters are different; otherwise, it returns false.

char< returns true if the characters are monotonically increasing; otherwise, it returns fake. If
two characters have identical implementation-defined attributes, then their ordering by char< is
consistent with the numerical ordering by the predicate < on their codes.

char> returns true if the characters are monotonically decreasing; otherwise, it returns false. If
two characters have identical implementation-defined attributes, then their ordering by char> is
consistent with the numerical ordering by the predicate > on their codes.

char<= returns true if the characters are monotonically nondecreasing; otherwise, it returns false.
If two characters have identical implementation-defined attributes, then their ordering by char<=
is consistent with the numerical ordering by the predicate <= on their codes.

char>= returns true if the characters are monotonically nonincreasing; otherwise, it returns false.
If two characters have identical implementation-defined attributes, then their ordering by char>=
is consistent with the numerical ordering by the predicate >= on their codes.

char-equal, char-not-equal, char-lessp, char-greaterp, char-not-greaterp, and char-not-lessp
are similar to char=, char/=, char<, char>, char<=, char>=, respectively, except that they
ignore differences in case and might have an implementation-defined behavior for non-simple
characters. For example, an implementation might define that char-equal, etc. ignore certain
implementation-defined attributes. The effect, if any, of each implementation-defined attribute
upon these functions must be specified as part of the definition of that attribute.

Examples:

(char= t\d #\d) -+ true
(char= #\A #\a) -+ false
(char= #\d X\x) + false
(char= #\d #\D> + false
(char/= #\d #\d) -+ false
(char/= #\d t\x) + trve
(char/= t\d #\D> + ime
(char= #\d t\d It\d #\d) -) true
(char/= #\d #\d #\d #\d) --+ false
(char= #\d #\d W\x t\d) -+ false
(char/= #\d t\d t\x #\d> + false
(char= X\d #\y #\x ib\c) -) false
(char/= It\d W\y #\x #\c) - true
(char= t\d t\c #\d) -+ false
(char/= t\d X\c #\d) + false
(char< #\d t\x) + true
(char<= X\d It\x) --) true
(char< #\d #\d) --) false
(char<= #\d t\d) -+ true
(char< #\a X\e #\y t\z) - true

Characters 13-9

ANSI X3.226-1994 Programming Language--Common Lisp

(char<= #\a #\e #\y t\z) - true
(char< #\a t\e #\e X\y) - false
(char<= $\a rt\e *\e #\y) - true
(char> t\e #\d) -+ true
(char>= *\e X\d) -+ true
(char> #\d #\c $\b #\a) - true
(char>= #\a #\c X\b #\a) + true
(char> #\d #\d #\c *\a) - fake
(char>= #\d X\d #\c #\a) - true
(char> #\e #\d #\b *\c *\a) - fake
(char>= #\e #\d #\b It\c *\a) 4 fake
(char> wt\z #\A) w implementation-dependent
(char> #\z #\a) + implementation-dependent
(char-equal#\A #\a) + t?%e
(stable-sort (list g\b t\A #\B #\a #\c #\C) #r,char-lessp)

-* (#\A #\a #\b #\B #\c t\C)
(stable-sort (list t\b #\A t\B t\a #\c t\C) #‘char<)

- (#\A #\B #\C #\a #\b X\c) ;18plerentation A
--* (#\a #\b #\c #\A *\B #\C) ;Implerentation B
-+ (#\a #\A #\b #\B t\c t\C) ;Implementation C
-+ (#\A #\a t\B #\b X\C #\c) ;Iaplerentation D
- (#\A #\B #\a #\b #\C #\c) ;Ilrplementation E

Exceptional Situations:
Should signal an error of type program-error if at least one character is not supplied.

See Also:
Section 2.1 (Character Syntax), Section 13.1.10 (Documentation of Implementation-Defined
Scripts)

Notes:
If characters differ in their code attribute or any implementation-defined attribute, they are
considered to be different by char=.

There is no requirement that (eq cl ~2) be true merely because (char= cl ~2) is true. While eq
can distinguish two characters that char= does not, it is distinguishing them not as characters,
but in some sense on the basis of a lower level implementation characteristic. If (eq cl cz) is
true, then (char= cl ~2) is also true. eql and equal compare characters in the same way that
char= does.

The manner in which case is used by char-equal, char-not-equal, char-lessp, char-greaterp,
char-not-greaterp, and char-not&asp implies an ordering for standard characters such that A=a,
B=b, and so on, up to Z=z, and furthermore either 9<A or Z<O.

character

Syntax:
character character 4 denoted-character

Arguments and Values:
character-a character designator.

Function

13-10 Characters

Programming Language-Common Lisp ANSI X3.226-1994

denoted-character-a character.

Description:
Returns the character denoted by the character designator.

Examples:

(character #\a) + #\a
(character "a") + X\a
(character 'a) + #\A
(character '\a) -) #\a
(character 65.1 is an error.
(character 'apple) is an error.

Exceptional Situations:
Should signal an error of type type-error if object is not a character designator.

See Also:
coerce

Notes:

(character object) E (coerce object 'character)

characterp Function

Syntax:
characterp object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type character; otherwise, returns fake.

Examples:

(characterp #\a) + true
(characterp 'a) + false
(characterp "a*') + false
(characterp 65.) -+ fake
(characterp X\Nevline) ‘-* true
;; This next example presupposes an implementation
;; in vhich #\Rubout is an implementation-defined character.
(characterp #\Rubout) --) tme

See Also:
character (type and function), typep

Characters 13-11

____ __._ -.---- i.- -.--.

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:

(characterp object) E (typep object ‘character)

alpha-char-p Function

Syntax:
alpha-char-p character 4 generalized-boolean

Arguments and Values:
character-a character.

generalized-boolean-a generalized boolean.

Description:
Returns true if character is an alphabetic1 character; otherwise, returns fake.

Examples:

(alpha-char-p #\a> -) t?W
(alpha-char-p #\S) -+ fake
(alpha-char-p #\Newline) + fake
;; This next example presupposes an implementation
; ; in which #\cr is a defined character.
(alpha-char-p #\cr) -+ implementation-dependent

Affected By:
None. (In particular, the results of this predicate are independent of any special syntax which
might have been enabled in the current readtable.)

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
alphanumericp, Section 13.1.10 (Documentation of Implementation-Defined Scripts)

alphanumericp Function

Syntax:
alphanumericp character + generalized-boolean

Arguments and Values:
character-a character.

generalized-boolean-a generalized boolean.

13-12 Characters

Programming Language-Common Lisp ANSI X3.226-1994

Description:
Returns true if character is an alphabetici chnracter or a numeric choracier; otherwise, returns
false.

Examples:

(alphanumericp #\Z) -) f?we
(alphanumericp i?\9) -+ i?W
(alphanumericp #\Nevline) -+ joke
(alphanumericp #\#I --) fake

Affected By:
None. (In particular, the results of this predicate are independent of any special syntax which
might have been enabled in the current readtable.)

Exceptional Situations:
Should signal an error of fype type-error if character is not a charac2er.

See Also:
alpha-char-p, graphic-char-p, digit-char-p

Not es:
Alphanumeric characters are graphic as defined by graphic-char-p. The alphanumeric characters
are a subset of the graphic characters. The standard characters A through Z, a through z, and o
through 9 are alphanumeric characters.

(alphanumericp x)
5 (or (alpha-char-p x0 (not (null (digit-char-p x)1))

digit-char Function

Syntax:
digit-char weight &optional radix -+ char

Arguments and Values:
weight-a non-negative integer.

radix-a radiz. The default is 10.

char-a charucfer or false.

Description:
If weight is less than radix, digit-char returns a character which has that weight when considered
as a digit in the specified radix. If the resulting character is to be an olphabeticl character, it will
be an uppercase character.

If weight is greater than or equal to radix, digit-char returns false.

Examples:

(digit-char 0) + X\O
(digit-char 10 11) - #\A
(digit-char 10 10) - fake

Characters 13-13

ANSI X3.226-1994 Programming Languag~Common Lisp

(digit-char 7) * #\7
(digit-char 12) -+ false
(digit-char 12 16) -+ t\C ;not S\c
(digit-char 6 2) + fake
(digit-char 1 2) + #\I

See Also:
digit-char-p, graphic-char-p, Section 2.1 (Character Syntax)

Notes:

digit-char-p Function

syntax:
digit-char-p char &optional radix + weight

Arguments and Values:
char-a character.

radix--a radix. The default is 10.

weight-either a non-negative integer less than radix, or false.

Description:
Tests whether char is a digit in the specified radix (i.e., with a weight less than radix). If it is a
digit in that radix, its weight is returned as an integer; otherwise nil is returned.

Examples:

(digit-char-p #\5) + 5
(digit-char-p #\5 2) + fake
(digit-char-p #\A) -r* false
(digit-char-p #\a) + false
(digit-char-p 8\A II) + IO
(digit-char-p #\a 11) + 10
(rapcar #’ (lambda (radix)

(rap ‘list #'(lambda (x) (digit-char-p x radix))
“059AaFGZ”))

'(2 8 IO 16 36))
+ ((0 lpIL PIL EIL PIL EIL PIL IIL)

(0 5 IIL IIL IIL IiIL PIL IIL)
(0 5 9 PIL HIL PIL INIL ML)
(0 5 9 IO 10 15 IIL IiIL)
(0 5 9 IO 10 15 16 35))

Affected By:
None. (In particular, the results of this predicate are independent of any special syntax which
might have been enabled in the current readtable.)

See Also:
alphanumericp

13-14 Characters

Programming Language-Common Lisp ANSI X3.226-1994

Notes:
Digits are graphic characters.

graphic-char-p Function

Syntax:
graphic-char-p char -+ generalized-boolean

Arguments and Values:
char-a character.

generalized-booleawa generalized boolean.

Description:
Returns true if character ia a graphic character; otherwise, returns false.

Examples:

(graphic-char-p t\G) w true
(graphic-char-p *\#I -, true
(graphic-char-p #\Space) + true
(graphic-char-p #\8evline) -, fabe

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
read, Section 2.1 (Character Syntax), Section 13.1.10 (Documentation of Implementation-Defined
Scripts)

.

standard-char-p Function

Syntax:
standard-char-p character -+ generalized-boolean

Arguments and Values:
character-a character.

generalized-boolean-a generalized boolean.

Description:
Returns true if character is of type standard-char; otherwise, returns false.

Examples:

(standard-char-p ASpace) + true
(standard-char-p *\‘I -+ true
; ; This next example presupposea au ixplerentation
;; in vhich X\Bell is a defined character.
(standard-char-p *\Bell) * fake

Characters 13-15

ANSI X3.226-1994 Programming Language-Common Lisp

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

char-upcase, char-downcase

Syntax:
char-upcase character + corresponding-character
char-downcase character + corresponding-character

Arguments and Values:
character, corresponding-character-a character.

Description:
If character is a lowercase character, char-upcase returns the corresponding uppercase characier.
Otherwise, char-upcase just returns the given character.

If character is an uppercase character, char-downcase returns the corresponding lowercase
character. Otherwise, char-downcase just returns the given character.

The result only ever differs from character in its code attribute; all implementation-defined at-
tributes are preserved.

Examples:

(char-upcase #\a) + #\A
(char-upcase #\A) + #\A
(char-douncase #\a> -+ t\a
(char-dovncase *\A) --+ *\a
(char-upcase #\9) + #\9
(char-dovncase #\9> -+ #\9
(char-upcase t\O) --+ #\a
(char-dovncase #\a) + #\O
;; Note that this next example right run for a very long time in
;; some implementations if CHAR-CODE-LIHIT happens to be very large
.* for that implementation.
iiotiaes (code char-code-limit)

(let ((char (code-char code))>
(when char

(unless (cond ((upper-case-p char) (char- (char-upcase (char-downcase char)) char))
((lower-case-p char) (char= (char-dovncase (char-upcase char)) char))
(t (and (char (char-upcase (char-downcase char)) char)

(char= (char-dormcase (char-upcase char)) char))))
(return char)))))

* NIL

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
upper-case-p, alpha-char-p, Section 13.1.4.3 (Characters With Case), Section 13.1.10 (Documen-
tation of Implementation-Defined Scripts)

13-16 Characters

Programming Language-Common Lisp ANSI X3.226-1994

Notes:
If the corresponding-char is different than character, then both the character and the
corresponding-char have case.

Since char-equal ignores the case of the characters it compares, the corresponding-character is
always the same as character under char-equal.

upper-case-p, lower-case-p, both-case-p Function

Syntax:
upper-case-p character + generalized-boolean
lower-case-p character -+ generalized-boolean
both-c-p character + generalized-boolean

Arguments and Values:
character-a character.

generalized-boolearr-a generalized boolean.

Description:
These functions test the case of a given character.

upper-case-p returns true if character is an uppercase character; otherwise, returns false.

lower-case-p returns true if character is a lowercase character; otherwise, returns false.

both-case-p returns true if character is a character with case; otherwise, returns false.

Examples:

(upper-case-p #\A) + true
(upper-case-p #\a) + false
(both-case-p #\a) -+ true
(both-case-p X\5) -+ false
(lower-case-p #\5) -+ false
(upper-case-p lt\5) -+ false
;; This next example presupposes an implementation
** in vhich X\Bell is an implementation-defined character.
;; over-case-p X\Bell) + false

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
char-upcase, char-downcase, Section 13.1.4.3 (Characters With Case), Section 13.1.10 (Docu-
mentation of Implementation-Defined Scripts)

Characters 13-17

ANSI X3.226-1994 Programming Language-Common Lisp

char-code Function

Syntax:
char-code character + code

Arguments and Values:
character-a chomcier.

code-a character code.

Description:
char-code returns the code ottribde of character.

Examples:

; ; An implementation usiq ASCII character encoding
;; right return these values:
(char-code *\$I + 36
(char-code #\a) + 97

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
char-code-limit

char-int Function

Syntax:
char-int character + integer

Arguments and Values:
character-a character.

integer-a non-negative integer.

Description:
Returns a non-negative integer encoding the character object. The manner in which the integer is
computed is implementafion-dependent. In contrast to sxhash, the result is not guaranteed to be
independent of the particular Lisp image.

If character has no implementalion-defined attribdes, the results of char&t and char-code are
the same.

khar- cl CQ t (- (char-M cl) (char-int ~2))

for characters cl and c2.

Examples:

(char-int #\A) --) 65 ; implementation A

13-18 Characters

Programming Language-Common Lisp ANSI X3.226-1994

(char-int #\A) * 577 ; implementation B
(char-int t\A) + 262145 ; implementation C

See Also:
char-code

code-char

Syntax:
code-char code + char-p

Arguments and Values:
code-a character code.

char-p-a character or nil.

Description:
Ff,eturns a character with the code attribute given by code. If no such character exists and one
cannot be created, nil is returned.

Examples:

(code-char 65.) -+ rt\A ;in an implementation using ASCII codes
(code-char (char-code #\Space)) 4 t\Space ;in any implementation

Affected By:
The implementation’s character encoding.

See Also:
char-code

char-code-limit Constant Variable

Constant Value:
A non-negative ini eger, the exact magnitude of which is implementation-dependent, but which is
not leas thau 96 (the number of standard characters).

Description:
The upper exclusive bound on the value returned by the function char-code.

See Also:
char-code

Notes:
The value of char-code-limit might be larger than the actual number of characters supported by
the implementation.

Characters 13-19

ANSI X3.226-1994 PrOgramming Languag~Common Lisp

char-name Function

syntax:
char-name character --, name

Arguments and Values:
character-a character.

name-a string or nil.

Description:
Returns a string that is the name of the character, or nil if the character has no name.

All non-graphic characters are required to have names unless they have some implementation-
defined attribute which is not null. Whether or not other characters have names is
implementation-dependent.

The standard characters (Newline) and (Space) have the respective names *%euline” and 08Space’1.
The semi-standard characters (Tab), (Page), (Rubout), (Linefeed), (Return), and (Backspace) (if
they are supported by the implementation) have the respective names "Tab", “Page”, %ubout8*,
"Linefeed", "Return", and “Backspace” (in the indicated case, even though name lookup by “#\”
and by the function name-char is not case sensitive).

Examples:

(char-name X\) -+ "Space"
(char-name #\Space) + "Space“
(char-name t\Page) --+ "Page"

(char-name #\a)
* NIL
2 "LOWERCASE-a"
4 "Spla.ll-A"
% "~()l"

(char-name #\A)
+ NIL
z "UPPERCASE-A"
z "Capitel-A"
z “LAO2”

;; Even though its CHAJ+NAHE can very, #\A prints as #\A
(prinl-to-string (read-from-string (format nil “#\\-A” (or (char-name #\A) "A"))))

--+ “#\\A”

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
name-char, Section 22.1.3.2 (Printing Characters)

Notes:
Non-graphic characters having names are written by the Lisp printer as “a\” followed by the
their name; see Section 22.1.3.2 (Printing Characters).

13-20 Characters

Programming Language-Common Lisp ANSI X3.226-1994

name-char

Syntax:
name-char name -* char-p

Arguments and Values:
name-a string designator.

char-p-a chamder or nil.

Description:
Returns the character object whose name is name (as determined by string-equal-i.e., lookup is
not case sensitive). If such a character does not exist, nil is returned.

Examples:

(n-e-char ‘space) 4 #\Space
(name-char “space”) -+ #\Space
(name-char “Space”) -+ #\Space
(let ((x (char-name #\a)))

(or (not x1 (eql (name-char x1 #\a))) --) true

Exceptional Situations:
Should signal an error of type type-error if name is not a string designator.

See Also:
char-name

Characters 13-21

ANSI X3.226-1994 Programming Language-Common Lisp

13-22 characters

ANSI X3.226-1994

Programming Language--Common Lisp

14. Conses

. - -L_- -A._A: .

A N S I X 3 .2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e - C o m m o n L isp

ii C o n e 6

Programming Language-Common Lisp

14.1 Cons Concepts

ANSI X3.226-1994

A cons is a compound data object having two components called the car and the cdr.

CW co119
cdr rplaca

Figure 14-1. Some deftned names relating to conses.

rplacd

Depending on context, a group of connected conses can be viewed in a variety of different ways.
A variety of operations is provided to support each of these various views.

14.1.1 Comes as Trees
A tree is a binary recursive data structure made up of conses and atoms: the conses are them-
selves also trees (sometimes called “subtrees” or “branches”), and the atoms are terminal nodes
(sometimes called leaves). Typically, the leaves represent data while the branches establish some
relationship among that data.

C- caddar
caaadr cadddr
Cm caddr
caadar cadr
caaddr cdaaar
caadr cdaadr
CW cdaar
cadaar cdadar
cadadr cdaddr

cdar
cddaar
cddadr
cddar
cdddar
cddddr
cdddr
cddr
copy-tre !e

nsubst
nsubst-if
nsubst-if-not
nthcdr
sublis
subst
subst-if
subst-if-not
tree-equal

cadar cdadr nsublis

Figure 14-2. Some defined names relating to trees.

14.1.1.1 General Restrictions on Parameters that must be Trees
Except as explicitly stated otherwise, for any standardized function that takes a parameter that is
required to be a tree, the consequences are undefined if that tree is circular.

14.1.2 Conses as Lists
A list is a chain of conses in which the car of each cons is an element of the list, and the cdr of
each cons is either the next link in the chain or a terminating atom.

A proper list is a list terminated by the empty list. The empty list is a proper list, but is not a
cons.

An improper list is a list that is not a proper list; that is, it is a circular list or a dotted list.

A dotted list is a list that has a terminating atom that is not the empty list. A non-nil atom by
itself is not considered to be a list of any kind-not even a dotted list.

A circular list is a chain of conses that has no termination because some cons in the chain is the
cdr of a later cons.

Conses 14-1

ANSI X3.226-1994 Programming Language-Common Lisp

append
butlast
copy-alist
copy-list
eighth
endp
Sfth
flrst
fourth

last
ldiff
list
list*
list-length
make-list
member
member-if
member-if-not

nbutlast
nconc
ninth
nreconc
nth
nthcdr
POP
p=h
pushnew

rest
revappend
second
seventh
sixth
taiip
tenth
third

Figure 14-3. Some defined names relating to lists.

14.1.2.1 Lists as Association Lists
An association Iist is a list of conses representing an association of keys with values, where the
car of each cons is the key and the cdr is the value associated with that key.

acons assoc-if pair&
aasoc assoc-if-not rassoc

Figure 14-4. Some defined names related to assocation lists.

rassoc-if
rassoc-if-not

14.1.2.2 Lists as Sets
Lists are sometimes viewed as sets by considering their elements unordered and by assuming
there is no duplication of elements.

adjoin
intersection
nintersection

nset-difference
nset-exclusive-or
nunion

set-difference
set-exclusive-or
subsetn

union

I

Figure 14-S. Some defined names related to sets.

14.1.2.3 General Restrictions on Parameters that must be Lists

Except as explicitly specified otherwise, any standardized function that takes a parameter that is
required to be a list should be prepared to signal an error of type type-error if the value received
is a dotted list.

Except as explicitly specified otherwise, for any standardized function that takes a parameter that
is required to be a list, the consequences are undefined if that list is circular.

14-2 consea

Programming Language-Common Lisp ANSI X3.226-1994

list System Class

Class Precedence List:
list, sequence, t

Description:
A fist is a chain of conses in which the car of each cons is an element of the list, and the cdr of
each cons is either the next link in the chain or a terminating atom.

A proper list is a chain of conses terminated by the empty list, 0, which is itself a proper list.
A dotted list is a list which has a terminating atom that is not the empty list. A circular list
is a chain of conses that has no termination because some cons in the chain is the cdr of a later
cons.

Dotted lists and circular lists are also lists, but usually the unqualified term “list” within this
specification means proper list. Nevertheless, the type list unambiguously includes dotted lists and
circular lists.

For each element of a list there is a cons. The empty list has no ekments and is not a cons.

The types cons and null form an ezhustiue partition of the type list.

See Also:
Section 2.4.1 (Left-Parenthesis), Section 22.1.3.5 (Printing Lists and Conses)

null System Class

Class Precedence List:
null, symbol, list, sequence, t

Description:
The only objecl. of type null is nil, which represents the empty list and can also be notated 0.

See Also:
Section 2.3.4 (Symbols as Tokens), Section 2.4.1 (Left-Parenthesis), Section 22.1.3.3 (Printing
Symbols)

Conses 14-3

ANSI X3.226-1994 Programming Language-Common Lisp

cons System Class

Class Precedence List:
cons, list, sequence, t

Description:
A cons is a compound object having two components, called the car and cdr. These form a dotted
pair. Each component can be any object.

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(cons [car-typespcc [cdr-typcspec]l)

Compound Type Specifier Arguments:
car-typespec-a type specifier, or the symbol *. The default is the symbol *.

cdr-typespec-a type specifier, or the symbol *. The default is the symbol *.

Compound Type Specifier Description:
This denotes the set of conses whose car is constrained to be of type car-typespcc and whose cdr
is constrained to be of type cdr-typespec. (If either car-typespcc or cdr-typaspcc is *, it is as if the
type t had been denoted.)

See Also:
Section 2.4.1 (Left-Parenthesis), Section 22.1.3.5 (Printing Lists and Conses)

atom TYPC

Supertypes:
atom, t

Description:
It is equivalent to (not cons).

14-4 Consea

Programming Language-Common Lisp ANSI X3.226-1994

cons Function

Syntax:
cons object-l object-2 -+ cons

Arguments and Values:
object-l -an object.

object-l-an object.

cons-a cons.

Description:
Creates a fresh cons, the car of which is object-l and the cdr of which is object-2.

Examples:

(cons 1 2) + (1 . 2)
(cons 1 nil) - (1)
(cons nil 2) -+ (NIL . 2)
(cons nil nil) + (NIL)
(cons 1 (cons 2 (cons 3 (cons 4 nil)))) + (1 2 3 4)
(cons 'a 'b) -* (A . B)
(cons 'a (cons 'b (cons 'c '0))) -+ (A B C)
(cons 'a '(b C d)) - (A B C D)

See Also:
list

Notes:
If object-2 is a list, cons can be thought of as producing a new list which is like it but has object-
1 prepended.

consp Function

Syntax:
consp object -) generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type cons; otherwise, returns false.

Examples:

(consp nil) + false
(consp (cons 1 2)) - true

The empty list is not a cons, so

Conses 14-5

ANSI X3.226-1994 Programming Language--Common Lisp

(consp ’ 0 1 Z (consp ‘nil) --+ false

See Also:
llstp

Notes:

(consp object) E (typep object ‘COILS) s (not (typep object ‘atom)) E (typep object ’ (not
atom))

Function

Syntax:
atom object - generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a genera&ted boolean.

Description:
Returns true if object is of type atom; otherwise, returns false.

Examples:

(atom ’88s) - true
(atom (cons 1 2)) - false
(atom nil) -+ true
(atom ‘0) -+ true
(atom 3) - he

Notes:

(atom object) E (typep object ‘atom) E hot (consp object))
E (not (typep object ‘cons)) E (typep object ‘(not cone))

rplaca, rplacd Function

Syntax:
rplaca cons object -+ cons
rplacd cons object + cons

Pronunciation:
rplaca: [,rE ’ plakc] or [,re ’ plakc]

rplacd: [,rB ’ plakdc] or [,rt ’ plakdc] or [I rB ’ plakdE] or [,rc ’ plakdi?]

14-6 conses

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
cons-a cons.

object-an object.

Description:
rplaca replaces the car of the cons with object.

rplacd replaces the cdr of the cons with object.

Examples:

(defparameter *some-list* (list* 'one 'two 'three 'four)) -+ *some-list*
some-list -+ (OIE TYO THREE . FOUR)
(rplaca *some-list* 'uno) + (UN0 TWO THREE . FOUR)
some-list -+ (UN0 TYO THREE . FOUR)
(rplacd (last *some-list+) (list 'IV)) + (THREE IV)
some-list -) (UN0 TWO THREE IV)

Side Effects:
The cons is modified.

Should signal an error of type type-error if cons is not a cons.

car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar,
caddr, cdaar, cdadr, cddar, cdddr, caaaar, caaadr,
caadar, caaddr, cadaar, cadadr, caddar, cadddr,
cdaaar, cdaadr, cdadar, cdaddr, cddaar, cddadr,
cdddar, cddddr hcessor

Conses 14-7

ANSI X3.226-1994 Programming Language-Common Lisp

syntax:
car x
cdr x

4 object
+ object

caar x + object
cadr x + object
cdar x 4 object
cddr x + object

caaarx
caadr x
cadar x
caddr x
cdaarx
cdadr x
cddar x
cdddr x

-) object
+ object
-) object
+ object
+ object
-+ object
+ object
+ object

caaaar x
caaadr x
caadar x
caaddr x
cadaar x
cadadr x
caddar x
cadddr x
cdaaar x
cdaadr x
cdadar x
cdaddr x
cddaar x
cddadr x
cdddar x
cddddr x

- object
-) object
+ object
+ object
+ object
-* object
+ object
-+ object
- object
-+ object
-+ object
- object
+ object
+ object
- object
- object

Pronunciation:
cadr: [‘ka,dtr]

caddr: [’ kadc , dm] or [’ ka,dlid

cdr: [’ kti,dm]

cddr: [’ ktidc ,dtr] or [’ kc, dlidc

Arguments and Values:
x-a list.

object-an object.

new-object-an object.

Description:

(setf (car x) new-object)
(setf (cdr x) new-object)

(setf (cam x) new-object)
(setf (cadr x) new-object)
(setf (cdar x) new-object)
(setf (cddr x) new-object)

(setf (caaar x) new-object)
(setf (caadr x) new-object)
(setf (cadar x) new-object)
(setf (caddr x) new-object)
(setf (cdaar x) new-object)
(setf (cdadr x) new-object)
(setf (cddar x) new-object)
(setf (cdddr x) new-object)

(setf (caaaar x) new-object)
(setf (caaadr x) new-object)
(setf (caadar x) new-object)
(setf (caaddr x) new-object)
(setf (cadaar x) new-object)
(setf (cadadr x) new-object)
(setf (caddar x) new-object)
(setf (cadddr x) new-object)
(setf (cdaaar x) new-object)
(setf (cdaadr x) new-object)
(setf (cdadar x) new-object)
(setf (cdaddr x) new-object)
(setf (cddaar x) new-object)
(setf (cddadr x) new-object)
(setf (cdddar x) new-object)
(setf (cddddr x) new-object)

If x is a cons, car returns the cur of that cons. If x is nil, car returns nil.

If x is a cons, cdr returns the cdr of that cons. If x is nil, cdr returns nil.

Functions are provided which perform compositions of up to four car and cdr operations. Their
names consist of a C, followed by two, three, or four occurrences of A or D, and finally an R.
The series of A’S and D’s in each funclion’s name is chosen to identify the series of car and cdr

14-8 Conses

Programming Language-Common Lisp ANSI X3.226-1994

operations that is performed by the function. The order in which the A’S and D’s appear is the
inverse of the order in which the corresponding operations are performed. Figure 14-6 defines the
relationships precisely.

This place . . .
(caar X)
(cadr x)
(cdar x)
(cddr x)
(caaar x)
(caadr x)
(cadar x)
(caddr X)

(cdaar X)
(cdadr x)
(cddar x)
(cdddr x)
(caaaar X)
(caaadr X1
(caadar X)
(caaddr X)

(cadaar X)

(cadadr x)
(caddar X)

(cadddr x)
(cdaaar X)
(cdaadr x1
(cdadar x)
(cdaddr X)
(cddaar x)
(cddadr x)
(cdddar x)
(cddddr x)

Is equivalent to this place . . .
(car (car xl)
(car (cdr xl)
(cdr (car x))
(cdr (cdr x))
(car (car (car x)1)
(car (car (cdr xl))
(car (cdr (car x)1)
(car (cdr (cdr xl))
(cdr (car (car xl))
(cdl- (car (air x)))
(cdr (cdl- (car xl))
(cdr (cdl- (cdl- xl))
(car (car (car (car xl)))
(car (car (car (cdr x)1))
(car (car (cdr (car x)1))
(car (car (cdr (cdr x))))
(car (cdr (car (car xl)))
(car (air (car (cdr x))))
(car (cdr (cdr (car x))))
(car (cdl- (cdr (cdr x)1))
(air (car (car (car x))))
(air (car (car (cdr x))))
(cdr (car (cdl- (car x))))
(cdr (car (cdl- (cdr x))))
(cdr (cdr (car (car x)1))
(cdr (cdr (car (cdr xl)))
(air (cdr (cdr (car x))))
(cdr (cdr (cdr (cdr x))))

Figure 14-6. CAR and CDR variants

setf can also be used with any of these functions to change an existing component of x, but setf
will not make new components. So, for example, the car of a cons can be assigned with setf of
car, but the car of nil cannot be assigned with setf of car. Similarly, the car of the car of a cons
whose car is a cons can be assigned with setf of caar, but neither nilnor a cons whose car is nil
can be assigned with setf of mar.

The argument x is permitted to be a dotted list or a circular list.

Examples:

(car nil) -* NIL
(cdr ‘(1 . 2)) + 2
(cdr ‘(1 2)) - (2)
(cadr ‘(1 2)) + 2
(car ‘(a b c)) -+ A
(cdr ‘(a b c)) + (FJ C)

Exceptional Situations:
The functions car and cdr should signal type-error if they receive an argument which is not a
list. The other functions (caar, cadr, . . . cddddr) should behave for the purpose of error checking

Conses 14-9

ANSI X3.226-1994 Programming Language-Common Lisp

as if defined by appropriate calls to car and Cdr.

See Also:
rplaca, first, rest

Notes:
The car of a cons can also be altered by using rplaca, and the cdr of a cons can be altered by
using rplacd.

(car 2) Z (first I)
(cadr t) E (second t) E (car (cdr 2))
(caddr z) f (third z) f (car (cdr (cdr 2)))
(cadddr t) Z (fourth 2) E (car (cdl- (cdr (cdr 2))))

copy-tree Function

syntax:
copy-tree tree + new-tree

Arguments and Values:
tree-a tree.

new-tree-a tree.

Description:
Creates a copy of a tree of conses.

If tree is not a cons, it is returned; otherwise, the result is a new cons of the results of calling
copy-tree on the car and cdr of tree. In other words, all comes in the tree represented by tree
are copied recursively, stopping only when non-conses are encountered.

copy-tree does not preserve circularities and the sharing of substructure.

Examples:

(setq object (list (cons I “one”)
(cons 2 (list ‘a ‘b ‘~1)))

-+ ((1 . "one") (2 A B Cl)
(setq object-too object) - ((1 . "one") (2 A B C))
(setq copy-as-list (copy-list object))
(setq copy-as-alist (copy-alist object))
(setq copy-as-tree (copy-tree object))
(eq object object-too) - true
(eq copy-as-tree object) 4 fake
(eql copy-as-tree object) + fake
(equal copy-as-tree object) -+ irue
(setf (first (cdr (second object))) "a"

(car (second object)) "two"
(car object) '(one . 1)) - (ONE . 1)

object - ((ONE . 1) (Y.vo*' "a" B C))
object-too -* ((ONE . 1) ("two" "a" E C))
copy-as-list + ((1 . "one") ("two" "a" B C))
copy-as-alist + ((1 . "one") (2 "a" B C))

14-10 Consea

Programming Language-Common Lisp ANSI X3.226-1994

copy-as-tree - ((1 . "one") (2 A B C))

See Also:
tree-equal

sublis, nsublis Function

Syntax:
sublis dkt tree &key key tat tat-not - new-tree

nsublis dist tree &key key test test-not -+ new-tree

Arguments and Values:
al&--an association list.

tree-a tree.

tat-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

new-tree-a bee.

Description:
sublis makes substitutions for objects in tree (a structure of conses). nsublis is like sublis but
destructively modifies the relevant parts of the free.

sublis looks at all subtrees and leaves of tree; if a subtree or leaf appears as a key in alist (that
is, the key and the subtree or leaf satisfy the test), it is replaced by the object with which that
key is associated. This operation is non-destructive. In effect, sublis can perform several subst
operations simultaneously.

If sublis succeeds, a new copy of tree is returned in which each occurrence of such a subtree or
leaf is replaced by the object with which it is associated. If no changes are made, the original tree
is returned. The original tree is left unchanged, but the result tree may share cells with it.

nsublis is permitted to modify tree but otherwise returns the same values as sublis.

Examples:

(sublie '((x . 100) (z . zpriae))
'(plus x (minus g 2 x p) 4 . x1)

+ (PLUS 100 0lINUS G ZPRIME 100 P) 4 . 100)
(sublie '(cc+ x y) . (- x y)) ((- x y) . (+ x y)))

'(* (1 (+ x y) (+ x p)) (- x y))
:test #'equal)

+ (* (/ (- x Y) (+ x P)) (+ x Y))
(setq tree1 '(1 (1 2) ((1 2 3)) (((1 2 3 4)))))

- (1 (1 2) ((1 2 3)) (((1 2 3 4))))
(sublis '((3 . "three")) tree11

-* (1 (1 2) ((1 2 "three")) (((1 2 "three" 4))))
(sublis '((t . "string"))

(sublis '((1 . ""1 (4 . 44)) tree11

Conses 14-11

ANSI X3.226- 1994 Programming Language-Common Lisp

:key #'stringp)
--* (“string” (“string” 2) (("string" 2 3)) (((“string” 2 3 44))))
tree1 + (1 (1 2) ((1 2 3)) (((1 2 3 4))))
(setq tree2 '("one" ("one" "tvo") (("one" "Tvo" "three"))))

+ ("one" ("one" "tvo") (("one" "Two" "three")))
(sublis ‘((“two” . 2)) tree21

+ ("one" ("one" "tuo") (("one" "Tvo" "three")))
tree2 + ("one" ("one" "tvo") (("one" "Two" "three")))
(sublis ’ ((“tvo” . 2)) tree2 :test 'equal)

-+ ("one" ("one" 2) (("one" "Two" "three")))

(nsublis ‘((t . ‘temp))
tree1
:key *‘(lambda (x) (or (atom x) (< (list-length x1 3))))

--I ((QUOTE TEE') (QUOTE TEXP) QUOTE TFJ'IP)

Side Effects:
nsublis modifies tree.

See Also:
subst, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

Because the side-effecting variants (e.g., nsublis) potentially change the path that is being
traversed, their effects in the presence of shared or circular structure structure may vary in
surprising ways when compared to their non-side-effecting alternatives. To see this, consider the
following side-effect behavior, which might be exhibited by some implementations:

(defun test-it (fn)
(let* ((shared-piece (list ‘a ‘b))

(data (list shared-piece shared-piece)))
(funcall fn ‘((a . b) (b . a)) data)))

(test-it t’sublis) - ((B A) (B A)>
(test-it S'nsublis) - ((A B) (A B))

subst, subst-if, subst-if-not, nsubst, nsubst-if,
nsubst-if-not Function

Syntax:
subst new old tree Okay key test test-not -+ new-tree

sub&-if new predicate tree kkey key -+ new-tree

subst-if-not new predicate tree kkey key + new-tree

nsubst new o/d tree kkey key test test-not + new-tree

nsubst-if new predicate tree kkey key -+ new-tree

nsubst-if-not new predicate tree kkey key + new-tree

14-12 Conses

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
new-an object.

old-an object.

predicate-a symbol that names a function, or a function of one argument that returns a general-
ized boolean value.

tree-a tree.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

new-tree-a bee.

Description:
subst, subst-if, and subst-if-not perform substitution operations on tree. Each function searches
tree for occurrences of a particular old item of an element or subexpression that satisfies the test.

nsubst, nsubst-if, and nsubst-if-not are like subst, subst-if, and subst-if-not respectively,
except that the original tree is modified.

subst makes a copy of tree, substituting new for every subtree or leaf of tree (whether the subtree
or leaf is a car or a cdr of its parent) such that o/d and the subtree or leaf satisfy the test.

nsubst is a destructive version of subst. The list structure of tree is altered by destructively
replacing with new each leaf of the tree such that old and the leaf satisfy the test.

For subst, subst-if, and subst-if-not, if the functions succeed, a new copy of the tree is returned
in which each occurrence of such an element is replaced by the new element or subexpression. If
no changes are made, the original tree may be returned. The original tree is left unchanged, but
the result tree may share storage with it.

For nsubst, nsubst-if, and nsubst-if-not the original free is modified and returned as the func-
tion result, but the result may not be eq to tree.

Examples:

(setq tree1 '(1 (1 2) (1 2 3) (1 2 3 4))) * (1 (1 2) (1 2 3) (1 2 3 4))
(subst "two" 2 treel) + (1 (1 "two“) (1 "tvo" 3) (1 "tvo" 3 4))
(sub& "five" 5 treel) + (1 (1 2) (1 2 3) (1 2 3 4))
(eq tree1 (subst "five" 5 treel)) -) implementation-dependent
(subst 'tempest 'hurricane

'(Shakespeare vrote (the hurricane)))
--+ GHAKESPEAKE WROTE (THE TEMPEST))

ksubst 'foe 'nil '(Shakespeare vrote (tvelfth night)))
--+ ~AKE~PEA~ WROTE (TUELFTH BIGHT . ~00) . FOCI)

(subst '(a . cons) '(old . pair)
'((old . spice) ((old . shoes) old . pair) (old . pair))
:test #'equal)

* ((OLD . SPICE) ((OLD . SHOES) A . CONS) (A . CONS))

(sub&-if 5 #'listp tree11 -) 5
(subst-if-not '(x) #'consp tree11

- (1 X)

tree1 + (1 (1 2) (1 2 3) (1 2 3 4))

Conses 14-13

ANSI X3.226-1994 Programming Language-Common Lisp

(nsubst ‘x 3 tree1 :key #‘(lambda (y) (and (listp y) (third y))))
- (1 (1 2) x X)

tree1 - (1 (1 2) X XI

Side Effects:
usubst, nsubst-if, and uaubst-if-not might alter the Ine s2rwAure of tree.

See Also:
substitute, nsubstitute, Section 32.1 (Compiler Terminology), Section 3.6 (Traversal Rules and
Side Effects)

Notes:
The :test-not parameter is deprecated.

The functions sub&if-not and asubst-if-not are deprecated,

One possible definition of subst:

(defun subst (old new tree West z &key test test-not key)
(cond ((satisfies-the-test old tree :test test

:test-not test-not :key key)
nev)

((aton tree) tree)
(t (let ((a (apply #‘subat old new (car tree) ICI)

(d (apply St’eubst old new (cdr tree) x)1)
(if (and (eql a (car tree))

(eql d (cdr tree)) 1
tree
(cons ad))))))

tree-equal Function

Syntax:
tree-equali tree-1 tree-2 tkey test test-not ---) generalized-boolean

Arguments and Values:
WC-1 -a tree.

tret-2-a tree.

test-a designafor for a junction of two arguments that returns a generalized boolean,

test-nqt-a designator for a junction of two arguments that returns a generalized boolean.

generalized-boolean-a generalized boolean.

Description:
tree-equal tests whether two trees are of the same shape and have the same leaves, tree-equal
returns true if tree-l and tree-2 are both atoms and satisfy the test, or if they are both conses
and the car of tree-1 is tpge-equal to the car of tree-a and the cdr crf &se-l is tree-equal to the
cdr of tree-?. Otherwise, t.re+equd returns false.

tree-equal recursively compares copses but pot any other objectn that have components.

14-14 Consea

Programming Language-Common Lisp ANSI X3.226-1994

The first argument to the :test or :test-not function is tree-I or a COP or cdr of tree-l; the
second argument is tree-2 or a car or cdr of tree-2,

Examples:

(setq tree1 ‘(1 (1 2))
tree2 ‘(1 (1 2))) - (1 (1 2))

(tree-equal tree1 tree21 - love
(eql tree1 tree21 - false
(setq tree1 ‘(‘a (‘b ‘c))

tree2 ‘(‘a (‘b ‘c))) --) (‘a (‘b ‘cl)
+ ((QUOTE A) ((QUOTE 8) (QUOTE C)))

(tree-equal tree1 tree2 :test ‘eq) - 2rve

Exceptional Situations:
The consequences are undefined if both tree-l and tree-2 are circular.

See Also:
equal, Section 3.6 (Traversal Rules and Side Effects)

Notes:
Tbe :test-not parameter is deprecated.

copy-list Function

Syntax:
copy-list list .+ copy

Arguments and Values:
list-a proper lid or a dotfed list,

copy-a list.

Description:
Returns a copy of list, If list is a dotted list, the resulting list will also be a dotted list.

0n)y the list structure of list is copied; the elements of the resulting list are the some as the
corresponding elements of the givea list.

Examples:

(setq let (list 1 (liot 2 3))) * (1 (2 3))
(retq slst Let) + (1 (2 3))
betq slst (copy-list 1st)) - Cl (? 3))
(eq &at 1st) * true
Ceq clst 1st) -+ false
(equal clat 1st) + trve
(rplaca 1st t’ona”) -+ (“9ne” (2 3))
slst - (“pne” (2 3))
clst - (1 (2 31)
(a@# (caadr $st) “tvO’l) + “tvo”
1st * (“Or& (“210” 3))
slot * (“ORB” O’tiv9” 3))
cl9t --) (1 ("tv9" 3))

Conses 14-15

ANSI X3.226-1994 Programming Language-Common Lisp

Exceptional Situations:
The consequences are undefined if list is a circular list.

See Also:
copy-a&t, copy-seq, copy-tree

Notes:
The copy created is equal to list, but not eq.

list, list* Function

Syntax:
list &rest objects - list

list* &rest objects+ - result

Arguments and Values:
object-an object.

list-a list.

result-an object.

Description:
list returns a Iist containing the supplied objects.

list* is like IIst except that the last argument to list becomes the car of the last cons constructed,
while the last argument to list* becomes the cdr of the last cons constructed. Hence, any given
call to list* always produces one fewer conses than a call to list with the same number of argu-
ments.

If the last argument to list* is a list, the effect is to construct a new list which is similar, but
which has additional elements added to the front corresponding to the preceding arguments of
list*.

If list* receives only one object, that object is returned, regardless of whether or not it is a list.

Examples:

(list 1) + (1)
(list* 1) -+ 1
(setq a 1) + 1
(list a 2) + (1 2)
'(a 2) - (A 2)
(list 'a 2) + (A 2)
(list* a 2) + (1 . 2)
(list) - NIL ;i.e., 0
(setq a '(1 2)) - (1 2)
(eq a (list* a)) + true
(list 3 4 'a (car '(b . cl) (+ 6 -2)) + (3 4 A B 4)
(list* 'a 'b 'c 'd) g (cons 'a (cons 'b (cons 'c 'd))) + (A B C . D)
(list* 'a 'b 'c '(d e f)) + (A B C D E F)

14-16 Consea

Programming Language-Common Lisp ANSI X3.226- 1994

See Also:
cons

Notes:

(list* x) 5 X

list-length Function

Syntax:
list-length list + length

Arguments and Values:
list-a proper list or a circular list.

length-a non-negative integer, or nil.

Description:
Returns the length of list if list is a proper list. Returns nil if list is a circular list.

Examples:

(list-length '(a b c d)) + 4
(list-length '(a (b c) d)) -+ 3
(list-length '0) + 0
(list-length nil) -+ 0
(defun circular-list &rest elements)

(let ((cycle (copy-list elements)))
(nconc cycle cycle)))

(list-length (circular-list 'a 'b)) + NIL
(list-length (circular-list 'a)) -+ NIL
(list-length (circular-list)) + 0

Exceptional Situations:
Should signal an error of type type-error if list is not a proper list or a circular list.

See Also:
length

Notes:
list-length could be implemented as follows:

(defun list-length (x)
(do ((n 0 (+ n 2)) ;Counter.

(fast x (cddr fast)) ;Fast pointer: leaps by 2.
(slov x (cdr slov))) :Slov pointer: leaps by 1.

(nil)
;; If fast pointer hits the end, return the count.
(vhen (endp fast) (return n))
(vhen (endp (cdr fast)) (return (+ n 1)))
;; If fast pointer eventually equals slov pointer,
:; then ve must be stuck in a circular list.

Conses 14-17

___-.- _.._--. -

ANSI X3.226-1994 Programming Language-Common Lisp

:: (A deeper property is the converse: if we are
:: stuck in a circular list, then eventually the
;; fast pointer vi11 equal the slov pointer.
;; That fact justifies this implementation.)
(vhen (and (eq fast slov) (> n 0)) (return nil))))

listp Fhction

syntax:
listp object + generalized-boolean

Arguments and Values:
object-an object .

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type list; otherwise, returns false.

Examples:

(listp nil) + true
(listp (cons 1 2)) -+ true
(listp (make-array 6)) -+ fake
(listp t) + false

See Also:
consp

Notes:
If object is a cons, listp does not check whether object is a proper list; it returns true for any kind
of list.

(listp object) s (typep object 'list) E (typep object ‘(or cons null))

make-Es t Function

Syntax:
make-list size &key initia/-element + list

Arguments and Values:
size-a non-negative integer.

initial-element-an object. The default is nil.

list-a list _

14-18 Consea

Programming Language-Common Lisp ANSI X3.226-1994

Description:
Returns a list of length given by sire, each of the elements of which is initial-element.

Examples:

(make-list 5) -+ (NIL NIL NIL NIL NIL)
(make-list 3 :initial-element 'rah) 4 (RAIi RAH RAH)
(make-list 2 :initial-element '(1 2 3)) + ((1 2 3) (1 2 3))
(make-list 0) + NIL ;i.e., 0
(make-list 0 :initial-element 'nev-element) + NIL

Exceptional Situations:
Should signal an error of type type-error if size is not a non-negative integer.

See Also:
cons, list

push MUCTO

Syntax:
push item place -+ new-place-value

Arguments and Values:
item-an object.

p/ace-a place, the valve of which may be any object.

new-place-value-a list (the new value of p/ace).

Description:
push prepends item to the list that is stored in place, stores the resulting list in place, and
returns the list.

For information about the evaluation of subforms of place, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq llst '(nil)) ---) (NIL)
(push 1 (car list)) --) (1)
list + ((1))
(push 1 (car list)) + (1 1)
llst + ((1 1))
(setq x '(a (b c) d)) + (A (B C) D)
(push 5 (cadr x)) -* (5 B C)
x -t (A (5 B C) D)

Side Effects:
The contents of place are modified.

See Also:
pop, pushnew, Section 5.1 (Generalized Reference)

Cons3 14-19

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
The effect of (push ilem place) is equivalent to

(setf place (cons ilem place))

except that the subjorms of place are evaluated only once, and item is evaluated before place.

POP Macro

Syntax:
pop place + element

Arguments and Values:
place-a place, the value of which is a lid (possibly, but necessarily, a dotted lid or circular list).

element-an object (the cur of the contents of p/ace).

Description:
pop reads the value of place, remembers the car of the list which was retrieved, writes the cdr of
the list back into the p/ace, and finally yields the car of the originally retrieved list.

For information about the evalua2ion of subjorms of p/ace, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq stack ‘(a b c>) * (A B C)
(pop stack) - A
stack -+ (B C)
(setq llst ‘((1 2 3 4))) + ((1 2 3 4))
(pop (car list)) - 1
list * ((2 3 4))

Side Effects:
The contents of place are modified.

See Also:
push, pushnew, Section 5.1 (Generalized Reference)

Notes:
The effect of (pop place) is roughly equivalent to

(pro@ (car place) 63etf p/ace (cdr place)))

except that the latter would evaluate any subjorms of place three times, while pop evaluates them
only once.

14-20 Comes

Programming Language-Common Lisp ANSI X3.226-1994

first, second, third, fourth, fifth, sixth, seventh,
eighth, ninth, tenth Accessor

Syntax:
+ object I (setf (fbst list) new-object)
-+ object (setf (second list) new-object)
-+ object (setf (third list) new-object)
+ object (setf (fourth list) new-object)
+ object (setf (fifth list) new-object)
-+ object (setf (sixth list) new-object)
-+ object (setf (seventh list) new-object)
-+ object (setf (eighth list) new-object)
+ object (setf (ninth list) new-object)
-+ object (setf (tenth list) new-object)

Arguments and Values:
list-a list, which might be a dotted list or a circular list.

first list
second list
third list
fourth list
fifth list
sixth list
seventh list
eighth list
ninth list
tenth list

object, new-object-an object.

Description:
The functions first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth access
the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth elements of list,
respectively. Specifically,

(first list)
(second /kit)
(third list)
(fourth list)
(fifth list)
(sixth list)
(seventh list)
(eighth list)
(ninth list)
(tenth list)

E (car list)
= - (car (cdr list))
E (car (cddr /ist))
S (car (cdddr /ist))
= - (car (cddddr list))
S (car (air (cddddr /istIll
G (car (cd& (cddddr list))I
2 (car (cdddr (cddddr list)))
f (car (cddddr (cddddr list)))
E (car (cdr (cddddr (cddddr list))) 1

setf can also be used with any of these functions to change an existing component. The same
equivalences apply. For example:

(setf (fifth list> new-object) E (setf (car (cddddr list)> new-object)

Examples:

(setq 1st ‘(1 2 3 (4 5 6) C(V)) vi 7 8 9 10))
+ (1 2 3 (4 5 6) (0’)) VI 7 8 9 10)

(first 1st) - 1
(tenth 1st) + 10
(fifth 1st) -+ ((V))
(second (fourth 1st)) * 5
(sixth ‘(1 2 3)) + HIL
(setf (fourth 1st) “four”) - “four”
1st + (1 2 3 “four” ((V)) VI 7 8 9 10)

Conses 14-21

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
car, nth

Notes:
fkrst is functionally equivalent to car, second is functionally equivalent to cadr, third is function-
ally equivalent to caddr, and fourth is functionally equivalent to cadddr.

The ordinal numbering used here is one-origin, as opposed to the zero-origin numbering used by
nth:

(fifth x) E (nth 4 xl

nth Accessor

syntax:
nth n list -+ object

(setf (nth n list) new-object)

Arguments and Values:
n-a non-negative integer.

list-a list, which might be a dotted list or a circnlar list.

object-an object.

new-object-an object.

Description:
nth locates the nth element of list, where the car of the list is the “zeroth” element. Specifically,

(nth n /ist) 3 (car (nthcdr n /ist))

nth may be used to specify a place to aetf. Specifically,

(aetf (nth n list) new-object) 1 (satf (car (nthcdr n list)) new-objecH

Examples:

(nth 0 ‘(foe bar bad) -+ FOCI
(nth 1 ‘(foe bar bad) -+ BAR
(nth 3 ‘(foe bar baz)) + BIL
(setq O-to-3 (list 0 1 2 3)) - (0 1 2 3)
(aetf (nth 2 O-to-a) “tvo”) + “two”
o-to-3 + (0 1 “la?o” 3)

See Also:
elt, first, nthcdr

14-22 consea

Programming Language-Common Lisp ANSI X3.226-1994

endp Function

syntax:
endp list + generalized-boolean

Arguments and Values:
list-a list, which might be a dotted list or a circular list.

generalized-boolean-a generalized boolean.

Description:
Returns true if list is the empty list. Returns false if list is a cons.

Examples:

(endp nil) -+ true
<endp '(1 2)) - false
(endp (cddr '(1 2))) + tme

Exceptional Situations:
Should signal an error of type type-error if list is not a list.

Notes:
The purpose of endp is to test for the end of proper list. Since endp does not descend into a
cons, it is well-defined to pass it a dotted list. However, if shorter “lists” are iteratively produced
by calling cdr on such a dotted list and those “lists” are tested with endp, a situation that has
undefined consequences will eventually result when the non-nil atom (which is not in fact a list)
finally becomes the argument to endp. Since this is the usual way in which endp is used, it is
conservative programming style and consistent with the intent of endp to treat endp as simply
a function on proper lists which happens not to enforce an argument type of proper list except
when the argument is atomic.

null Function

Syntax:
null object -) boolean

Arguments and Values:
object-an object.

boolean-a boolean.

Description:
Returns t if object is the empty list; otherwise, returns nil.

Examples:

hull '0) - T
hull nil) - T
(null t) -+ NIL

Conses . 14-23

- . _ ~ - ^ - - - _ L ~ . - . . . _ . _ _ - _ _ . - _ . - ^

A N S I X 3 .2 2 6 -1 9 9 4 P r o g ra m m i n g L a n g u a g e -C o m m o n L i s p

(n u l l 1) - B IL

S e e A l s o :
n o t

N o te s :
n u l l i s i n te n d e d to b e u s e d to te s t fo r th e e m p ty l i s t w h e re a s n o t i s i n te n d e d to b e u s e d to i n v e rt
a b o o l e a n (o r g e n e ra l i z e d b o o l e a n). O p e ra ti o n a l l y , n u l l a n d n o t c o m p u te th e s a m e re s u l t; w h i c h to
u s e i s a m a tte r o f s ty l e .

(n u l l o b j e c t) 3 (ty p e p o b j e c t ' n u l l) 1 (e q o b j e c t ' 0)

n c o n c F u n c ti o n

S y n ta x :
n c o n c & r e s t l i s ts -) c o n c a te n a te d -l i s t

A rg u m e n ts a n d V a l u e s :
l i s t-e a c h b u t th e l a s t m u s t b e a l i s t (w h i c h m i g h t b e a d o tte d l i s t b u t m u s t n o t b e a c i rc u l a r
l i s t); th e l a s t l i s t m a y b e a n y o b j e c t.

c o n c a te n a te d - l i s t-a l i s t.

D e s c ri p ti o n :
R e tu rn s a l i s t th a t i s th e c o n c a te n a ti o n o f l i s ts . If n o l i s ts a re s u p p l i e d , (n c o n c) re tu rn s n i l . n c o n c
i s d e fi n e d u s i n g th e fo l l o w i n g re c u rs i v e re l a ti o n s h i p :

(n c o n c) - * 0
(n c o n c n i l . l i s ts) Z (n c o n c . l i s ts)
(n c o n c l i s t) -+ l i s t
(n c o n c l i s t-l l i s t-2 1 E (p ro g n (rp l a c d (l a s t l i s t-1) l i s t-2) l i s t-1)
(n c o n c l i s t-l l i s t-2 . l i s ts) E (n c o n c (n c o n c l i s t-l l i s t-2) . l i s ts)

E x a m p l e s :

(n c o n c) -+ N IL
(s e tq x ' (a b c l > -P (A B C)
(s e tq y ' (d e f)) - * (D E F)
(n c o n c x y) -+ (A B C D E F)
x - - r (A B C D E F)

N o te , i n th e e x a m p l e , th a t th e v a l u e o f x i s n o w d i ffe re n t, s i n c e i ts l a s t c o n s h a s b e e n rp l a c d ’d
to th e v a l u e o f y . If (n c o n c x y) w e re e v a l u a te d a g a i n , i t w o u l d y i e l d a p i e c e o f a c i rc u l a r l i s t,
w h o s e p r i n te d re p re s e n ta ti o n w o u l d b e (A B C D E F D E F D E F . , .), re p e a ti n g fo re v e r; i f th e
* p r i n t-c i rc l e * s w i tc h w e re n o n -n i l , i t w o u l d b e p r i n te d a s (A B C . # I= (D E F . # l #)).

(s e tq fo o (l i s t ' a ' b ' c ' d ' e)
b a r (l i s t ' f ' g ' h ' i ' j)
b a z (l i s t ' k ' 1 W) + (K L H)

(s e tq fo o (n c o n c fo o b a r b a x)) -+ (A B C D E F G H IJ K L H >
fo o - - r (A B C D E F G R IJ K L H >

1 4 -2 4 C o n s e s

Programming LanguageCommon Lisp ANSI X3.226-1994

~=+(FGBIJKL~)
baz + (K L I¶,

(setq foo (list ‘a ‘b ‘c ‘d ‘e)
bar (list ‘f ‘g ‘h ‘i ‘j>
baz (list ‘k ‘1 ‘II)) -* (K L H>

(setq foo (nconc nil foo bar nil baz)) --,(ABCDEFGBIJKLHW)
foo+(ABCDEFGHIJKLI¶>
~=-+(FGBIJKLH)
baz + (K L I¶)

Side Effects:
The lists are modified rather than copied.

See Also:
append, concatenate

append Function

Syntax:
append &rest lists * result

Arguments and Values:
list-each must be a proper list except the last, which may be any object.

result-an object. This will be a Zist unless the last list was not a list and all preceding lists were
null.

Description:
append returns a new list that is the concatenation of the copies. lists are left unchanged; the list
structure of each of lists except the last is copied. The last argument is not copied; it becomes the
cdr of the final dotted pair of the concatenation of the preceding lists, or is returned directly if
there are no preceding non-empty lists.

Examples:

(append ‘(a b c) ‘(d e f) ‘0 ‘(g)) -) (A B C D E F G)
(append ‘(a b c) ‘d) + (A B C . D)
(setq 1st ‘(a b c)) - (A B C)
(append 1st ‘cd)) + (A B C D)
1st * (A B C)
(append) - KIL
(append ‘a) * A

See Also:
nconc, concatenate

Conses 14-25

ANSI X3.226-1994 Programming Language-Common Lisp

revappend, nreconc Function

Syntax:
revappend list tail + raw/t-list

nreconc lirt tail + result-list

Arguments and Values:
list-a proper list.

tail-an object,

result-list-an object.

Description:
revappend constructs a copy2 of list, but with the elements in reverse order. It then appends (as
if by nconc) the tail to that reversed list and returns the result.

nreconc reverses the order of elements in list (as if by nreverse). It then appends (as if by
nconc) the r&l to that reversed list and returns the result.

The resulting list shares list structure with tail.

Examples:

(let ((list-l (list 1 2 3))
(list-2 (list 'a 'b 'c)))

(print (revappend list-l list-211
(print (equal list-l ‘(1 2 3)))
(print (equal list-2 ‘(a b ~1)))

D(321ABC)
DT
DT
+T

(revappend ‘(1 2 3) ‘0) * (3 2 1)
(revappend ‘(1 2 3) ‘(a . b)) * (3 2 1 A . B)
(revappend ‘0 ‘(a b c)) -, (A B C)
(revappend ‘(1 2 3) ‘a) --) (3 2 1 . A)
(revappend ‘0 ‘a) -* A ;degenerate case

(let ((list-l '(1 2 3))
(list-2 '(a b c)))

(print (nreconc list-l list-2))
(print (equal list-l ‘(1 2 3)))
(print (equal list-2 ‘(a b 4)))

D(32lABC)
D IiIL
DT
*T

Side Effects:
revappend does not modify either of its arguments. nrcconc is permitted to modify list but not

14-26 CoIlsea

Programming Language-Common Lisp ANSI X3.226-1994

tail.

Although it might be implemented differently, nreconc is constrained to have side-effect behavior
equivalent to:

(nconc (nreverse list) tail)

See Also:
reverse, nreverse , nconc

Notes:
The following functional equivalences are true, although good implementations will typically use a
faster algorithm for achieving the same effect:

(revappend list tail) E (nconc (reverse /ist) tail)
(nreconc list tail) E (nconc (nreverse list) tail)

butlast, nbutlast Function

syntax:
butlast list &optional n -+ raw/t-list

nbutlast list &optional n + result-list

Arguments and Values:
list-a list, which might be a dotted lid but must not be a circular lid.

n-a non-negative integer.

result-list-a list.

Description:
butlast returns a copy of list from which the last n conses have been omitted. If n is not supplied,
its value is 1. If there are fewer than n conses in list, nil is returned and, in the case of nbutht,
list is not modified.

nbutlast is like butlast, but nbutlast may modify list. It changes the cdr of the cons n+l from
the end of the list to nil.

Examples:

(setq 1st '(1 2 3 4 5 6 7 8 9)) 4 (1 2 3 4 5 6 7 8 9)
(butlast 1st) --) (1 2 3 4 5 6 7 8)
(butlast 1st 5) + (1 2 3 4)
(butlast 1st (+ 5 5)) * NIL
1st + (1 2 3 4 5 6 7 8 9)
(nbutlast 1st 3) * (1 2 3 4 5 6)
1st + (1 2 3 4 5 6)
hbutlast 1st 99) + BIL
1st + (1 2 3 4 5 6)
(butlast '(a b c d)) + (A B C)
(butlast '((a b) (c d))) -* (0 B))

Consea 1427

ANSI X3.226-1994 Programming Language-Common Lisp

(butlast '(a)) - NIL
(butlast nil) - NIL
(setq foo (list 'a 'b 'c 'd)) + (A B C D)
(nbutlast foe) --) (A B C)
foo -* (A B C)
(nbutlast (list 'a)) - NIL
(nbutlast '0) * NIL

Exceptional Situations:
Should signal an error of type type-error if list is not a proper list or a dotted list. Should signal
an error of type type-error if n is not a non-negative integer.

Notes:

(butlast list n) E (ldiff list (last /kt n))

last Function

Syntax:
last list&optional n + tail

Arguments and Values:
list-a list, which might be a dotted list but must not be a circular list.

n-a non-negative integer. The default is 1.

tail-an object.

Description:
last returns the last n conses (not the last n elements) of list). If list is 0, last returns 0.

If n is zero, the atom that terminates list is returned. If n is greater than or equal to the number
of cons cells in list, the result is list.

Examples:

(last nil) - NIL
(last '(1 2 3)) - (3)
(last '(1 2 . 3)) + (2 . 3)
(setq x (list 'a 'b 'c 'd)) -+ (A B C D)
(last x1 - (D)
(rplacd (last x) (list 'e 'f)) x * (A B C D E P)
(last x1 - (F)

(last '(a b c)) - (Cl

(last '(a b c) 0) -+ 0
(last '(a b c) 1) + (C)
(last '(a b c) 2) + (B C)
(last '(a b c) 3) -+ (A B C)
(last '(a b c) 4) - (A B C)

(last '(a . b) 0) + B

14-28 Consea

Programming Language-Common Lisp ANSI X3.226-1994

(last '(a . b) 1) -) (A . B)
(last '(a . b) 2) - (A . B)

Except ional Situations:
The consequences are undefined if list is a circular list. Should signal an error of type type-error
if n is not a non-negative integer.

See Also:
butlast, nth

Notes:
The following code could be used to define last.

(defun last (list Loptional (n 1))
(check-type n (integer 0))
(do ((1 list (cdr 1))

(r list)
(i 0 (+ i 1)))

((atom 1) x-1
(if (>= i n) (pop r))))

ldiff, tailp Function

Syntax:
ldiff list object + result-list

tallp object list -+ generalized-boolean

Arguments and Values:
list-a list, which might be a dotted list.

object-an object.

result-list-a list,

generalized-boolean-a generalized boolean.

Description:
If object is the same as some tail of list, tallp returns true; otherwise, it returns false.

If object is the same as some tail of list, ldiff returns a fresh list of the elements of list that
precede object in the list structure of list; otherwise, it returns a copy2 of list.

Examples:

(let ((lists '#((a b c) (a b c . d))))
(dotimes (i (length lists)) ()

(let ((list (aref lists i)))
(format t "-2tlist=-S '21TCtailp object list)'

'44T(ldiff list object)-%" list)
(let ((objects (vector list (cddr list) (copy-list (cddr list))

'(f g h) '0 'd 'x1))

Conses 14-29

^____ -. - .--

ANSI X3.226-1994 Programming Language-Common Lisp

(dotimes <j (length objects)) 0
(let ((object (aref objects j>>>

(format t "-t object=3 -2lT'S '44T'S"
object (tailp object list) (ldiff list object))))))))

D

D list=(A B C)
D object=(A B C)
D object=(C)
D object=(C)
D object=(F G H)
D object=UIL
D object-D
D object=X
D

D list-CA B C . D)
D object=(A B C . D)
D object=(C . D)
D object=(C . D)
D object=(F G H)
D object=lJIL
D object=D
D object=X
+ NIL

(tailp object list)
T
T
BIL
BIL
T
IIL
HIL

(tailp object list)
T
T
NIL
NIL
NIL
T
NIL

(ldiff list object)
NIL
(A B)
(A B C)
(A B C)
(A B C)
(A B Cl
(A B Cl

(ldiff list object)
IIL
(A B)
(A B C . D)
(A B C . D)
(A B C . D)
(A B C)
(A B C . D)

Side Effects:
Neither Miff nor tailp modifies either of its arguments.

Exceptional Situations:
Should be prepared to signal an error of type type-error if list is not a proper list or a dotted list.

See Also:
set-difference

Notes:
If the list is a circular list, tailp will reliably yield a value only if the given object is in fact a
tail of list. Otherwise, the consequences are unspecified: a given implementation which detects
the circularity must return false, but since an implementation is not obliged to detect such a
situafion, taiip might just loop indefinitely without returning in that case.

tailp could be defined as follows:

(defun tailp (object list)
(do ((list list (cdr list)))

((atom list) (eql list object))
(if (eql object list)

(return t))))

and ldiff could be defined by:

(defun ldiff (list object)
(do ((list list (cdr list))

(r '0 (cons (car list) r)))
((at08 list)

(if (eql list object) (nreverse r) (nreconc r list)))
(when (eql object list)

14-30 conses

Programming Language-Common Lisp ANSI X3.226-1994

(return (nreverse r)))))

nthcdr Function

syntax:
nthcdr n list -* tail

Arguments and Values:
n-a non-negative integer.

list-a list, which might be a dotted list ot a circular list.

tail-m object.

Description:
Returns the tail of list that would be obtained by calling cdr n times in succession.

Examples:

(nthcdr 0 '0) -+ BIL
(nthcdr 3 '0) - BIL
(nthcdr 0 '(a b c)) - (A B C)
(nthcdr 2 '(a b c)) -+ (C)
(nthcdr 4 '(a b c)) + 0
(nthcdr 1 '(0 . 1)) - 1

(locally (declare (optimize (safety 3)))
(nthcdr 3 '(0 . 1)))

Error: Attempted to take CDR of 1.

Exceptional Situations:
Should signal an error of type type-error if n is not a non-negative integer.

For n being an integer greater than 1, the error checking done by (nthcdr n list) is the same as
for (nthcdr (- n 1) (cdr /&)I; see the function cdr.

See Also:
cdr, nth, rest

Conses 14-31

ANSI X3.226-1994 Programming Language-Common Lisp

rest Accessor

Syntax:
rest list - tail

(setf (rest list) new-tail)

Arguments and Values:
list-a list, which might be a dotted list or a circular list.

tail-an object.

Description:
rest performs the same operation as cdr, but mnemonically complements fist. Specifically,

(rest list) E (cdr list)
(setf (rest list) new-tail) z betf (cdr list> new-tail)

Examples:

(rest ‘(1 2)) + (2)
(rest ‘(1 . 2)) - 2
(rest ‘(1)) + NIL
(setq *cons* ‘(1 . 2)) + (1 . 2)
(setf (rest *cons*> “two”) 4 “two”
cons + (1 . “two”)

See Also:
cdr , nthcdr

Notes:
rest is often preferred stylistically over cdr when the argument is to being subjectively viewed as
a list rather than as a cons.

member, member-if, member-if-not Fzlnc tion

Syntax:
member item list &key key test test-not + tail

member-if predicate list &key key + tail

member-if-not predicate list &key key + tail

Arguments and Values:
item-an object.

list-a proper list.

predicate-a designator for a function of one argument that returns a generalized boolean.

test-a designator for a function of two arguments that returns a generalized boolean.

14-32 Conses

Programming Language-Common Lisp ANSI X3.226- 1994

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

tail-a list.

Description:
member, member-if, and member-if-not each search list for item or for a top-level element that
satisfies the test. The argument to the predicate function is an element of list.

If some element satisfies the test, the tail of list beginning with this element is returned; otherwise
nil is returned.

list is searched on the top level only.

Examples:

(member 2 '(1 2 3)) -+ (2 3)
(member 2 '((1 . 2) (3 . 4)) :test-not S'= :key #'cdr) -+ ((3 . 4))
(member 'e '(a b c d)) + NIL

(member-if S'listp '(a b nil c d)) --) (NIL C D)
(member-if It'numberp '(a #\Space S/3 foe)) * (S/3 FDCJ)
(member-if-not t'zerop

'(3 6 9 11 . 12)
:key #'(lambda (x1 (mod x 3))) + (11 . 12)

Exceptional Situations:
Should be prepared to signal an error of type type-error if list is not a proper list.

See Also:
find, position, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

The function member-if-not is deprecated.

In the following

(member 'a '(g (a y) c a d e a f)) -, (A D E A F)

the value returned by member is identical to the portion of the list beginning with a. Thus
rplaca on the result of member can be used to alter the part of the list where a was found
(assuming a check has been made that member did not return nil).

mapc, mapcar, mapcan, mapl, maplist, mapcon
Function

Syntax:
mapc function &rest lists+ -+ list-l

mapcar function &rest lists+ -* result-list

mapcan function &rest /ists+ 4 concatenated-results

Conses 14-33

ANSI X3.226-1994 Programming Language-Common Lisp

map1 function treat lists+ -+ list-l

maplist function &rest /kts+ -i result-list

mapcon function best lists+ + concatenated-results

Arguments and Values:
function-a designator for a function that must take as many arguments as there are lists.

list-a proper list.

list-l-the first list (which must be a proper list).

result-list-a list.

concatenated-results-a list.

Description:
The mapping operation involves applying function to successive sets of arguments in which one
argument is obtained from each sequence. Except for mapc and mapl, the result contains the
results returned by function. In the cases of mapc and mapl, the resulting sequence is list.

function is called first on all the elements with index 0, then on all those with index 1, and so on.
result-type specifies the type of the resulting sequence. If function is a symbol, it is coerced to a
function as if by symbol-function.

mapcar operates on successive elements of the lists. function is applied to the first element of
each list, then to the second element of each list, and so on. The iteration terminates when
the shortest list runs out, and excess elements in other lists are ignored. The value returned by
mapcar is a Iist of the results of successive calls to function.

mapc is like mapcar except that the results of applying function are not accumulated. The list
argument is returned.

maplist is like mapcar except that function is applied to successive sublists of the lists. function
is first applied to the lists themselves, and then to the cdr of each list, and then to the cdr of the
cdr of each list, and so on.

map1 is like maplist except that the results of applying function are not accumulated; list-l is
returned.

mapcan and mapcon are like mapcar and maplist respectively, except that the results of apply-
ing function are combined into a list by the use of nconc rather than list. That is,

(mapcon f xl . . . xn)
E (apply It’nconc (maplist f xi . . . xn))

and similarly for the relationship between mapcan and mapcar.

Examples:

hapcar #‘car ‘((I a) (2 b) (3 c))> --) (1 2 3)
(rapcar t'abs '(3 -4 2 -5 -6)) -+ (3 4 2 5 6)
hapcar #'cons '(a b c) '(I 2 3)) * ((A . 1) (B . 2) (C . 3))

(naplist #‘append ‘(1 2 3 4) '(1 2) '(I 2 3))
* ((1 2 3 4 1 2 1 2 3) (2 3 4 2 2 3))

(naplist #‘(la&da (x1 (cons ‘foe x1) ‘(a b c d))
+ ((FOOABCD) (FOOBCD) (FOOCD) (FOOD))

14-34 Conses

Programming Language-Common Lisp ANSI X3.226-1994

(raplist #‘(lambda (x) (if (member (car XI) (cdr x)1 0 1)) ‘(a b a c d b c))
+ (0 0 10 111)
;An entry is 1 if the corresponding element of the input
: list oas the last instance of that element in the input list.

(setq duty nil) + HIL
(rapt t’(laabda (&rest x) (setq duty (append duuy x)))

‘(1 2 3 4)
‘(a b c d e)
‘(I y z)) + (1 2 3 4)

duuy-+(lAX2BY3CZ)

(setq duuy nil) 4 BIL
(rap1 S’(lambda (x) (push x d-y)) ‘(1 2 3 4)) -+ (1 2 3 4)
durpay * ((4) (3 4) (2 3 4) (1 2 3 4))

(rapcan t’(lambda (x y) (if (null x) nil (list x y)))
‘(nil nil nil d e)
‘(1 2 3 4 5 6)) * (D 4 E 5)

(Irapcan #‘(lambda (x) (and (numberp x) (list x1))
‘(a 1 b c 3 4 d 5))

+ (1 3 4 5)

In this case the function serves as a filter; this is a standard Lisp idiom using mapcau.

(mapcon #‘list ’ (1 2 3 4)) + ((1 2 3 4) (2 3 4) (3 4) (4))

Exceptional Situations:
Should be prepared to signal an error of type type-error if any list is not a proper list.

See Also:
dolist, map, Section 3.6 (Traversal Rules and Side Effects)

acons Function

Syntax:
acons key datum alist + new-alist

Arguments and Values:
key-m object.

datum-an object.

alist-an association list.

new-alist-an association list.

Description:
Creates a fresh cons, the cdr of which is alist and the car of which is another fresh cons, the car
of which is key and the cdr of which is datum.

Examples:

(setq alist ‘0) -+ IIL

Conses 14-35

ANSI X3.226- 1994 Programming Language-Common Lisp

(acons 1 "one" alist) -* ((1 . wane"))
alist + NIL
(setq alist Caco- 1 "one" (acons 2 “two” alist))) - ((1 . "one") (2 . "tvo"))
(assoc 1 alist) -b (1 . "one")
(setq alist (acons 1 "uno" alist)) -+ ((1 . "uno") (1 . "one") (2 . "tvo"))
(assoc 1 alist) + (1 . "uno")

See Also:
assoc, pair&

Notes:

(acone key datum alist) E (cons (cons key datum) alist)

assoc, assoc-if, assoc-if-not Function

Syntax:
assoc item alist &key key test test-not + entry

assoc-if predicate alist &key key + entry

assooif-not predicate alist &key key + entry

Arguments and Values:
item-an object.

alist-an association list.

predicate-a designator for a function of one argument that returns a generalized boolean.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

entry-a cons that is an element of alist, or nil.

Description:
assoc, assoc-if, and assoc-if-not return the first cons in alist whose car satisfies the test, or nil if
no such cons is found.

For assoc, assoc-if, and assoc-if-not, if nil appears in alist in place of a pair, it is ignored.

Examples:

(setq values '((x . 100) (y . 200) (2 . 50))) --+ ((X . 100) (Y . 200) tZ . 50))
(assoc 'y values) + (Y . 200)
(rplacd (assoc 'y values) 201) --) (Y . 201)
(assoc 'y values) + (Y . 201)
(setq alist '((1 . "one")(2 . "tvo")(3 . "three")))

- ((1 . "one") (2 . "tvo") (3 . "three"))
(assoc 2 alist) -* (2 . "tvo")

14-36 Conses

Programming Language-Common Lisp ANSI X3.226-1994

(assoc-if #‘evenp alist) -+ (2 . “tQ0”)
(assoc-if-not #‘(lambda(x) (< x 3)) alist) -+ (3 . “three”)
(setq dlist ‘((“one” . l)("tQO" . 2))) -+ ((“one” . 1) (“tQo” . 2))
(assoc “one” alist) + NIL
(assoc “one” alist :test #‘equalp) --) (“one” . 1)
(assoc “two” alist :key #‘(lambda(x) (char x 2))) - NIL
(assoc #\o alist :key #’ (lambda(x) (char x 2))) -+ (“tQ0” . 2)
(assoc ‘r ‘((a . b) (c . d) (r . x) (s . y) (r . z))) + (R . X)
(assoc ‘goo ‘((foe . bar) (zoo . goo))) -r NIL
(assoc ‘2 ‘((1 a b c) (2 b c d) (-7 x y z))) + (2 B C D)
(setq alist ‘((“one” . 1) (“2” . 2) (“three” . 3)))

- ((“one” . 1) (“2” . 2) (Wuee” . 3))
(assoc-if-not #‘alpha-char-p alist

:key #‘(lambda (x1 (char x 0))) + (“2” . 2)

Exceptional Situations:
Should be prepared to signal an error of type type-error if alist is not an association list.

See Also:
rassoc, And, member, position, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

The function assoc-if-not is deprecated.

It is possible to rplacd the result of assoc, provided that it is not nil, in order to “update” alist.

The two expressions

(assoc item list :test fn)

and

(find item list :test fn :key #‘car) /

are equivalent, in meaning with one exception: if nil appears in alist in place of a pair, and item
is nil, find will compute the car of the nil in alist, find that it is equal to item, and return nil,
whereas assoc will ignore the nil in al& and continue to search for an actual cons whose car is
nil.

copy-alist

Syntax:
copy-alist alist + new-alist

Arguments and Values:
al&--an association list.

new-alist-an association list.

Description:
copy-alist returns a copy of al&.

Function

Cbnses 14-37

_ .__ -. _ .-.-

ANSI X3.226-1994 Programming Language-Common Lisp

The list structure of alist is copied, and the elements of alist which are conses are also copied (as
conses only). Any other objects which are referred to, whether directly or indirectly, by the alist
continue to be shared.

Examples:

(defparameter *alist* (acons 1 "one" (acons 2 "too" '0)))
alist + ((1 . "one") (2 . @%vo"))
(defparameter *list-copy* (copy-list *alist+))
list-copy -4 ((1 . "one") (2 . "two"))
(defparameter *alist-copy* (copy-alist *alist*))
alist-copy + ((1 . “one“) (2 . "too"))
(setf (cdr hssoc 2 *alist-copy+)) "deux") + "deux"
alist-copy -+ ((1 . "one") (2 . “deux@‘))
alist --) ((1 . "one") (2 . **tvo"))
betf (cdr bssoc 1 *list-copy*)) %noS8) + %noS8
list-copy -+ ((1 . %n~~~) (2 . '%uo"))
+alist* + ((1 . %not') (2 . *%uo"))

See Also:
copy-list

pairlis Fhction

syntax:
pairfis keys data koptional akt -+ new-alist

Arguments and Values:
keys-a proper list.

data-a proper list.

alist-an association list. The default is the empty list.

new-al&-an association list.

Description:
Returns an associaiion list that associates elements of keys to corresponding elements of data.
The consequences are undefined if keys and data are not of the same length.

If alist is supplied, pairlis returns a modified alist with the new pairs prepended to it. The new
pairs may appear in the resulting association list in either forward or backward order. The result
of

(pairlis ‘(one two) '(1 2) ‘((three . 3) (four . 19)))

might be

((one . 1) (tso . 2) (three . 3) (four . 19))
or

((tvo . 2) (one . 1) (three . 3) (four . 19))

14-38 Conses

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(setq keys '(1 2 3)
data '("one" "tvo" "three")
alist '((4 . "four"))) + ((4 . "four"))

(pairlis keys data) + ((3 . "three") (2 . "too") (1 . "one"))
(pairlis keys data alist)

- ((3 . "three") (2 . "tvo") (1 . "one") (4 . "four"))
alist - ((4 . "four"))

Exceptional Situations:
Should be prepared to signal an error of type type-error if keys and data are not proper l&s.

See Also:
acons

rassoc, rassoc-if, rassoc-if-not Function

Syntax:
rassoc item alist &key key tat test-not + entry

rassoc-if predicate alist &key key -+ entry

raaaoc-if-not predicate alist &key key + entry

Arguments and Values:
item-an object.

alist-an association list.

predicate-a designator for a function of one argument that returns a generalized boolean.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

entry-a cons that is an element of the alist, or nil.

Description:
rassoc, rassoc-if, and rassoc-if-not return the first cons whose cdr satisfies the test. If no such
cons is found, nil is returned.

If nil appears in alist in place of a pair, it is ignored.

Examples:

(setq alist '((1 . "one") (2 . "tvo") (3 . 3)))
- ((1 . “one”) (2 . "tvo") (3 . 3))

(rassoc 3 alist) --) (3 . 3)
(rassoc "tvo" alist) + NIL
(rassoc "tvo" alist :test 'equal) + (2 . "tvo")
hssoc 1 alist :key #'(lambda (x) (if hmberp x) (/ x 3)))) + (3 . 3)

Cones 14-39

ANSI X3.226- 1994 Programming Language-Common Lisp

(rassoc ‘a ’ ((a . b) (b . c) (c . a) (z . a))) + (C . A)
(rassoc-if S’stringp alist) + (1 . “one”)
(rassoc-if-not S’vectorp alist) * (3 . 3)

See Also:
assoc, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

The function rassoc-if-not is deprecated.

It is possible to rplaca the result of rassoc, provided that it is not nil, in order to “update” alist.

The expressions

(rassoc item list :test fn)

(find item list :test fn :hey #‘c&j

are equivalent in meaning, except when the item is nil and nil appears in place of a pair in the
alist. See the function assoc.

get-properties Function

syntax:
get-properties plist indicator-list + indicator, value, tail

Arguments and Values:
p/i&-a properiy Ii&.

indicator-list-a proper hi (of indicators).

indicator-an object that is an element of indicator-list.

value-an object.

tail-a list,

Description:
get-properties is used to look up any of several property list entries ail at once.

It searches the plist for the first entry whose indicator is identical to one of the objects in
indicator-list. If such an entry is found, the indicator and value returned are the properly indi-
cator and its associated propetiy value, and the tail returned is the tail of the plist that begins
with the found entry (i.e., whose car is the indicator). If no such entry is found, the indicator,
value, and tail are all nil.

Examples:

(setq x ‘0) -+ NIL
(setq *indicator-list* ’ (prop1 propa)) 4 (PROP1 PROP2)
(getf x ‘propl) + NIL
(setf (getf x ‘propl) ‘vail) + VALl

14-40 causes

Programming Language-Common Lisp ANSI X3.226-1994

(eq (getf x ‘propl) ‘vail) -+ irue
(get-properties x *indicator-list+) -* PROPl, VALI, (PROP1 VALI)
x + (PROP1 VALI)

See Also:
get, getf

getf Accessor

Syntax:
getf plist indicator &optional default -+ value

(setf (getf place indicator &optional default) new-value)

Arguments and Values:
plist-a property list.

place-a place, the value of which is a property list.

indicator-an object .

default-an object. The default is nil.

value-an object.

new-value-an object.

Description:
getf finds a property on the plist whose property indicator is identical to indicator, and returns
its corresponding property value. If there are multiple properties1 with that property indicator,
getf uses the first such property. If there is no property with that property indicator, default is
returned.

setf of getf may be used to associate a new object with an existing indicator in the property list
held by place, or to create a new assocation if none exists. If there are multiple properties1 with
that property indicator, setf of getf associates the new-value with the first such property. When
a getf form is used as a setf place, any default which is supplied is evaluated according to normal
left-to-right evaluation rules, but its value is ignored.

setf of getf is permitted to either write the value of p/ace itself, or modify of any part, car or
cdr, of the list structure held by place.

Examples:

(setq x ‘0) -+ NIL
(getf x ‘propl) -+ NIL
(getf x ‘prop1 7) -+ 7
(getf x ‘propl) + NIL
(setf (getf x ‘prop11 ‘vail) + VALI
(eq (getf x ‘prop11 ‘vail) + true
(getf x ‘prop11 -+ VALI
(getf x ‘prop1 7) --) VALI
x --) (PROP1 VALI)

Consea 1441

ANSI X3.226-1994 Programming Language-Common Lisp

;; Example8 of tiplementation variation permitted.
(setq foo (list ‘a 'b 'c 'd 'e ‘f)) + (A B C D E F)
(setq bar (cddr fool) - (C D E F)
(re8f foo 'cl -+ true
foo -, (A B E F)
bar

--, (C D E F)
Jz (Cl
s (BIL)
4 (C BIL)
1= (C D)

See Also:
get, get-properties, setf, Section 5.1.2.2 (Function Call Forms as Places)

Notes:
There is no way (using getf) to distinguish an absent property from one whose value is default;
but see get-properties.

Note that while supplying a defuuli argument to getf in a setf situation is sometimes not very
interesting, it is still important because some macros, such as push and incf, require a place
argument which data is both read from and w&en to. In such a context, if a default argument is
to be supplied for the read situation, it must be syntactically valid for the write situation as well.
For example,

(let ((plist ’ 0 1)
(incf (getf plist ‘count 0))
plist) + (COUHT 1)

remf Macro

Syntax:
remf place indicator w generalized-boolean

Arguments and Values:
place-a place.

indicator-an o bjed.

generalized-boolean-a generalized boolean.

Description:
remf removes from the property list stored in place a property1 with a properiy indicator identical
to indicator. If there are multiple properties1 with the idenlical key, remf only removes the first
such properly. remf returns false if no such property was found, or he if a property was found.

The property indicator and the corresponding property value are removed in an undefined order
by destructively splicing the property liit. remf is permitted to either setf place or to setf any
part, car or cdr, of the list structure held by that place.

For information about the evaluation of subform of place, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

14-42 Consea

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(setq x (cons 0 0)) - (IIL)
(setf (getf (car x) ‘propl) ‘vail) + VALI
(reef (car x) ‘propl) -+ true
(rerf (car x) ‘propl) --) false

Side Effects:
The property list stored in place is modified.

See Also:
remprop, getf

intersection, nintersection Function

Syntax:
intersection /is&l /kt-2 tkey key test t&-not + rem/t-kst

nintersection list-l list-2 tkey key test test-not -+ raw/t-list

Arguments and Values:
list-l -a proper list.

list-2-a proper lid.

test-a designator for a junction of two arguments that returns a generalized boolean.

test-not-a designator for a junction of two arguments that returns a generalized boolean.

key-a designator for a junction of one argument, or nil.

result-list-a list.

Description:
intersection and nintersection return a list that contains every element that occurs in both list-l
and list-2.

nintersection is the destructive version of intersection. It performs the same operation, but may
destroy list-l using its cells to construct the result. list-2 is not destroyed.

The intersection operation is described as follows. For all possible ordered pairs consisting of one
element from list-l and one element from list-2, :test or :test-not are used to determine whether
they satisfy the test. The first argument to the :test or :testaot function is an element of list-l;
the second argument is an element of iist-2. If :test or :test-not is not supplied, eql is used. It is
an error if :test and : test-not are supplied in the same function call.

If :key is supplied (and not nil), it is used to extract the part to be tested from the list element.
The argument to the :key function is an element of either list-l or list-a; the :key function
typically returns part of the supplied element. If :key is not supplied or nil, the list-l and list-2
elements are used.

For every pair that satijies the test, exactly one of the two elements of the pair will be put in
the result. No element from either list appears in the result that does not satisfy the test for
an element from the other list. If one of the lists contains duplicate elements, there may be
duplication in the result.

Conses 14-43

ANSI X3.226-1994 Programming Language-Common Lisp

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The result list may share cells with, or be q to, either list-l or
list-2 if appropriate.

Examples:

(setq list1 (list 1 1 2 3 4 a b c "A" "B" "C" "d")
list2 (list 1 4 5 b c d "a" "B" "c" "D"))

+ (1 4 5 B C D ,ta" t,Bt, MC" "D")
(intersection list1 listt) + (C B 4 1 1)
(intersection list1 list2 :test 'equal) -) ("B" C B 4 1 1)
(intersection list1 list2 :test #'equalp) -+ ("d" Y?' "B" "A" C B 4 1 1)
(nintersection list1 list21 + (1 1 4 B C)
list1 + implementation-dependent :e.g.. (1 1 4 B C)
list2 + implementation-dependent ; e.g., (1 4 5 B C I) ,Sa" "B" ,tc" W,,W)
(setq list1 (copy-list '((1 . 2) (2 . 3) (3 . 4) (4 . 5))))

+ ((1 . 2) (2 . 3) (3 . 4) (4 . 5))
(setq list2 (copy-list '((1 . 3) (2 . 4) (3 . 6) (4 . 8))))

* ((1 . 3) (2 . 4) (3 . 6) (4 . 8))
(nintersection list1 list2 :key #'cdr) * ((2 . 3) (3 . 4))
list1 + implementation-dependent ; e.g., ((1 . 2) (2 . 3) (3 . 4))
list2 - implementation-dependent ; e.g., ((1 . 3) (2 . 4) (3 . 6) (4 . 8))

Side Effects:
nintersection can modify list-l, but not list-2.

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-l and list-2 are not proper lists.

See Also:
union, Section 3.2.1 (Compiler Terminology), Section 3.6 (‘Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

Since the nintersection side effect is not required, it should not be used in for-effect-only posi-
tions in portable code.

adjoin Function

Syntax:
adjoin item list *key key test test-not -+ new-list

Arguments and Values:
item-an object.

list-a proper list.

test-a designator for a junction of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

14-44 Conses

Programming Language-Common Lisp ANSI X3.226-1994

new-list-a list.

Description:
Tests whether item is the same as an existing element of list. If the item is not an existing ele-
ment,, adjoin adds it to list (as if by cons) and returns the resulting list; otherwise, nothing is
added and the original list is returned.

The test, test-not, and key affect how it is determined whether item is the same as an element
list. For details, see Section 17.2.1 (Satisfying a Two-Argument Test).

Examples:

(setq slist ‘0 1 * NIL
(adjoin ‘a slist) * (A)
slist + NIL
(setq slist (adjoin ‘(test-item 1) slist)) -+ (Cl’EST-ITEN I))
(adjoin '(test-item 1) slist) -+ ((TEST-ITEn 1) (TEST-ITM 1))
(adjoin '(test-item 1) slist :test ‘equal) -* ((TEST-ITEM 1))
(adjoin '(new-test-item 1) slist :key s'cadr) -+ ((TEST-ITM 1))
(adjoin '(nev-test-item 1) slist) -+ ((IEY-TEST-ITEM 1) (TEST-ITEM 1))

Exceptional Situations:
Should be prepared to signal an error of type type-error if list is not a proper list.

See Also:
pushnew, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

(adjoin item list :key fn)
E (if (member (fn item) list :key fn) list (cons item list))

pushnew Macro

Syntax:
pushnew item place Pkey key test test-not

-+ new-place-value

Arguments and Values:
item-an object.

place-a place, the value of which is a proper list.

test-a designator for a junction of two arguments that returns a generalized boolean.

test-not-a designator for a junction of two arguments that returns a generalized boolean.

key-a designator for a junction of one argument, or nil.

new-place-value-a list (the new value of place).

Conses 14-45

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
pushnew tests whether item is the same as any existing element of the list stored in place. If item
is not, it is prepended to the list, and the new list is stored in p/ace.

pushnew returns the new list that is stored in place.

Whether or not item is already a member of the list that is in place is determined by comparisons
using :test or :teat-not. The first argument to the :test or :test-not function is item; the
second argument is an element of the list in p/ace as returned by the :key function (if supplied).

If :key is supplied, it is used to extract the part to be tested from both item and the list element,
as for aGoin.

The argument to the : key function is an element of the list stored in p/ace. The :key function
typically returns part part of the element of the list. If :key is not supplied or nil, the list ele-
ment is used.

For information about the evaluation of subfonns of p/ace, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

It is implementation-depenldent whether or not pushnew actually executes the storing form for its
place in the situation where the item is already a member of the list held by place.

Exknples:

(setq x ‘(a (b c) d)) --) (A (B C) D)
(pushneo 5 (cadr x1) -, (5 B C)
x -, (A (5 B C) D)
(pushnew ‘b (cadr x)) -* (5 B C>
x + (A (5 B C) D>
(setqlst ‘((I) (I 2) (I 2 3))) -+ ((I) (I 2) (I 2 3))
(pushnew ‘(2) 1st) + ((2) (I) (1 2) (1 2 3))
(pushnew ‘(1) 1st) -+ ((1) (2) (I) (I 2) (I 2 3))
(pushnerr ‘(1) 1st :test ‘equal) --) ((1) (2) (1) (1 2) (I 2 3))
(pushnew ‘(I) 1st :key #‘car) --+ ((I) (2) (I) (I 2) (I 2 3))

Side Effects:
The contents of place may be modified.

See Also:
push, acijoin, Section 5.1 (Generalized Reference)

Notes:
The effect of (pushnew item place :test p)

is roughly equivalent to (eetf place (adjoin item place :test p))

except that the subforms of place are evaluated only once, and item is evaluated before place.

set-difference, nset-difference Function

Syntax:
set-difference /id-l /is&2 tkey key tat test-not -+ red&/&

met-difference lid-1 list-2 &key key test test-not -+ resdt-list

14-46 collsea

Programming LanguageCommon Lisp ANSI X3.226-1994

Arguments and Values:
list-l -a proper list.

list-2-a proper list.

test-a design&or for a function of two arguments that returns a generalized boolean.

tat-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

result-list-a list.

Description:
set-difference returns a list of elements of list-l that do not appear in list-2.

nset-difference is the destructive version of set-difference. It may destroy list-l.

For all possible ordered pairs consisting of one element from list-l and one element from list-2, the
:test or : test-not function is used to determine whether they satisfy the test. The first argument
to the :test or :test-not function is the part of an element of list-l that is returned by the :key
function (if supplied); the second argument is the part of an element of list-2 that is returned by
the : key function (if supplied).

If :key is supplied, its argument is a list-l or list-2 element. The :key function typically returns
part of the supplied element. If :key is not supplied, the list-l or list-2 element is used.

An element of list-l appears in the result if and only if it does not match any element of list-2.

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The result list may share cells with, or be eq to, either of list-l
or list-2, if appropriate.

Examples:

(setq lstl (list "A" "b" "C" I'd")
lst2 (list llall t1811 "CU II,,,)) + (Itall ftgtl #tCtS (Idll)

(set-difference lstl lst2) --) ("d" "C" "b" "A'*)
(set-difference lstl lst2 :test 'equal) + ("b" "A")
(set-difference lstl lst2 :test t'equalp) --+ NIL
(nset-difference lstl lst2 :test #'string=) - (@‘A” "b")
(setq lstl '(("a" . "b") ("c" . "d") ("e" . "f")))

+ ((Ma" . ,t,W) (MC" . "d") (lletl . lt,~~))
(setq lst2 '(("c" . "a") ("e" . "b") (I'd" . "a")))

+ ((UC" . tta") (llell . ll,ll) (W,lf . Ilafl))
(nset-difference lstl lst2 :test #'string= :key t'cdr)

- (("c" . "d") (IBe" . W,~~))
lstl -, ((IlaM . "b") (IIt" . ,,,.) (,le,l . Ilflt))
lst2 --+ (("c" . "a") ("e" . ,I,.,ll) (Ildtl . Nat,))

;; Remove all flavor names that contain "c" or W'.
(set-difference '("stravberry" "chocolate" "banana"

“lemon” “pistachio” “rhubarb”)
‘(rt\c #\v)
:test #'(lambda (8 c) (find c 8)))

-+ ("banaua" "rhubarb" "lemon") ;Cue possible ordering.

Side Effects:
nset-difference may destroy list-l.

Conses 14-47

ANSI X3.226-1994 Programming Language-Common Lisp

Exceptional Situations:
Should be prepared to signal an error of iype type-error if list-l and list-2 are not proper l&s.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

set-exclusive-or, nset-exclusive-or Function

Syntax:
set-exclusive-or list-1 list-2 &key key test test-not + few/t-list

nset-exclusive-or list-1 list-2 &key key test test-not w few/t-list

Arguments and Values:
list-l -a proper I&.

list-2-a proper list.

test-a designator for a junction of two arguments that returns a generalized boolean.

test-not-a designator for a junction of two arguments that returns a generalized boolean.

key-a designator for a junction of one argument, or nil.

result-list-a lid.

Description:
set-exclusive-or returns a list of elements that appear in exactly one of list-l and list-2.

nset-exclusive-or is the destructive version of set-exclusive-or.

For all possible ordered pairs consisting of one element from list-l and one element from list-2, the
: test or : test-not function is used to determine whether they satisfy the test.

If :key is supplied, it is used to extract the part to be tested from the list-l or list-2 element. The
first argument to the : test or : test-not function is the part of an element of list-l extracted by
the :key function (if supplied); the second argument is the part of an element of list-2 extracted
by the :key function (if supplied). If :key is not supplied or nil, the list-l or list-2 element is used.

The result contains precisely those elements of list-l and list-2 that appear in no matching pair.

The result lisd of set-exclusive-or might share storage with one of list-l or list-2.

Examples:

(setq lstl (list 1 “a” “b”)
lst2 (list 1 “A” “b”)) + (1 ‘*A” ‘lb”)

(set-exclusive-or lsti lst2) -) (‘lb*@ “A” “b” ‘*a”)
(set-exclusive-or lsti lst2 :test #‘equal) + (“A@* “a”)
(set-exclusive-or lstl lst2 :test ‘equalp) * BIL
(nset-exclusive-or lstl lst2) -+ (“a” “b” “A” “b”)
(setq lstl (list ((“a” . “b”) (“c” . “d*l) (“e” . 8Y’))))

4 ((“a” . ,,,M) (“c” . “d”) (Mel, . “f”))

14-48 Conses

Programming Language--Common Lisp ANSI X3.226-1994

(setq lst2 (list ((“c” . “a”) (“e” . “b”) (“d” . “a”))))
-, ((“C” . Ua,#) (Ue” “b”) (Ildll . “a”))

(nset-exclusive-or lstl lst2 :test #‘string= :key W’cdr)
4 ((“C” . M,,,) (lteU I,*,,) (UC” . Ita,,) (tt,,, . “a”))

lstl * ((“a” . Ilblf) (UC” . ,,,tS) (Ue” . Ilfl,))
lst2 + ((“c” . “a”) (I’d” . “a”))

Side Effects:
nset-exclusive-or is permitted to modify any part, car or cdr, of the lid skudure of list-l or
list-2.

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-l and list-2 are not proper lists.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

Since the nset-exclusive-or side effect is not required, it should not be used in for-effect-only
positions in portable code.

subsetp Function

Syntax:
subsetp list-l list-2 Rkey key test tat-not --+ generalized-boolean

Arguments and Values:
list-l -a proper list.

list-2-a proper list.

test-a designator for a fundion of two argumeds that returns a generalized boolean.

test-not-a designator for a fundion of two argumeds that returns a generalized boolean.

key-a designator for a fundion of one argument, or nil.

generalized-boolean-a generalized boolean.

Description:
subsetp returns true if every element of list-l matches some element of list-2, and faZse otherwise.

Whether a list element is the same as another list element is determined by the functions specified
by the keyword arguments. The first argument to the :test or : test-not function is typically
part of an element of list-l extracted by the :key function; the second argument is typically part
of an element of list-2 extracted by the :key function.

The argument to the :key function is an element of either list-l or list-2; the return value is
part of the element of the supplied list element. If :key is not supplied or nil, the list-l or list-2
element itself is supplied to the :test or :test-not function.

Conses 14-49

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(setq cosmos ‘(1 “a” (1 2))) + (1 “a” (1 2))
(subsetp ‘(1) cosmos) -+ true
(subsetp ‘((1 2)) cosros) + false

(subsetp ‘((1 2)) COSBOS :test ‘equal) -) he
(subsetp ‘(1 @‘A”) COSBOS :test rt’equalp) -+ hue
(subsetp ‘((1) (2)) ‘((1) (2))) + f&e
(subsetp ‘((1) (2)) ‘((1) (2)) :key *‘car) + he

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-l and list-2 are not proper lists.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not parameter is deprecated.

union, nunion Function

syntax:
union list-1 /ist-2 &key key test test-not -) resdt-list

nuuion list-1 list-2 &key key test test-not - few/t-/ist

Arguments and Values:
list-l -a proper list.

list-2-a proper list.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

result-list-a list.

Description:
union and nunion return a list that contains every element that occurs in either list-l or list-2.

For all possible ordered pairs consisting of one element from list-1 and one element from list-2,
:test or : test-not is used to determine whether they satisfy the test. The first argument to the
: test or : test-not function is the part of the element of list-l extracted by the :key function (if
supplied); the second argument is the part, of the element of list-2 extracted by the :key function
(if supplied).

The argument to the : key function is an element of list-l or list-2; the return value is part of the
supplied element. If : key is not supplied or nil, the element of list-l or list-2 itself is supplied to
the :test or :test-not function.

For every matching pair, one of the two elements of the pair will be in the result. Any element,
from either list-l or list-2 that matches no element of the other will appear in the result..

14-50 Conses

Programming Language-Common Lisp
5:

ANSI X3.226-1994

If there is a duplication between list-1 and k-2, only one of the duplicate instances will be in
the result. If either list-l or list-2 has duplicate entries within it, the redundant entries might or
might not appear in the result.

The order of elements in the result do not have to reflect the ordering of list-l or list-2 in any
way. The result list may be eq to either list-1 or list-2 if appropriate.

Examples:

(union ‘(a b c> '(f a d))
+ (A E C F D)
z (B C F A D)
4 (D F A i C)

(union '((x 5) (y 6)) '((2 2) (x 4)) :key #'car)
+ ((X 5) (Y 6) (Z 2))
2 ((X 4) (Y 6) (Z 2))

(setq lstl (list 1 2 '(1 2) "a" "b")
lst2 (list 2 3 '(2 3) Vu YY))

+ (2 3 (2 3) "B" "C")
(nunion lstl lst2)

- (1 (1 2) "a" "b" 2 3 (2 3) '?I" YY)
s (1 2 (1 2) "a" "b" V' "B" (2 3) 3)

Side Effects:
nunion is permitted to modify any part, car or cdr, of the list structure of list-l or list-2.

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-l and list-2 are not proper lists.

See Also: *
intersection, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

Since the nunion side effect is not required, it should not be used in for-effect-only positions in
portable code.

Conses 14-51

ANSI X3.226-1994 Programming Language-Common Lisp

14-52 Consea

ANSI X3.226-1994

Programming Language-Common Lisp

15. Arrays

ANSI X3.226-1994 Programming Language-Common Lisp

ii Arrays

Programming Language-Common Lisp ANSI X3.226-1994

15.1 Array Concepts

15.1.1 Array Elements
An array contains a set of objects called elements that can be referenced individually according to
a rectilinear coordinate system.

15.1.1.1 Array Indices

An array element is referred to by a (possibly empty) series of indices. The length of the series
must equal the rank of the array. Each index must be a non-negative fixnum less than the
corresponding array dimension. Array indexing is zero-origin.

15.1.1.2 Array Dimensions
An axis of an array is called a dimension.

Each dimension is a non-negative fixnum; if any dimension of an array is zero, the array has no
elements. It is permissible for a dimension to be zero, in which case the array has no elements,
and any attempt to access an element is an error. However, other properties of the array, such as
the dimensions themselves, may be used.

15.1.1.2.1 Implementation Limits on Individual Array Dimensions

An implementation may impose a limit on dimensions of an array, but there is a minimum
requirement on that limit. See the variable array-dimension-limit.

15.1.1.3 Array Rank

An array can have any number of dimensions (including zero). The number of dimensions is
called the rank.

If the rank of an array is zero then the array is said to have no dimensions, and the product of
the dimensions (see array-total-size) is then 1; a zero-rank array therefore has a single element.

15.1.1.3.1 Vectors

An array of rank one (i.e., a one-dimensional array) is called a vector.

15.1.1.3.1.1 Fill Pointers ’

A fill pointer is a non-negative integer no larger than the total number of elements in a vector.
Not all vectors have fill pointers. See the functions make-array and ac&tst-array.

An element of a vector is said to be active if it has an index that is greater than or equal to
zero, but less than the fill pointer (if any). For an army that has no fill pointer, all elements are
considered active.

Only vectors may have fill pointers; multidimensional arrays may not. A multidimensional array
that is displaced to a vector that has a fill pointer can be created.

Arrays 15-1

ANSI X3.226-1994 Programming Language-Common Lisp

15.1.1.3.2 Multidimensional Arrays

15.1.1.3.2.1 Storage Layout for Multidimensional Arrays

Multidimensional arrays store their components in row-major order; that is, internally a mul-
tidimensional array is stored as a one-dimensional array, with the multidimensional index sets
ordered lexicographically, last index varying fastest.

15.1.1.3.2.2 Implementation Limits on Array Rank

An implementation may impose a limit on the rank of an array, but there is a minimum require-
ment on that limit. See the variable array-rank-limit.

15.1.2 Specialized Arrays
An array can be a general array, meaning each element may be any object, or it may be a
specialized array, meaning that each element must be of a restricted type.

The phrasing “an array specialized to type ((type))” is sometimes used to emphasize the element
type of an array. This phrasing is tolerated even when the ((type)) is t, even though an array
specialized to type t is a general array, not a specialized away.

Figure 15-1 lists some defined names that are applicable to array creation, access, and informa-
tion operations.

acljust-array
adjustable-array-p
aref
array-dimension
array-dimension-limit
array-dimensions
array-displacement
array-element-type

array-has-All-pointer-p
array-in-bounds-p
array-rank
array-rank-limit
array-row-major-index
array-total-size
array-total-size-limit
fill-pointer

make-array
svref
upgraded-array-element-type
upgraded-complex-part-type
vector
vector-pop
vector-push
vector-push-extend

Figure 15-1. General Purpose Array-Related DeAned Names

15.1.2.1 Array Upgrading
The upgraded array element type of a type Tr’is a type T2 that is a super-type of Tl and that
is used instead of TI whenever Tl is used as an array element type for object creation or type
discrimination.

During creation of an array, the element type that was requested is called the expressed array
element type. The upgraded array element type of the exppressed array element type becomes the
actual array element type of the array that is created.

Type upgrading implies a movement upwards in the type hierarchy lattice. A type is always a
subtype of its upgraded array element type. Also, if a type T, is a subtype of another type T,, then
the upgraded array element type of T, must be a subtype of the upgraded array element type of TV.
Two disjoint types can be upgraded to the same type.

The upgraded away element type T2 of a type Tl is a function only of TI itself; that is, it is inde-
pendent of any other property of the array for which T2 will be used, such as rank, adjustability,
fill pointers, or displacement. The function upgraded-array-element-type can be used by con-
forming programs to predict how the implementation will upgrade a given type.

15-2 Arrays

Programming Language-Common Lisp ANSl X3.226-1994

15.1.2.2 Required Kinds of Specialized Arrays
Vectors whose elements are restricted to type character or a subtype of character are called
strings. Strings are of type string. Figure 15-2 lists some defined names related to strings.

Strings are speciakzed OTYIZ~S and might logically have been included in this chapter. However,
for purposes of readability most information about strings does not appear in this chapter; see
instead Chapter 16 (Strings).

char
make-string
nstring-capitalize
nstring-downcase
n&ring-upcase
SCh8W

string
string-capitalize
string-downcase

string-equal
string-greaterp
string-left-trim
string-lessp
string-not-equal
string-not-greaterp
string-not-lessp
string-right-trim
string-trim

string-upcase
string/=
string<
string<=
string=
string>
string>=

Figure 15-2. Operators that Manipulate Strings

Vectors whose elements are restricted to type bit are called bit vectors. Bit vectors are of type
bit-vector. Figure 15-3 lists some defined names for operations on bit arruys.

bit
bit-and
bit-andcl
bi t-andc2
bit-eqv

bit-ior
bit-nand
bit-nor
bit-not
bit-orcl

bit-orc2
bit-xor
sbit

Figure 15-3. Operators that Manipulate Bit Arrays

Arrays 15-3

ANSI X3.226-1994 Programming Language-Common Lisp

array System Class

Class Precedence List:
=-Y, t

Description:
An array contains objects arranged according to a Cartesian coordinate system. An array pro-
vides mappings from a set of jiznums {io, il , . . ., i,-i} to corresponding elements of the array,
where 0 5 ij < dj, P is the rank of the array, and dj is the size of dimension j of the array.

When an array is created, the program requesting its creation may declare that all elements are
of a particular type, called the ezprcssed arruy element type. The implementation is permitted to
upgrade this type in order to produce the actual array element type, which is the element type for
the army is actually specialized. See the function upgraded-array-element-type.

Compound Type Specifier Kind:
Specializing.

Compound Type Speciiier Syntax:
(array [{element-type 1 *} [dhCt!SiOn-SpCC]J)

dimension-spec::=rank 1 * 1 ({dimension 1 *}*)

Compound Type Specifier Arguments:
dimension-a valid array dimension.

element-type-a type specifier.

rank-a non-negative fiznum.

Compound Type Specifier Description:
This denotes the set of arrays whose element type, rank, and dimensions match any given
element-type, rank, and dimensions. Specifically:

If element-type is the symbol *, arrays are not excluded on the basis of their element type. Oth-
erwise, only those arrays are included whose actual array element type is the result of upgrading
l /ement-type; see Section 15.1.2.1 (Array Upgrading).

If the dimension-spec is a rank, the set includes only those arrays having that rank. If the
dimension-spec is a list of dimensions, the set includes only those arrays having a rank given
by the length of the dimensions, and having the indicated dimensions; in this case, * matches
any value for the corresponding dimension. If the dimension-spec is the symbol *, the set is not
restricted on the basis of rank or dimension.

See Also:
print-array, aref, make-array, vector, Section 2.4.8.12 (Sharpsign A), Section 22.1.3.8 (Print-
ing Other Arrays)

Notes:
Note that the type (array t) is a proper subtype of the type (array *I. The reason is that the
type (array t) is the set of arrays that can hold any object (the elements ase of type t, which
includes all objects). On the other hand, the type (array *) is the set of all arrays whatsoever,
including for example arrays that can hold only characters. The type (array character) is not a

15-4 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

subtype of the type (array t); the two sets are disjoint because the type (array character) is not
the set of all arrays that can hold characters, but rather the set of arrays that are specialized to
hold precisely characters and no other objects.

simple-array TYPe

Supertypes:
simple-array, array, t

Description:
The type of an array that is not displaced to another array, has no fill pointer, and is not ex-
pressly adjustable is a subtype of type simple-array. The concept of a simple array exists to
allow the implementation to use a specialized representation and to allow the user to declare that
certain values will always be simple arrays.

The types simple-vector, simple-string, and simple-bit-vector are disjoint subtypes of
type simple-array, for they respectively mean (sinple-array t (*)), the union of all
(simple-array c (*I) for any c being a subtype of type character, and Maple-array bit (*)I.

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(si8ple-array [{clement-type 1 *} [dimension-spec]])

dimension-spec::=rank 1 * 1 ({dimension 1 *}*)

Compound Type Specifier Arguments:
dimension-a valid array dimension.

element-type-a type specijer.

rank-a non-negative fitnum.

Compound Type Specifier Description:
This compound type specifier is treated exactly as the corresponding compound type specifier for
type array would be treated, except that the set is further constrained to include only simple
arrays.

Notes:
It is implementation-dependent whether displaced arrays, vectors with fill pointers, or arrays that
are actually adjustable are simple arrays.

(simple-array l) refers to all simple arrays regardless of element type, (simple-array type-
specifier) refers only to those simple arrays that can result from giving typcspecifier as the
: element-type argument to make-array.

Arrays 15-5

ANSI X3.226-1994 Programming Language-Common Lisp

vector System Class

Class Precedence List:
vector, array, sequence, t

Description:
Any one-dimensional array is a vector.

The type vector is a subtype of type array; for all types x, (vector x) is the same as (array x
(*)I.

The type (vector t), the type string, and the type bit-vector are disjoint subtypes of type vector.

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(vector [{clement-type 1 *} [{size 1 *}]I 1

Compound Type Specifier Arguments:
size-a non-negative fixnum.

element-type-a type specifier.

Compound Type Specifier Description:
This denotes the set of specialized vectors whose element type and dimension match the specified
values. Specifically:

If element-type is the symbol *, vectors are not excluded on the basis of their element type. Oth-
erwise, only those vectors are included whose actual array element type is the result of upgrading
element-type; see Section 15.1.2.1 (Array Upgrading).

If a size is specified, the set includes only those vectors whose only dimension is size. If the
symbol * is specified instead of a size, the set is not restricted on the basis of dimension.

See Also:
Section 15.1.2.2 (Required Kinds of Specialized Arrays), Section 2.4.8.3 (Sharpsign Left-
Parenthesis), Section 22.1.3.7 (Printing Other Vectors), Section 2.4.8.12 (Sharpsign A)

Notes:
The type (vector l s) is equivalent to the type (array l (s)).

The type (vector bit) has the name bit-vector.

The union of all types (vector 0, where C is any subtype of character, has the name string.

(vector *) refers to all vectors regardless of element type, (vector type-specifier) refers only
to those vectors that can result from giving type-specifier as the :elerent-type argument to
make-array.

15-6 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

simple-vector

Supertypes:
simple-vector, vector, simple-array, array, sequence, t

Description:
The type of a vector that is not displaced to another array, has no fill pointer, is not expressly
adjustable and is able to hold elements of any type is a subtype of type simple-vector.

The type simple-vector is a subtype of type vector, and is a subtype of type (vector t).

Compound Type Specifier Kind:
Specializing,

Compound Type Specifier Syntax:
(simple-vector Cskel)

Compound Type Specifier Arguments:
size-a non-negative fixnum, or the symbol *. The default is the symbol *.

Compound Type Specifier Description:
This is the same as (simple-array t (size)).

bit-vector System Class

Class Precedence List:
bit-vector, vector, array, sequence, t

Description:
A bit vector is a vector the element type of which is bit.

The type bit-vector is a subtype of type vector, for bit-vector means (vector bit).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(bit-vector [size])

Compound Type Specifier Arguments:
size-a non-negative fixnum, or the symbol *.

Compound Type Specifier Description:
This denotes the same type as the type (array bit (size)); that is, the set of bit vectors of size
size.

Arrays 15-7

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
Section 2.4.8.4 (Sharpsign Asterisk), Section 22.1.3.6 (Printing Bit Vectors), Section 15.1.2.2
(Required Kinds of Specialized Arrays)

simple-bit-vector TYPO

Supertypes:
simple-bit-vector, bit-vector, vector, simple-array, array, sequence, t

Description:
The type of a bit vector that is not displaced to another smay, has no fill pointer, and is not
expressly adjustable is a subtype of type simple-bit-vector.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(sirple-bit-vector [size])

Compound Type Specifier Arguments:
size-a non-negative fiznum, or the symbol *. The default is the symbol *.

Compound Type Specifier Description:
This denotes the same type as the hype (sinple-array bit (size)); that is, the set of simple bif
vectors of size size.

make-array Function

Syntax:
make-array dimensions tkey element-type

initial-element
initial-contents
adjustable
fill-pointer
displaced-to
displaced-index-ofiset

+ new-array

Arguments and Values:
dimensions-a designator for a list of valid array dimensions.

ekmcnt-type-a type specifier. The default is t.

initial-clement-an object.

initial-contents-an object.

adjustable-a generalized boolean. The default is nil.

15-8 Arrays

Programming Language--Common Lisp ANSI X3.226-1994

fill-pointer-a valid fill pointer for the array to be created, or t or nil. The default is nil.

displaced-to-an array or nil. The default is nil. This option must not be supplied if either
initial-element or initial-contents is supplied.

displaced-index-offset-a valid array row-major index for displaced-to. The default is O. This
option must not be supplied unless a non-nil displaced-to is supplied.

new-array-an array.

Description:
Creates and returns an array constructed of the most specialized type that can accommodate
elements of type given by clement-type. If dimensions is nil then a zero-dimensional array is
created.

Dimensions represents the dimensionality of the new array.

element-type indicates the type of the elements intended to be stored in the new-array. The new-
array can actually store any objects of the type which results from upgrading element-type; see
Section 15.1.2.1 (Array Upgrading).

If initial-element is supplied, it is used to initialize each element of new-array. If initial-element
is supplied, it must be of the type given by element-type. initial-element cannot be supplied if
either the : initial-contents option is supplied or displaced-to is non-nil. If initial-element is not
supplied, the consequences of later reading an uninitialized element of new-array are undefined
unless either initial-contents is supplied or displaced-to is non-nil.

initial-contents is used to initialize the contents of array. For example:

(make-array '(4 2 3) :initial-contents
'(((a b c) (1 2 3))

(Cd e f) (3 12))
((g h i) (2 3 1))
((j k 1) (0 0 0))))

initial-contents is composed of a nested structure of sequences. The numbers of levels in the struc-
ture must equal the rank of array. Each leaf of the nested structure must be of the type given by
element-type. If array is zero-dimensional, then initia/-contents specifies the single element. Other-
wise, initial-contents must be a sequence whose length is equal to the first dimension; each element
must be a nested structure for an array whose dimensions are the remaining dimensions, and so
on. Initial-contents cannot be supplied if either initial-element is supplied or displaced-to is non-nil.
If initia/-contents is not supplied, the consequences of later reading an uninitialized element of
new-array are undefined unless either initial-element is supplied or displaced-to is non-nil.

If adjustable is non-nil, the array is expressly adjustable (and so actually adjustable); otherwise,
the array is not expressly adjustable (and it is implementation-dependent whether the array is
actually adjustable).

If fill-pointer is non-nil, the array must be one-dimensional; that is, the array must be a vector.
If fill-pointer is t, the length of the vector is used to initialize the fill pointer. If fill-pointer is an
integer, it becomes the initial f;ll pointer for the vector.

If displaced-to is non-nil, make-array will create a displaced array and displaced-to is the target of
that displaced array. In that case, the consequences are undefined if the actual array element type
of displaced-to is not type equivalent to the actual array element type of the array being created.
If displaced-to is nil, the array is not a displaced array.

The displaced-index-offset is made to be the index offset of the array. When an array A is given
as the :displaced-to argument to make-array when creating array B, then array B is said to be
displaced to array A. The total number of elements in an array, called the total size of the array,

Arrays 15-9

ANSI X3.226-1994 Programming Language-Common Lisp

is calculated as the product of all the dimensions. It is required that the total size of A be no
smaller than the sum of the total size of B plus the offset n supplied by the displaced-index-offset.
The effect of displacing is that array B does not have any elements of its own, but instead maps
accesses to itself into accesses to array A. The mapping treats both arrays as if they were one-
dimensional by taking the elements in row-major order, and then maps an access to element k of
array B to an access to element k+n of array A.

If make-array is called with adjustable, fill-pointer, and displaced-to each nil, then the result is a
simple array. If make-array is called with one or more of adjustable, fill-pointer, or displaced-to
being Irue, whether the resulting array is a simple array is implemen2ation-dependent.

When an array A is given as the :displaced-to argument to make-array when creating array B,
then array B is said to be displaced to array A. The total number of elements in an array, called
the total size of the arruy, is calculated as the product of all the dimensions. The consequences
are unspecified if the total size of A is smaller than the sum of the total size of B plus the offset
n supplied by the displaced-index-offset. The effect of displacing is that array B does not have any
elements of its own, but instead maps accesses to itself into accesses to array A. The mapping
treats both amzys as if they were one-dimensional by taking the elements in row-major order, and
then maps an access to element k of array B to an access to element k-h of array A.

Examples:

(make-array 5) ;; Creates a one-dimensional array of five elements.
(rake-array '(3 4) :element-type '(mod 16)) ;; Creates a

;;tvo-dimensional array, 3 by 4, with four-bit elements.
(make-array 5 :element-type 'single-float) ;; Creates an array of single-floats.

(make-array nil :initial-element nil) -+ XOAUIL
(make-array 4 :initial-element nil) + #(NIL NIL NIL NIL)
(make-array '(2 4)

:element-type '(unsigned-byte 2)
:initial-contents '((0 1 2 3) (3 2 1 0)))

--) #2A((O 1 2 3) (3 2 1 0))
bake-array 6

:element-type 'character
:initial-element #\a
:fill-pointer 3) -+ "aaa"

The following is an example of making a disphced array.

(setq a (make-array '(4 3)))
+ #<ARRAY 4x3 simple 32546632>

(dotimes (i 4)
(dotimes <j 3)

(setf (aref a i j> (list i 'x j '= (* i j>>>)>
* NIL

(setq b (make-array 8 :displaced-to a
:displaced-index-offset 2))

- #<ARRAY 8 indirect 32550757>
(dotimes (i 8)

(print (list i (aref b i))))
a (0 (0 x 2 - 0))
D (I (1 x 0 = 0))
D (2 (1 X 1 = 1))
D (3 (1 X 2 = 2))
D (4 (2 X 0 = 0))
D (5 (2 x 1 - 2))
D (6 (2 X 2 = 4))

15-10 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

D (7 (3 x 0 = 0))
+ %IL

The last example depends on the fact that arrays are, in effect, stored in row-major order.

(setq al (make-array 50))
+ 3KARFtAY 50 simple 32562043>

(setq bl (make-array 20 :displaced-to al :displaced-index-offset 10))
- ~t<ARRAY 20 indirect 32563346)

(length bl) -+ 20

(setq a2 (make-array 50 :fill-pointer 10))
-+ #<ARRAY 50 fill-pointer 10 46100216>

(setq b2 (make-array 20 :displaced-to a2 :displaced-index-offset 10))
- #<ARRAY 20 indirect 46104010>

(length a2) - 10
(length b2) -+ 20

(setq a3 (make-array Sro :fill-pointer 10))
- #<ARRAY 50 fill-pointer 10 46105663>

(setq b3 (make-array 20 :displaced-to a3 :displaced-index-offset 10
:fill-pointer 5))

+ #<ARRAY 20 indirect, fill-pointer 5 46107432>
(length a31 + 10
(length b3) -+ 5

See Also:
adjustable-array-p, aref, arrayp, array-element-type, array-rank-limit, array-dimension-limit,
All-pointer, upgraded-array-element-type

Notes:
There is no specified way to create an array for which adjustable-array-p definitely returns false.
There is no specified way to create an array that is not a simple array.

adjust-array Function

Syntax:
adjust-array array new-dimensions &key element-type

initial-element
initial-contents
fill-pointer
displaced-to
displaced-index-offset

-+ adjusted-array

Arguments and Values:
array-an array .

new-dimensions-a valid array dimension or a list of valid array dimensions.

element-type-a type specifier.

Arrays 15-11

ANSI X3.226-1994 Programming Language-Common Lisp

initial-clement-an object, Initial-element must not be supplied if either initial-contents or
displaced-to is supplied.

initial-contents-an object. If array has rank greater than zero, then initial-contents is composed
of nested sequences, the depth of which must equal the rank of array. Otherwise, array is zero-
dimensional and initial-contents supplies the single element. initial-contents must not be supplied if
either initial-clement or displaced-to is given.

fill-pointer-a valid fill pointer for the army to be created, or t, or nil. The default is nil.

displaced-to-an array or nil. initial-elements and initial-contents must not be supplied if displaccd-
to is supplied.

displaced-index-offset-an object of type (fixnun 0 n) where n is (array-total-size displaced-to).
displaced-index-ofkeiet may be supplied only if displaced-to is supplied.

adjusted-array-an array .

Description:
adjust-array changes the dimensions or elements &f array. The result is an array of the same type
and rank aa array, that is either the modified array, or a newly created array to which array can
be displaced, and that has the given new-dimensions.

New-dimensions specify the size of each dimension of array.

Element-type specifies the type of the elements of the resulting array. If clement-type is supplied,
the consequences are unspecified if the upgraded array element type of element-type is not the
same as the actual array element type of array.

If initial-contents is supplied, it is treated as for make-array. In this case none of the original
contents of array appears in the resulting array.

If fill-pointer is an integer, it becomes the $11 pointer for the resulting array. If fill-pointer is the
symbol t, it indicates that the size of the resulting array should be used as the fill pointer. If
fill-pointer is nil, it indicates that the fill pointer should be left as it is.

If displaced-to non-nil, a displaced 47~4~ is created. The resulting arnry shares its contents
with the array given by displaced-to. The resulting 47~4~ cannot contain more elements than
the array it is displaced to. If displaced-to is not supplied or nil, the resulting array is not a
displaced array. If array A is created displaced to array B and subsequently array B is given
to actjust-array, array A will still be displaced to array B. Although array might be a displaced
array, the resulting array is not a displaced array unless displaced-to is supplied and not nil.
The interaction between adjust-array and displaced arrays is as follows given three arrays, A, B,
and C:

A is not displaced before or after the call

(adjust-array A . ..)

The dimensions of A are altered, and the contents rearranged as appropriate. Additional
elements of A are taken from initial-clement. The use of initiaCcontents causes all old
contents to be discarded.

A is not displaced before, but is displaced to C after the call

(adjust-array A . . . :displaced-to C)

None of the original contents of A appears in A afterwards; A now contains the contents of
C, without any rearrangement of C.

15-12 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

A is displaced to B before the call, and is displaced to C after the call

(adjust-array A . . . :displaced-to B)
(adjust-array A . . . :displaced-to C)

B and c might be the same. The contents of B do not appear in A afterward unless
such contents also happen to be in C If displaced-index-offset is not supplied in the
aGust-array call, it defaults to zero; the old offset into B is not retained.

A is displaced to B before the call, but not displaced afterward.

(adjust-array A . . . :displaced-to B)
(adjust-array A . . . :displaced-to nil)

A gets a new “data region,” and contents of B are copied into it as appropriate to main-
tain the existing old contents; additional elements of A are taken from initiaklement if
supplied. However, the use of initial-contents causes all old contents to be discarded.

If displaced-index-offset is supplied, it specifies the offset of the resulting array from the beginning
of the array that it is displaced to. If displaced-index-otTset is not supplied, the offset is 0. The
size of the resulting array plus the offset value cannot exceed the size of the array that it is
displaced to.

If only new-dimensions and an initial-element argument are supplied, those elements of array that
are still in bounds appear in the resulting array. The elements of the resulting array that are
not in the bounds of array are initialized to initial-element; if initial-clement is not provided, the
consequences of later reading any such new element of new-array before it has been initialized are
undefined.

If initial-contents or displaced-to is supplied, then none of the original contents of array appears in
the new art-a y .

The consequences are unspecified if array is adjusted to a size smaller than its fill pointer without
supplying the fill-pointer argument so that its fill-pointer is properly adjusted in the process.

If A is displaced to B, the consequences are unspecified if B is adjusted in such a way that it no
longer has enough elements to satisfy A.

If adjust-array is applied to an array that is achally adjustable, the array returned is identical
to array. If the array returned by adjust-array is distinct from array, then the argument array is
unchanged.

Note that if an array A is displaced to another array B, and B is displaced to another amay C,
and B is altered by adjust-array, A must now refer to the adjust contents of B. This means that
an implementation cannot collapse the chain to make A refer to C directly and forget that the
chain of reference passes through B. However, caching techniques are permitted as long as they
preserve the semantics specified here.

Examples:

(adjustable-array-p
(setq ada (adjust-array

(rake-array ‘(2 3)
: adjustable t
:initial-contents ‘((a b c) (1 2 3)))

‘(4 6)))) - T
(array-dimensions ada) - (4 6)
(aref ada 1 1) -+ 2
(setq beta (make-array ‘(2 3) :adjustable t))

+ #2A((IIL I’IIL UIL) (NIL NIL NIL))

Arrays 15-13

ANSI X3.226-1994 Prqgramming Language-Common Lisp

(adjust-array beta ‘(4 61 :displaced-to ada)
+ #2A((A B C NIL UIL NIL)

(1 2 3 NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL))

(array-dimensions beta) -+ (4 6)
(aref beta 1 1) -+ 2

Suppose that the 4by-4 array in m looks like this:

SZA((alpha beta g-a delta 1
(epsilon zeta eta theta 1
(iota kappa lambda mu)
(nu xi omicron pi))

Then the result of

(adjust-array II ‘(3 5) :initial-element ‘ban)

is a 3-by-5 array with contents

#2A((alpha beta g-a delta ban)
(epsilon zeta eta theta baz)
(iota kappa lambda mu has)I

Exceptional Situations:
An error of type error is signaled if till-pointer is supplied and non-nil but array has no fill
pointer.

See Also:
adjustable-array-p, make-array, array-dimension-limit, array-total-size-limit, array

adjustable-array-p Function

Syntax: i
a&rstable-array-p array - generalized-boolean

Arguments and Values:
array-an array .

generalized-boolean-a generalized boolean.

Description:
Returns true if and only if adjust-array could return a value which is idedical to array when
given that array as its first argument.

Examples:

(adjustable-array-p
(make-array 5

:eleaent-type ‘character
: adjustable t
:f ill-pointer 3)) -+ true

(adjustable-array-p (make-array 4)) -) implementation-dependent

15-14 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:
adjust-array, make-array

aref Accessor

syntax:
aref array &rest subscripk --) element

(setf (aref array &rest subscripts) new-element)

Arguments and Values:
array-an array .

subscripts-a list of valid array indices for the array.

element, new-element-an object.

Description:
Accesses the array element specified by the subscripts. If no subscripls are supplied and array is
zero rank, aref accesses the sole element of array.

aref ignores fill pointers. It is permissible to use aref to access any array element, whether active
or not.

Examples:
If the variable foo names a 3-by-5 array, then the first index could be 0, 1, or 2, and then second
index could be 0, 1, 2, 3, or 4. The array elements can be referred to by using the function aref;
for example, (aref foo 2 1) refers to element (2, 1) of the array.

(aref (setq alpha (make-array 4)) 3) -+ implementation-dependent
(setf (aref alpha 3) 'sirens) - SIRENS
(aref alpha 3) -+ SIRENS
(aref (setq beta (make-array '(2 4)

zelement-type '(unsigned-byte 2)
:initial-contents '((0 12 3) (3 2 10))))

12) -1
(setq gamma '(0 2))
(apply It’aref beta gamma) -+ 2
(setf (apply #'aref beta gamma) 3) -+ 3
(apply #'aref beta gamma) -+ 3
(aref beta 0 2) + 3

See Also:
bit, char, elt, row-major-aref, svref, Section 3.2.1 (Compiler Terminology)

Arrays 15-15

ANSI X3.226-1994 Programming Language-Common Lisp

array-dimension Function

syntax:
array-dimension array axis-number + dimension

Arguments and Values:
array-an array .

axis-number-an integer greater than or equal to zero and leas than the rank of the array.

dimension-a non-negative integer.

Description:
array-dimension returns the axis-number dimension1 of array. (Any fill pointer is ignored.)

Examples:

(array-diwnsion (make-array 4) 0) + 4
(array-direnaion (rake-array * (2 3)) 1) -+ 3

Affected By:
None.

See Also:
array-dimensions, length

Notes:

(array-dtiension array n) S (nth n (array-dimensions array))

array-dimensions Function

Syntax:
array-dimeneioas array + dimensions

Arguments and Values:
array-an array .

dimensions-a list of infegers.

Description:
Returns a lid of the dimensions of array. (If array is a vector with a fill pointer, that fill poinier
is ignored.)

Examples:

(array-dirensions (make-array 4)) + (4)
(array-diaensions (rake-array ‘(2 3))) + (2 3)
(array-dtiensions (rake-array 4 :fill-pointer 2)) -+ (4)

15-16 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
Should signal an error of type type-error if its argument is not an army.

See Also:
array-dimension

array-element-type Function

Syntax:
array-element-type array --) typespec

Arguments and Values:
array-an array.

typespcc-a type specifier.

Description:
Returns a type specifier which represents the actual array element type of the array, which is the
set of objects that such an array can hold. (Because of array upgrading, this type specifier can in
some cases denote a supertype of the ezpressed array element type of the array.)

Examples:

(array-element-type bake-array 4)) --) T
(array-element-type (rake-array 12 :elerent-type '(unsigned-byte 8)))

-) implementation-dependent
(array-element-type (rake-array 12 :element-type '(unsigned-byte 5)))

+ implementation-dependent

(array-element-type (make-array 5 :element-type '(rod 5)))

could be (mod 5), (mod 8), fixnum, t, or any other type of which (rod 5) is a subtype.

Affected By:
The implementation.

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:
array, make-array, subtypep, upgraded-array-element-type

Arrays 15-l?

ANSI X3.226-1994 Programming Language-Common Lisp

array-has-fill-pointer-p Function

syntax:
array-has-fill-pointer-p array -+ generalized-boolean

Arguments and Values:
array-an array .

generalized-boolean-a generalized boolean.

Description:
Returns true if array has a fill pointer; otherwise returns false.

Examples:

(array-has-fill-pointer-p (make-array 4) 1 + implementation-dependent
(array-has-fill-pointer-p (rake-array ‘(2 3))) + false
(array-has-fill-pointer-p

(make-array 8
: f ill-pointer 2
: initial-element ‘filler) 1 + lrue

Exceptional Situations:
Should signal an error-of type type-error if its argument is not an array.

See Also:
make-array, flll-pointer

Notes:
Since arrays of rank other than one cannot have a fill pointer, array-has-All-pointer-p always
returns nil when its argument is such an array.

array-displacement Function

Syntax:
array-displacement array -) displaced-to, displaced-index-offset

Arguments and Values:
array-an afra y .

displaced-to-an array or nil.

displaced-index-offset-a non-negative fixnum.

Description:
If the array is a displaced array, returns the values of the :displaced-to and
:displaced-index-offset options for the array (see the functions make-array and adjust-array).
If the array is not a displaced array, nil and o are returned.

15-18 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

If array-displacement is called on an array for which a non-nil object was provided as the
:displaced-to argument to make-array or adjust-array, it must return that object as its first
value. It is implementation-dependent whether array-displacement returns a non-nil primary
value for any other array.

Examples:

(setq al hake-array 5)) -) #<ARRAY 5 simple 46115576>
(setq a2 (make-array 4 :displaced-to al

:displaced-index-offset 1))
-+ #<ARRAY 4 indirect 46117134)

(array-displacement a2)
-* #<ARRAY 5 simple 46115576>, 1

(setq a3 (rake-array 2 :displaced-to a2
:displaced-index-offset 2))

-* #<ARRAY 2 indirect 46122527>
(array-displacement a31

-) #<ARRAY 4 indirect 46117134>, 2

Exceptional Situations:
Should signal an error of type type-error if array is not an array.

See Also:
make-array

array-in-bounds-p Function

Syntax:
array-in-bounds-p array &rest subscripts + generalized-boolean

Arguments and Values:
array-an array.

subscripts-a list of integers of length equal to the rank of the array.

generalized-boolean-a generalized boolean.

Description:
Returns tme if the subscripts are all in bounds for array; otherwise returns false. (If array is a
vector with a fill pointer, that fill pointer is ignored.)

Examples:

(setq a hake-array ‘(7 11) :element-type ‘string-char))
(array-in-bounds-p a 0 0) -+ he
(array-in-bounds-p a 6 10) -+ he

See Also:
array-dimensions

Arrays 15-19

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:

&ray-in-bounds-p array subscripts)
G (and (not (sore Shinusp (list subscripts)))

(every S’< (list subscripts) (array-dirensions array)))

array-rank Function

syntax:
array-rank array + rank

Arguments and Values:
array-an array .

rank-a non-negative integer.

Description:
Returns the number of dimensions of array.

Examples:

(array-rank hake-array ‘0) 1 - 0
(array-rauk hake-array 4)) + 1
(array-rank (rake-array * (4))) @ 1
(array-rank hake-array ‘(2 3))) -+ 2

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:
array-rank-limit, make-array

array-row-major-index Function

Syntax:
array-row-mqjor-index array &rest subscripts -P index

Arguments and Values:
array-an away.

subscripts-a list of valid array indices for the array.

index-a valid array row-major indez for the array.

Description:
Computes the position according to the row-major ordering of array for the element that is
specified by subscripts, and returns the offset of the element in the computed position from the
beginning of array.

X-20 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

For a one-dimensional array, the result of array-row-major-index equals subscript.

array-row-major-index ignores fill poiniers.

Examples:

(setq a (rake-array ‘(4 7) :elerent-type ‘(unsigned-byte 8)))
(array-rov-major-index a I 2) + 9
(array-rov-major-index

(rake-array ’ (2 3 4)
:element-type ‘(unsigned-byte 8)
:displaced-to a
:displaced-index-offset 4)

021)+9

Notes:
A possible definition of array-row-major-index, with no error-checking, is

(defun array-rov-major-index (a &rest subscripts)
(apply #‘+ haplist #‘(lambda (x y)

(* (car x1 (apply It’* (cdr y)))I
subscripts
(array-dimensions a) 1) 1

array-total-size Function

syntax:
array-total-size array - size

Arguments and Values:
array-an array.

size-a non-negative inieger.

Description:
Returns the array fatal size of the array.

Examples:

(array-total-size hake-array 4)) -+ 4
(array-total-size (rake-array 4 :fill-pointer 2)) -+ 4
(array-total-size h*e-array 0)) * 0
(array-total-size hake-array ‘(4 2))) -+ 8
(array-total-size (rake-array ‘(4 0))) -+ 0
(array-total-size (rake-array ‘0)) + 1

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:
make-array, array-dimensions

Arrays 15-21

ANSI X3.226- 1994 Programming Language-Common Lisp

Notes:
If the array is a veclor with a fill pointer, the fill pointer is ignored when calculating the array
total size.

Since the product of no arguments is one, the array total size of a zero-dimensional array is one.

(array-total-size x1
E (apply #‘* (array-dimensions x))
5 (reduce t'* (array-dimensions x))

=raYP Function

Syntax:
arrayp object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type array; otherwise, returns false.

Examples:

(arrayp (make-array '(2 3 4) :adjustable t)) -+ true
(arrayp (make-array 6)) + true
(arrayp t*lOll) + tme
(arrayp "hi") -+ true
(arrayp 'hi) + false
(arrayp 12) -+ false

See Also:
types

Notes:

(arrayp object) s (typep object 'array)

15-22 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

fill-pointer ACCEYMOT

Syntax:
All-pointer vector + fill-pointer

(setf (fill-pointer vector) new-fill-pointer)

Arguments and Values:
vector-a vector with a fill pointer.

fill-pointer, new-fill-pointer-a valid fill pointer for the vector.

Description:
Accesses the fill pointer of vector.

Examples:

(setq a (make-array 8 :fill-pointer 4)) -+ #(NIL NIL NIL NIL)
(fill-pointer a) * 4
(dotimes (i (length a)) (setf (aref a i) (* i i))) -+ NIL
a + #(O 1 4 9)
(setf (fill-pointer a) 3) + 3
(fill-pointer a) -+ 3
a + #t(O 1 4)
(setf (fill-pointer a> 8) -+ 8
a + #(O 1 4 9 NIL NIL NIL NIL)

Exceptional Situations:
Should signal an error of type type-error if vector is not a vector with a fill pointer.

See Also:
make-array, length

Notes:
There is no operator that will remove a vector’s fill pointer.

row-major-aref Accessor

Syntax:
row-major-aref array index -+ element

(setf (row-major-aref array index) new-element)

Arguments and Values:
array-an array .

index-a valid array row-major indet for the array.

element, new-element-an object.

Arrays 15-2s

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
Considers array as a vector by viewing its elements in row-major order, and returns the element
of that vector which is referred to by the given index.

row-major-aref is valid for use with s&f.

See Also:
aref, array-row-major-index

Notes:

(rev-major-aref array index) f
(aref (make-array (array-total-size array)

:displaced-to array
: element-type (array-elaent-type array) 1

index)

(aref array il i2 . ..) 3
(row-major-aref array (array-rov-major-ix array il i2))

upgraded-array-element-type Function

syntax:
upgraded-array-element-type typespec &optional environment * upgraded-typespec

Arguments and Values:
typespec-a type specifier.

environment-an environment object. The default is nil, denoting the null Iezical environment
and the current global environment.

upgraded-typespec-a type specifier.

Description:
Returns the element type of the most specialized array representation capable of holding items of
the type denoted by typespec.

The typespec is a subtype of (and possibly type equivalent to) the upgraded-typespec.

If typespec is bit, the result is type equivalent to bit. If typespec is base-char, the result is type
equivalent to base-char. If typespec is character, the result is type equivalent to character.

The purpose of upgraded-array-element-type is to reveal how an implementation does its
upgrading.

The environment is used to expand any derived type specifiers that are mentioned in the typespee.

See Also:
array-element-type, make-array

Notes:
Except for storage allocation consequences and dealing correctly with the optional environment
argument, upgraded-array-element-type could be defined as:

15-24 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

(defun upgraded-array-element-type (type &opt ional environneat)
(array-element-type (8ake-array 0 :eleuent-type type)))

array-dimension-limit Constant Variable

Constant Value:
A positive fzxnum, the exact magnitude of which is implementation-dependent, but which is not
less than 1024.

Description:
The upper exclusive bound on each individual dimension of an array.

See Also:
make-array

array-rank-limit Constant Variable

Constant Value:
A positive fixnum, the exact magnitude of which is implementation-dependent, but which is not
less than 8.

Description:
The upper exclusive bound on the rank of an amay.

See Also:
make-array

array-total-size-limit Constant Variable

Constant Value:
A positive jixnum, the exact magnitude of which is implementation-dependent, but which is not
less than 1024.

Description:
The upper exclusive bound on the array total size of an array.

The actual limit on the array total size imposed by the implementation might vary according the
element type of the array; in this case, the value of array-total-size-limit will be the smallest of
these possible limits.

See Also:
make-array, array-element-type

Arrays 15-25

ANSI X3.226-1994 Programming Language-Common Lisp

simple-vector-p Function

Syntax:
simple-vector-p object + generaked-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type simple-vector; otherwise, returns false..

Examples:

(simple-vector-p (make-array 6)) + true
(simple-vector-p “aaaaaa”) + false
(simple-vector-p (rake-array 6 :fill-pointer t)) + false

See Also:
simple-vector

Notes:

(simple-vector-p object) ZE (typep object ‘simple-vector)

Accessor

Syntax:
svref simple-vector index -+ element

(setf (svref simple-vector index) new-element)

Arguments and Values:
simple-vector-a simple vector.

index-a valid array indez for the simple-vector.

element, new-element-an object (whose type is a subtype of the array element type of the simple-
vector).

Description:
Accesses the element of simple-vector specified by index.

Examples:

(simple-vector-p (setq v (vector 1 2 'sirens))) -+ true
(svref v 0) + 1
(svref v 2) + SIRENS

15-26 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

(setf (svref v 1) kerrcorer) * lEYCOHER
v -) O(1 IEUCOHEX SIREBB)

See Also:
aref, sbit, schar, vector, Section 3.2.1 (Compiler Terminology)

Notes:
svref is identical to aref except that it requires its first argument to be a simple vector.

(svref v i> Z (aref (the simple-vector V) i)

vector Function

Syntax:
vector &rest objects -+ vector

Arguments and Values:
object-an object.

vector-a vector of type (vector t *).

Description:
Creates a fresh simple general vector whose size corresponds to the number of objects.

The vector is initialized to contain the objects.

Examples:

(arrayp (setq v (vector 1 2 'sirens))) -+ true
(vectorp v) + true
(simple-vector-p v) + true
(length v) - 3

See Also:
make-array

Notes:
vector is analogous to list.

(vector al a2 . . . an)
E (make-array (list 70 :elenent-type t

:initial-contents
(list al a2 . . . a,))

Arrays 15-27

. _ - - -L_ i_

A N S I X 3 .226 -1994 P r o g r a m m i n g L a n g u a g e - C o m m o n L isp ,

vec to r -pop Func tio n

syntax:
vec to r -pop vector - + e l emen t

A r g u m e n ts a n d V a l u e s :
vec tor -a vector with a fill pointer .

c lemen t -au object.

Descr ipt ion:
Decreases the fill po in ter of vector by one , a n d re t r ieves the e lement of vector that is des igna ted
by the n e w fill pointer .

E x a m p l e s :

(vec to r -push (se tq fab le (list ‘fab le) 1
(s & q fa (rake -a r ray 8

: f i l l -po inter 2
: in i t ia l -e lement ‘s isyphusI)) * 2

(f i l l -pointer fa) - + 3
(e q (vec to r -pop fa) fab le) + t rue
(vec to r -pop fa) + S IS Y P H U S
(f i l l -pointer fa) - + 1

S ide E ffects:
T h e fill po in ter is dec reased by one.

A ffec ted B y :
T h e va lue of the fill poin ter .

E x c e p tiona l S itu a tio n s :
A n er ror of t ype type-error is s igna led if vector does not have a $ 1 1 poin ler .

If the fill po in ter is zero, vector -pop s igna ls a n e r ro r of type er ror .

S e e A lso:
vector-push, vector-push-extend, f i l l -pointer

vec to r -push , vec to r -push-ex te n d Func tio n

S y n tax:
vector -push n e w - e l e m e n t vector - + n e w - i n d e x - p

vector -push-extend n e w - •/e m e n t vector top t iona l ex tens ion - + n e w - i n d e x

A r g u m e n ts a n d V a l u e s :
n e w - e l e m e n t - a n object.

vector-a vector wi th a fill pointer .

1 5 - 2 8 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

extension-a positive integer. The default is implementation-dependent.

new-index-p-a valid array index for vector, or nil.

new-index--a valid array index for vector.

Description:
vector-push and vector-push-extend store new-element in vector. vector-push attempts to store
new-element in the element of vector designated by the fill pointer, and to increase the fill poinier
by one. If the (>= (fill-pointer vector) (array-dimension vector o)), neither vector nor its fill
pointer are affected. Otherwise, the store and increment take place and vector-push returns the
former value of the fill pointer which is one less than the one it leaves in vector.

vector-push-extend is just like vector-push except that if the fill pointer gets too large, vector
is extended using ad&t-array so that it can contain more elements. fxtension is the minimum
number of elements to be added to vector if it must be extended.

vector-push and vector-push-extend return the index of new-element in vector. If
(>= (fill-pointer vector) (array-dimension vector 0) 1, vector-push returns nil.

Examples:

(vector-push (setq fable (list 'fable))
(setq fa (make-array 8

:fill-pointer 2
:initial-element 'first-one))) + 2

(fill-pointer fa) -+ 3
(eq (aref fa 2) fable) -) true
(vector-push-extend X\X

(setq aa
(make-array 5

:element-type 'character
:adjustable t
:fill-pointer 3))) + 3

(fill-pointer aa) - 4
(vector-push-extend #\Y aa 4) 4 4
(array-total-size aa> -+ at least 5
(vector-push-extend #\Z aa 4) - 5
(array-total-size aa) -+ 9 ;(or more)

Affected By:
The value of the fill poinfer.

How vector was created.

Exceptional Situations:
An error of type error is signaled by vector-push-extend if it tries to extend vector and vector is
not actually adjustable.

An error of type error is signaled if vector does not have a fill pointer.

See Also:
adjustable-array-p, fill-pointer, vector-pop

Arrays 15-29

ANSI X3.226-1994 Programming Language-Common Lisp ,

vectorp Function

Syntax:
vectorp object --* generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type vector; otherwise, returns false.

Examples:

(vectorp “aaaaaa”) + he
(vectorp hake-array 6 :fill-pointer t)) -+ true
(vectorp (make-array '(2 3 4) 1) - false
(vectorp #*ll) -+ love
(vectorp #bli) + fake

Notes:

(vectorp object) E (typep object ‘vector)

bit, sbit Accessor

Syntax:
bit bit-array &rest subscripts -+ bit
sbit bit-array &rest subscripts + bit

(setf (bit bit-array best subscripts) new-bit)
(setf (sbit bit-array krest subscripts) new-bit)

Arguments and Values:
bit-array-for bit, a bi2 array; for sbit, a simple bil array.

subscripts-a lid of valid array indices for the bit-array.

bit-a bit.

Description:
bit and sbit access the bit-array element specified by subscripts.

These functions ignore the $11 pointer when accessing elements.

Examples:

(bit (setq ba (make-array 8 :eleaent-type 'bit :initial-element 1))
3) + 1

15-30 Arrays

Programming Language-Common Lisp ANSI x3.226-1994

(setf (bit ba 3) 0) - 0
(bit ba 3) - 0
(shit ba 5) + 1
(setf (shit ba 5) 1) - 1
(shit ba 5) -+ 1

See Also:
aref , Section 3.2.1 (Compiler Terminology)

Notes:
bit and sbit are like aref except that they require arrays to be a bit array and a simple bit array,
respectively.

bit and sbit, unlike char and schar, allow the first argument to be an array of any rank.

bit-and, bit-andcl, bit-andc2, bit-eqv, bit-ior, bit-
nand, bit-nor, bit-not, bit-orcl, bit-orc2, bit-xor
JhKti0?&

Syntax:
bit-and bit-array1 bit-array2 &optional opt-arg
bit-andcl bit-array1 bit-array2 &optional opt-arg
bit-andct bit-array1 bit-array2 &opt ional opt-arg
bit-eqv bit-array1 bit-array2 &optional opt-arg
bit-ior bit-array1 bit-array2 &optional opt-arg
bit-mud bit-array1 bit-array2 %optional opt-arg
bit-nor bit-array1 bit-array2 &optional opt-arg
bit-owl bit-array1 bit-array2 &optional opt-arg
bit-orc2 bit-array1 bit-array2 &optional opt-arg
bit-xor bit-array1 bit-array2 &optional opt-arg

+ resulting-bit-array
-+ resulting-bit-array
+ resulting-bit-array
+ resulting-bit-array
+ resulting-bit-array
-+ resulting-bit-array
-) resulting-bit-array
+ resulting-bit-array
+ resulting-bit-array
-+ resulting-bit-array

bit-not bit-array &optional opt-arg + resulting-bit-array

Arguments and Values:
bit-array, bit-arrayl, bit-array2-a bit array.

Opt-arg-a bit array, or t, or nil. The default is nil.

Bit-array, bit-arrayl, bit-array2, and opt-arg (if an array) must all be of the same rank and dimen-
sions.

resulting-bit-array-a bit array.

Description:
These functions perform bit-wise logical operations on bit-array1 and bit-array2 and return an
array of matching rank and dimensions, such that any given bit of the result is produced by
operating on corresponding bits from each of the arguments.

In the case of bit-not, an array of rank and dimensions matching bit-array is returned that
contains a copy of bit-array with all the bits inverted.

Arrays 15-31

ANSI X3.226-1994 Programming Language-Common Lisp

If opt-arg is of type (array bit) the contents of the result are destructively placed into opt-arg.
If opt-arg is the symbol t, bit-array or bit-array1 is replaced with the result; if opt-arg is nil or
omitted, a new array is created to contain the result.

Figure 15-4 indicates the logical operation performed by each of the functions.

Fhnction

bit-and
bit-eqv
bit-not
bit-ior
bit-xor
bit-mud
bit-nor
bit-andcl
bit-andc2
bit-orcl
bit-orc2

Operation

and
equivalence (exclusive nor)
complement
inclusive or
exclusive or
complement of bit-array1 and bit-array2
complement of bit-array1 or bit-array2
and complement of bit-array1 with bit-array2
and bit-array1 with complement of bit-array2
or complement of bit-array1 with bit-array2
or bit-array1 with complement of bit-array2

Figure 15-4. Bit-wise Logical Operations on Bit Arrays

Examples:

(bit-and (setq ba #*11101010) #*01101011) -+ #*01101010
(bit-and #*llOO #x*1010) + #*lOOO
(bit-andcl I*1100 #*lOlO) * #*OOlO
(setq rba (bit-andc2 ba #*00110011t)) --+ #*11001000
(eq rba ba) + lose
(bit-not (setq ba X*11101010)) -+ 8*00010101
(setq rba (bit-not ba

(setq tba (make-array 8
:element-type *bit))))

+ t*00010101
(equal rba tba) -, ime
(bit-xor X*1100 #x*1010) -) #*OllO

See Also:
lognot, logand

bit-vector-p Function

syntax:
. bit-vector-p object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean--a generalized boolean.

Description:
Returns true if object is of fype bit-vector; otherwise, returns false.

15-32 Arrays

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(bit-vector-p (rake-array 6
:element-type ‘bit
:fill-pointert)) + lrue

(bit-vector-p #*I + irue
(bit-vector-p (rake-array 6)) - false

See Also:
tmep

Notes:

(bit-vector-p object) I (typep object 'bit-vector)

simple-bit-vector-p Function

Syntax:
simple-bit-vector-p object --) generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a genkralized boolean.

Description:
Returns true if object is of type simple-bit-vector; otherwise, returns f&e.

Examples:

(simple-bit-vector-p (rake-array 6)) -+ false
(simple-bit-vector-p #*I - lrue

See Also:
simple-vector-p

Notes:

(simple-bit-vector-p object) E (typep object ‘simple-bit-vector)

Arrays 15-33

ANSI X3.226-1994 Programming Language-Common Lisp

15-34 Arrays

ANSI X3.226-1994

Programming Language-Common Lisp

16. Strings

ANSI X3.226-1994 Programming Language-Common Lisp
,

ii String8

Programming Language-Common Lisp ANSI X3.226-1994

16.1 String Concepts

16.1.1 Implications of Strings Being Arrays
Since all strings are nrrays, all rules which apply generally to cmrys also apply to strings. See
Section 15.1 (Array Concepts).

For example, strings can have fill pointers, and strings are also subject to the rules of element
type upgrading that apply to arrays.

16.1.2 Subtypes of STRING
All functions that operate on strings will operate on subtypes of siring as well.

However, the consequences are undefined if a character is inserted into a string for which the
element type of the string does not include that character.

Strings 16-l

_ - , , _ i . l _ - _ , . - . - -
I _ _ _ . - . . _ . ~ .

A N S I X 3 .2 2 6 -1 9 9 4 P r o g ra m m i n g L a n g u a g e -C o m m o n L i s p

s tri n g S y s te m C l a s s

C l a s s P re c e d e n c e L i s t:
s tri n g , v e c to r, a rra y , s e q u e n c e , t

D e s c ri p ti o n :
A s tri n g i s a s p e c i a l i z e d v e c to r w h o s e e l e m e n ts a re o f ty p e c h a ra c te r o r a s u b ty p e o f ty p e
c h a ra c te r. W h e n u s e d a s a ty p e s p e c i fi e r fo r o b j e c t c re a ti o n , s tri n g m e a n s (v e c to r c h a ra c te r).

C o m p o u n d T y p e S p e c i fi e r K i n d :
A b b re v i a ti n g .

C o m p o u n d T y p e S p e c i fi e r S y n ta x :
(s tri n g C s i z c l)

C o m p o u n d T y p e S p e c i fi e r A rg u m e n ts :
s i z e -a n o n -n e g a ti v e fi x n u m , o r th e s y m b o l *,

C o m p o u n d T y p e S p e c i fi e r D e s c ri p ti o n :
T h i s d e n o te s th e u n i o n o f a l l ty p e s (a rra y c (s i z e)) fo r a l l s u b ty p e s c o f c h a ra c te r; th a t i s , th e
s e t o f s tri n g s o f s i z e s i z e .

S e e A l s o :
S e c ti o n 1 6 .1 (Str i n g C o n c e p ts), S e c ti o n 2 .4 .5 (D o u b l e -Q u o te), S e c ti o n 2 2 .1 .3 .4 (Pr i n ti n g S tri n g s)

. . . .

b a s e -s tri n g T Y ? =

S u p e rty p e s :
b a s e -s tri n g , s tri n g , v e c to r, a rra y , s e q u e n c e , t

D e s c ri p ti o n :
T h e ty p e b a s e -s tri n g i s e q u i v a l e n t to (v e c to r b a s e -c h a r). T h e b a s e s tri n g re p re s e n ta ti o n i s th e
m o s t e ffi c i e n t s tri n g re p re s e n ta ti o n th a t c a n h o l d a n a rb i tra ry s e q u e n c e o f s ta n d a rd c h a ra c te rs .

C o m p o u n d T y p e S p e c i fi e r K i n d :
A b b re v i a ti n g .

C o m p o u n d T y p e S p e c i fi e r S y n ta x :
(b a s e -s tri n g C s i z e l)

C o m p o u n d T y p e S p e c i fi e r A rg u m e n ts :
s i z e -a n o n -n e g a ti v e fi x n u m , o r th e s y m b o l *.

C o m p o u n d T y p e S p e c i fi e r D e s c ri p ti o n :
T h i s i s e q u i v a l e n t to th e ty p e (v e c to r b a s e -c h a r s i z e); th a t i s , th e s e t o f b a s e s tri n g s o f s i z e s i z e .

1 6 -2 S tri n g s

Programming Language-Common Lisp ANSI X3.226-1994

simple-string TYPe

Supertypes:
simple-string, string, vector, simple-array, array, sequence, t

Description:
A simple string is a specialized one-dimensional simple away whose elements are of type
character or a subtype of type character. When used as a type specifier for object creation,
simple-string means (simple-array character (size)) .

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(simple-string Csizel)

Compound Type Specifier Arguments:
size-a non-negative fixnum, or the symbol *.

Compound Type Specifier Description:
This denotes the union of all types (simple-array c (size)) for all subtypes c of character; that
is, the set of simple strhgs of size size.

simple-base-string

Supertypes:
simple-base-string, base-string, simple-string, string, vector, simple-array, array, sequence, t

Description:
The type simple-base-string is equivalent to (simple-array base-char (*I).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(simple-base-string Csizel)

Compound Type Specifier Arguments:
size-a non-negative jixnum, or the symbol *.

Compound Type Specifier Description:
This is equivalent to the type (simple-array base-char (size)); that is, the set of simple base
strings of size size.

Strings 16-3

__ ._~ --._ -_-,-- .---- ----. -- -- .- ---_---_.. ~.. ..~ - -

ANSI X3.226-1994 Programming Language-Common Lisp

simple-string-p Function

syntax:
simple-string-p object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of hype simple-string; otherwise, returns false.

Examples:

(simple-string-p "aaaaaa") + bue
(simple-string-p (rake-array 6

:elewnt-type 'character
:fill-pointer t)) + false

Notes:

(simple-string-p object) z (typep object 'simple-string)

char, schar Accessor

Syntax:
char string index + character
schar string index -+ character

(setf (char string index) new-character)
(setf (schar string index) new-character)

Arguments and Values:
string-for char, a string; for schar, a simple stting.

index-a valid array indet for the string.

character, new-character-a character.

Description:
char and schar access the element of string specified by index.

char ignores fill pointers when accessing elemenis.

Examples:

betq my-simple-string (rake-string 6 :initial-element #\A)) + "AAAAM"
bchar my-simple-string 4) + #\A
betf bchar my-simple-string 4) t\B) -+ t\B

16-4 Strings

Programming Language-Common Lisp ANSI X3.226-1994

ay-simple-string + “MAADA”
(setq my-f illed-string

(rake-array 6 :element-type ‘character
:f ill-pointer 5
: initial-contents By-sirple-string) 1

(char my-filled-string 4) -+ t\B
(char my-filled-string 5) + #\A
(setf (char my-filled-string 3) S\C) - S\C
(setf (char my-filled-string 5) #\D) -+ #\D
(setf (fill-pointer ry-filled-string) 6) + 6
my-f illed-string + “AAACBD”

See Also:
aref, elt, Section 3.2.1 (Compiler Terminology)

Notes:

(char s j> E (aref (the string s) j)

string Function

syntax:
string x -+ string

Arguments and Values:
x-a string, a symbol, or a character.

string-a stn’ng.

Description:
Returns a string described by x; specifically:

l If x is a string, it is returned.

l If x is a symbol, its name is returned.

l If x is a character, then a string containing that one character is returned.

l string might perform additional, implementation-defined conversions.

Examples:

(string “already a string”) -+ “already a string”
(string ‘elm) + “ELM”
(string #\c) + “c”

Exceptional Situations:
In the case where a conversion is defined neither by this specification nor by the implementafion,
an error of type type-error is signaled.

See Also:
coerce, string (type).

Strings 16-5

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
coerce can be used to convert a sequence of characters to a string.

prinl-to-string, print-to-string, write-to-string, or format (with a first argument of nil) can. be
used to get a string representation of a number or any other object.

string-upcase, string-downcase, string-capitalize,
nstring-upcase, nstring-downcase, nstring-
capitalize Function

Syntax:
string-upcase string tkey start end + cased-string
string-downcase string tkey start end + cased-string
string-capitalize string &key start end -+ cased-string

n&ring-upcase string &key start end + string
nstring-downcase string kkey start end -+ string
nstring-capitalize string tkey start end --) string

Arguments and Values:
string-a stting designator. For nstring-upcase, nstring-downcase, and nstring-capitalize, the
string designator must be a string.

start, end-bounding index designators of string. The defaults for start and end are 0 and nil,
respectively.

cased-string-a string.

Description:
string-upcase, string-downcase, string-capitalize, nstring-upcase, nstring-downcase,
nstring-capitalize change the case of the subsequence of string bounded by start and end as
follows:

string-upcase

string-upcase returns a string just like string with all lowercase characters replaced by
the corresponding uppercase characters. More precisely, each character of the result string
is produced by applying the function char-upcase to the corresponding character of
string.

string-downcase

string-downcase is like string-upcase except that all uppercase characters are replaced
by the corresponding lowercase characters (using char-downcase).

string-capitalize

string-capitalize produces a copy of string such that, for every word in the copy, the first
character of the “word,” if it has case, is uppercase and any other characters with case in
the word are lowercase. For the purposes of string-capitalize, a “word” is defined to be
a consecutive subsequence consisting of alphanumeric characters, delimited at each end
either by a non-alphanumeric character or by an end of the string.

. .

16-6 Strings

Programming Language-Common Lisp ANSI X3.226-1994

nstring-upcase, n&ring-downcase, nstring-capitalize

n&ring-upcase, nstring-downcase, and nstring-capitalize are identical to
string-upcase, string-downcase, and string-capitalize respectively except that they
modify string.

For string-upcase, string-downcase, and string-capitalize, string is not modified. However, if
no characters in string require conversion, the result may be either string or a copy of it, at the
implementation’s discretion.

Examples:

(string-upcase "abcde") -+ "ABCDE"
(string-upcase "Dr. Livingston, I presume?")

+ "DR. LIVIUGSTOI, I PBESlJME?"
(string-upcase "Dr. Livingston, I presume?" :start 6 :end 10)

+ "Dr. LiVINGston, I presuue?"
(string-dovncase "Dr. Livingston, I presuue?")

+ 'Mr. livingston, i presuue?"

(string-capitaIize "elm 13c arthur;fig don't") + "Elm 13~ Arthur;Fig Don'T"
(string-capitalize " hello "1 + M Hello '
(string-capitdlize "occlUDeD cAShenTs FOreSTAll iNADVertent DEFenestraTION”)

* "Occluded Casements ForestaIl Inadvertent Defenestration"
(string-capitalize ‘kludgy-hash-search) * "Kludgy-Hash-Search"
(string-capitdlize "DON'T!") -+ "Don'T!" ;not "Don't!"
(string-capitdlize "pipe 13a, fool6c") + "Pipe 13a, Fool6c"

(setq str (copy-seq "0123ABCD890a")) + "0123ABCD890a"
(ustring-dovncase str :start 5 :end 7) -+ "0123AbcD890a"
str -+ "0123AbcD890a"

Side Effects:
nstring-upcase, n&ring-downcase, and nstring-capitalize modify string as appropriate rather
than constructing a new string.

See Also:
char-upcese, char-downcase

Notes:
The result is always of the same length as string.

string-trim, string-left-trim, string-right-trim
Function

Syntax:
string-trim character-bag string -) trimmed-string
string-left-trim character-bag string -) trimmed-string
string-right-trim character-bag string + trimmed-string

Arguments and Values:
character-bag-a sequence containing characters.

Strings 16-7

ANSI X3.226-1994 Programming Language-Common Lisp

string-a string designator.

trimmed-string-a string.

Descfiption:
string-trim returns a substririg of string, with all characters in character-bag stripped off the
beginning and end. string-left-trim is similar but strips characters off only the beginning;
string-right-trim strips off only the end.

If no characters need to be trimmed from the string, then either string itself or a copy of it may
be returned, at the discretion of the implementation.

All of these functions observe the fill pointer.

Examples:

(string-trim “abc ” “abcaakaaakabcaaa”) -) “kaaak”
(string-trim ‘(#\Space #\Tab S\Hevline) ” garbanzo beans

) + “garbanzo beans”
(stringLm ” (*)‘I ” (*three (silly) vorde*) ‘I)

-+ “three (silly) vords”

(string-left-trim “abc” “labcabcabc”) -+ “labcabcabc”
(string-left-trim ” (*)I’ ” (*three (silly) vords*) “1

--) “three (silly) vorda* 1 ”

(string-right-trim ” (*I” ” (*three (silly) vords*) “1
-) ” (*three (silly) vords”

Affected By:
The implementation.

string=, string/=, string<, string>, string<=,
string>=, string-equal, string-not-equal, string-
lessp, string-greaterp, string-not-greaterp, string-
not-lessp Function

Syntax:
string= string1 string2 &key start1 end1 start2 end2 + generalized-boolean

string/= string1 string2 &key start1 end1 start2 end2 + mismatch-index
string< string1 string2 &key start1 end1 start2 end2 -+ mismatch-index
string> string1 string2 &key start1 end1 start2 end2 + mismatch-index
string<= string1 string2 kkey start1 end1 start2 end2 + mismatch-index
string>= string1 string2 &key start1 end1 start2 end2 -+ mismatch-index

string-equal string1 string2 &key start1 end1 start2 end2 -+ generalized-boolean

string-not-equal string1 string2 &key start1 end1 start2 end2 -) mismatch-index
string-lessp string1 string2 kkey start1 end1 start2 end2 + mismatch-index
string-greaterp string1 string2 tkey start1 end1 start2 end2 -+ mismatch-index
string-not-greaterp string1 string2 &key start1 end1 start2 end2 - mismatch-index
string-not-lessp string1 string2 &key start1 end1 start2 end2 + mismatch-index

16-8 Strings

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
stringl-a string designator.

string2-a string designator.

sbrtl, end1 -bounding index designators of stringl. The defaults for start and end are Q and nil,
respectively.

start2, end2-bounding index designators of string2. The defaults for start and end are 0 and nil,
respectively.

generalized-boolean-a generalized boolean.

mismatch-index-a bounding index of stringl, or nil.

Description:
These functions perform lexicographic comparisons on string1 and string2. string= and
string-equal are called equality functions; the others are called inequality functions. The compar-
ison operations these functions perform are restricted to the subsequence of string1 bounded by
start1 and end1 and to the subsequence of string2 bounded by start% and end2.

A string a is equal to a string b if it contains the same number of characters, and the correspond-
ing characters are the same under char= or char-equal, as appropriate.

A string a is less than a string b if in the first position in which they differ the character of a is
less than the corresponding character of b according to char< or char-lessp as appropriate, or if
string a is a proper prefix of string B (of shorter length and matching in all the characters of a).

The equality functions return a generalized boolean that is true if the strings are equal, or false
otherwise.

The inequality functions return a mismatch-index that is true if the strings are not equal, or
false otherwise. When the mismatch-indax is irue, it is an integer representing the first character
position at which the two substrings differ, as an offset from the beginning of stringl.

The comparison has one of the following results:

string=

string= is true if the supplied substrings are of the same length and contain the same
characters in corresponding positions; otherwise it is false.

string/=

string/= is true if the supplied substrings are different; otherwise it is false.

string-equal

string-equal is just like string= except that differences in case are ignored; two charac-
ters are considered to be the same if char-equal is true of them,

string<

string< is true if substringl is less than substring2; otherwise it is false.

string>

string> is true if substringl is greater than substring2; otherwise it is false.

string-lessp, string-greaterp

Strings 16-9

ANSI X3.226-1994 Programming Language-Common Lisp

string-lessp and string-greaterp are exactly like string< and string>, respectively,
except that distinctions between uppercase and lowercase letters are ignored. It is as if
char-lessp were used instead of char< for comparing characters.

string<=

string<= is true if substringl is less than or equal to substring2; otherwise it is false.

string>=

string>= is true if substringl is greater than or equal to substring2; otherwise it is false.

string-not-greaterp, string-not-lessp

string-not-greaterp and string-not-lessp are exactly like string<= and string>=,
respectively, except that distinctions between uppercase and lowercase letters are ignored.
It is as if char-lessp were used instead of char< for comparing characters.

Examples:

(string- “foot “f 00”) + he
(string= “foe” “Foe”) + fake
(string= “foe” “bar”) + false
(string= “together” “frog” :startl 1 :endl 3 :start2 2) -) true
(string-equal “foe” “Foe”) + trve
(string= “abed” “01234abcd9012” :start2 5 :end2 9) + t?%e
(string< “aaaa ” “aaab”) + 3
(string>= “aaaaa” “aaaa”) + 4
(string-not-greaterp “Abcde” “abcdE*‘) -+ 5
(string-lessp “012AAAA789” “Olaaab6” :startl 3 :endl 7

:start2 2 :end2 6) - 6
(string-not-equal “AAAA” “aaaA”) * fdSe

See Also:
char=

Notes:
equal calls string= if applied to two strings.

stringp Function

Syntax:
stringp object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type string; otherwise, returns false.

16-10 Strings

Programming Language-Common Lisp ANSI X3.226-1994

I$xamples:

(stringp “aaaaaa”) + lrue
(stringp #\a) -+ false

See Also:
types, string (We)

Notes:

(stringp object) f (typep object ‘string)

make-string Function

Syntax:
make-string size Bkey initial-element element-type -+ string

Arguments and Values:
size--a valid array dimension.

initial-clement-a characfer. The default is implementation-dependent.

element-type -a type specifier. The default is character.

string-a simple string.

Description:
make-string returns a simple string of length size whose elements have been initialized to initial-
element.

The element-type names the type of the elements of the string; a string is constructed of the most
specialized type that can accommodate elements of the given type.

Examples:

(make-string 10 : initial-element *\5) -) "5555555555"
(length (make-string 10)) -+ 10

Affected By:
The implementation.

Strings 16-11

__--. .‘. I”

ANSI X3.226-1994 Programming Language-Common Lisp

16-12 Strings

ANSI X3.226-1994

Programming Language-Common Lisp

17. Sequences

ANSI X3.226-1994 Programming Language-Common Lisp

ii Sequences

Programming Language-Common Lisp ANSI X3.226-1994

17.1 Sequence Concepts
A sequence is an ordered collection of elements, implemented as either a vector or a list.

Sequences can be created by the juncfion make-sequence, as well as other junctions that create
objects of types that are subfypes of sequence (e.g., list, make-list, mapcar, and vector).

A sequence function is a junction defined by this specification or added as an extension by
the implementation that operates on one or more sequences. Whenever a sequence junction
must construct and return a new vector, it always returns a simple vector. Similarly, any strings
constructed will be simple strings.

concatenate
copy-seq
count
count-if
count-if-not
delete
delete-duplicates
delete-if
delete-if-not
elt
every
fill
find
And-if
And-if-not

length
map
mapinto
merge
mismatch
notany
notevery
nreverse
nsubstitute
nsubstitute-if
nsubstitute-if-not
position
position-if
position-if-not
reduce

remove
remove-duplicates
remove-if
remove-if-not
replace
reverse
search
some
sort
stable-sort
subseq
substitute
substitute-if
substitute-if-not

Figure 17-1. Standardized Sequence Functions

17.1.1 General Restrictions on Parameters that must be
Sequences
In general, lists (including association lists and property lists) that are treated as sequences must
be proper lists.

Sequences 17-1

~~ --.- __.-.- - . . . - -.-c

ANSI X3.226-1994 Programming Language-Common Lisp

17.2 Rules about Test Functions

172.1 Satisfying a Two-Argument Test
When an object 0 is being considered iteratively against each element Ei of a sequence 5 by an
operator F listed in Figure 17-2, it is sometimes useful to control the way in which the presence
of 0 is tested in S is tested by F. This control is offered on the basis of a function designated
with either a :test or :test-not argument.

adjoin
absoC

count
delete
And
intersection
member
mismatch
nintersection
nset-difference

nset-exclusive-or
nsublis
nsubet
nsubstitute
nunion
position
pushnew
rassoc
remove
remove-duplicates

search
set-difference
set-exclusive-or
sublis
sub&p
subst
substitute
tree-equal
union

Figure 17-2. Operators that have Two-Argument Tests to be Satisfied

The object 0 might not be compared directly to Ei. If a :key argument is provided, it is a
designator for a function of one argument to be called with each Ei as an argument, and yielding
an object Zi to be used for comparison. (If there is no :key argument, Zi is Ei.)

The function designated by the :key argument is never called on 0 itself. However, if the function
operates on multiple sequences (e.g., as happens in set-difference), 0 will be the result of calling
the :key function on an element of the other sequence.

A :test argument, if supplied to F, is a designator for a function of two arguments, 0 and 2;.
An Ei is said (or, sometimes, an 0 and an Ei are said) to satisfy the test if this :test function
returns a generalized boolean representing true.

A :test-not argument, if supplied to F, is designator for a function of two arguments, 0 and
Zi. An Ei is said (or, sometimes, an 0 and an Ei are said) to satisfy the test if this :test-not
function returns a generalized boolean representing false.

If neither a : test nor a : test-not argument is supplied, it is as if a :test argument of #‘eql was
supplied.

The consequences are unspecified if both a : test and a : test-not argument are supplied in the
same call to F.

17.2.1.1 Examples of Satisfying a Two-Argument Test

(remove “FOO” ‘(foe bar “FOO” “BAR” “fog” ” bar”) : teat #‘equal)
+ (f oo bar “BAR” “foe” “bar”)

(remove “FOO” ’ (foe bar “FOO” ‘lBAR” “foe” “bar’*) :test X’equalp)
- (foe bar “BAR” “bar”)

(remove “FOO” ’ (foe bar “FOO” “BAR” “foe” ” bar”) : test X ‘string-equal)
* (bar “BAR” “bar”)

(remove “FOO” ‘(foe bar “FOO” “BAR” “foot’ “bar”) :test #‘string=)
e (BAR “BAR” “foe” “bar”)

17-2 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

(remove 1 '(1 1.0 tC(l.O 0.0) 2 2.0 *C(2.0 0.0)) :test-not t’eql)
- (1)

(remove 1 '(1 1.0 SC(l.0 0.0) 2 2.0 K(2.0 0.0)) :test-not It’=>
4 (1 1.0 rrC(l.0 0.0))

(remove 1 '(1 1.0 tC(1.0 0.0) 2 2.0 gC(2.0 0.0)) :test (complement II'=)>
--* (1 1.0 rrC(l.0 0.0))

(count 1 '((one 1) (uno 1) (tvo 2) (dos 2)) :key #‘cadr) - 2

(count 2.0 '(1 2 3) :test #'eql :key *'float) + 1

(count "FOO" (list (make-pathname :name "FOO" :type "XI')
(make-pathname :name "FOO" :type "Y"))

:key X'pathname-name
:test *'equal)

+2

17.2.2 Satisfying a One-Argument Test
When using one of the functions in Figure 17-3, the elements E of a sequence S are filtered not
on the basis of the presence or absence of an object 0 under a two argument predicate, as with
the functions described in Section 17.2.1 (Satisfying a Two-Argument Test), but rather on the
basis of a one argument predicate.

assoc-if
assoc-if-not
count-if
count-if-not
deleteif
delete-if-not
And-if
And-if-not

member-if
member-if-not
nsubst-if
nsubst-if-not
nsubstitute-if
nsubstitute-if-not
position-if
position-if-not

rassoc-if
rassoc-if-not
remove-if
remove-if-not
subst-if
subst-if-not
substitute-if
substitute-if-not

Figure 17-3. Operators that have One-Argument Tests to be Satisfied

The element Ei might not be considered directly. If a :key argument is provided, it is a desig-
nator for a function of one argument to be called with each Ei as an argument, and yielding an
object Zi to be used for comparison. (If there is no :key argument, Zi is Ei.)

Functions defined in this specification and having a name that ends in “-if” accept a first
argument that is a designator for a function of one argument, Zi. An Ei is said to satisfy the
test if this :test function returns a generalized boolean representing true.

Funclions defined in this specification and having a name that ends in “-if-not” accept a first
argument that is a designator for a junction of one argument, Zi. An Ei is said to satisfy the
test if this :test function returns a generalized boolean representing false.

Sequences 17-3

ANSI X3.226-1994 Programming Language-Common Lisp

17.2.2.1 Examples of Satisfying a One-Argument Test

(count-if t'zerop '(1 tC(O.0 0.0) 0 O.OdO 0.0~0 3)) -+ 4

(remove-if-not S'symbolp '(0 1 2 3 4 5 6 7 8 9 A B C D E F))
--,(ABCDEFF)

(remove-if (complement St'symbolp) '(0 1 2 3 4 5 6 7 8 9 A B C D E F))
+ (ABcDEF)

(count-if lt)zerop '("foe" '!I' "bar" "" 'IN "baz" "quux") :key *'length)
w3

17-4 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

sequence System Class

Class Precedence List:
sequence, t

Description:
Sequences are ordered collections of objects, called the elements of the sequence.

The types vector and the type list are disjoint subtypes of type sequence, but are not necessarily
an exhaustive patiition of sequence.

When viewing a vector as a sequence, only the active elements of that vector are considered ele-
ments of the sequence; that is, sequence operations respect the fill pointer when given sequences
represented as vectors.

copy-seq Function

Syntax:
copy-seq sequence -+ copied-sequence

Arguments and Values:
sequence-a proper sequence.

copied-sequence-a proper sequence.

Description:
Creates a copy of sequence. The elements of the new sequence are the same as the corresponding
elements of the given sequence.

If sequence is a vector, the result is a fresh simple array of rank one that has the same actual
array element type as sequence. If sequence is a list, the result is a fresh list.

Examples:

(setq str "a string") - "a string"
(equalp str (copy-seq str)) + true
(eql str (copy-seq str)) + false

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
copy-list

Notes:
From a functional standpoint, (copy-seq x) z (subseq x O)

However, the programmer intent is typically very different in these two cases.

Sequences 17-5

,--- .,, ^ :,. & - - _ ..-

ANSI X3.226-1994 Programming Language-Common Lisp

elt Accessor

Syntax:
elt sequence index -+ object

(setf (elt sequence index) new-object)

Arguments and Values :
sequence-a proper sequence.

index-a valid sequence index for sequence.

object-an object,

new-object-an object.

Descr iption:
Accesses the element of sequence specified by index.

Examples :

(setq str (copy-seq “0123456789”)) -+ “0123456789”
(elt str 6) --) #\S
(setf (elt str 0) #*I + W \r!
str -P “11123456789”

Exceptional Situations :
Should be prepared to s ignal an error of type type-error if sequence is not a proper sequence.
Should s ignal an error of type type-error if index is not a valid sequence index for sequence.

See Also:
aref, nth, Section 3.2.1 (Compiler Terminology)

Notes:
aref may be used to access vector elements that are beyond the vector’s fill pointer.

Syntax:
All sequence item &key start end + sequence

Arguments and Values :
sequence-a proper sequence.

item-a sequence.

start, end-bounding index designators of sequence. The defaults for start and end are o and nil,
respectively.

17-6 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

Description:
Replaces the elemenis of sequence bounded by start and end with item.

Examples:

(fill (list 0 1 2 3 4 5) '(444)) * ((444) (444) (444) (444) (444) (444))
(fill (copy-seq "01234") #\e :start 3) * "012ee"
(setq x (vector 'a 'b 'c 'd 'e)) -* #(A B C D E)
(fill x 'z :start I :end 3) + $(A 2 Z D E)
x --) #(A Z Z D E)
(fill x ‘p) * #(P P P P P)
x - t(P P P P P)

Side Effects:
Sequence is destructively modified.

Exceptional Situations:
Should be prepared to signal an error of lype type-error if sequence is not a proper sequence.
Should signal an error of type type-error if start is not a non-negative integer. Should signal an
error of type type-error if end is not a non-negative integer or nil.

See Also:
replace, nsubstitute

Notes:
(fill sequence item) G(nsubstitute-if item (constantly t) sequence)

make-sequence Function

Syntax:
make-sequence result-type size &key initial-element -+ sequence

Arguments and Values:
result-type-a sequence type specifier.

size-a non-negative integer.

initial-element-an object. The default is implementation-dependent.

sequence-a proper sequence.

Description:
Returns a sequence of the type result-type and of length size, each of the elements of which has
been initialized to initial-element.

If the result-type is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Sequences 17-7

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(make-sequence 'list 0) --) 0
(make-sequence 'string 26 :initial-elment t\.)

4 ” ,II............
(make-sequence ‘(vector double-float) 2

: initial-element IdO)
+ l(l.OdO l.OdO)

(make-sequence ‘(vector * 2) 3) should signal an error
(make-sequence ‘(vector * 4) 3) should signal an error

Affected By:
The implementation.

Exceptional Situations:
The consequences are unspecified if initial-element is not an object which can he stored in the
resulting sequence.

An error of type type-error must be signaled if the result-type is neither a recognizable subtype of
list, nor a recognizable subtype of vector.

An error of type type-error should be signaled if result-type specifies the number of elements and
size is different from that number.

See Also:
make-array, make-list .

Notes:

(make-sequence 'string 5) 3 (rake-string 5)

subseq Accessor

Syntax:
subseq sequence start koptiondl end + subsequence

(setf (subseq sequence start &optional end) new-subsequence)

Arguments and Values:
sequence-a proper sequence.

start, end-bounding indez designators of sequence. The default for end is nil.

subsequence-a proper sequence.

new-subsequence-a proper sequence.

Description:
subseq creates a sequence that is a copy of the subsequence of sequence bounded by start and
end.

17-8 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

Start specifies an offset into the original sequence and marks the beginning position of the subse
quence. end marks the position following the last element of the subsequence.

subseq always allocates a new sequence for a result; it never shares storage with an old sequence.
The result subsequence is always of the same type as sequence.

If sequence is a vector, the result is a fresh simple array of rank one that has the same actual
array element type as sequence. If sequence is a list, the result is a fresh list.

setf may be used with subseq to destructively replace elements of a subsequence with elements
taken from a sequence of new values. If the subsequence and the new sequence are not of equal
length, the shorter length determines the number of elements that are replaced. The remaining
elements at the end of the longer sequence are not modified in the operation.

Examples:

(setq str “012345”) -r* 1’012345”
(subseq str 2) ---) “2345”
(subseq str 3 5) + “34”
(setf (subseq str 4) “abc”) -+ “abc”
str -+ “0123ab”
(setf (subseq str 0 2) “A”) + “A”
str - “A123ab”

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should be prepared to signal an error of type type-error if new-subsequence is not a proper
sequence.

See Also:
replace

map Function

Syntax:
map result-type function &rest sequences+ * result

Arguments and Values:
result-type - a sequence type specifier, or nil.

function-a function designator. function must take as many arguments as there are sequences.

sequence-a proper sequence.

result-if result-type is a type. specifier other than nil, then a sequence of the type it denotes;
otherwise (if the result-type is nil), nil.

Description:
Applies function to successive sets of arguments in which one argument is obtained from each
sequence. The function is called first on all the elements with index 0, then on all those with index
1, and so on. The result-type specifies the type of the resulting sequence.

map returns nil if result-type is nil. Otherwise, map returns a sequence such that element j is the
result of applying function to element j of each of the sequences. The result sequence is as long as
the shortest of the sequences. The consequences are undefined if the result of applying function to

Sequences 17-9

ANSI X3.226-1994 Programming Language-Common Lisp

the successive elements of the sequences cannot be contained in a sequence of the type given by
result-type.

If the result-type is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(rap ‘string #'(laabda (x J)
(char "01234567890ABCDEF" (mod (+ x y) 16)))

‘(1 2 3 4)
'(10 9 8 7)) ---) "AAAA"

(s&q seq ‘(“lover” YJFTE~” “” "123")) -+ ("lover" "UPPEB" "" "123")
(map nil t’nstring-upcase seq) + HIL
seq * ("LOWER 19 mupp~~*t ttu ~123ta)

(map 'list #'- '(1 2 3 4)) * (-1 -2 -3 -4)
(map 'string

#'(lambda (x1 (if Coddp x) X\l 8\0))
'(1 2 3 4)) 3 "1010"

(map '(vector * 4) #'cons "abc " "de") should signal an error

Exceptional Situations:
An error of type type-error must be signaled if the result-type is not a recognizable subtype of list,
not a recognizable subtype of vector, and not nil.

Should be prepared to signal an error of type type-error if any sequence is not a proper sequence.

An error of type type-error should be signaled if result-type specifies the number of elements and
the minimum length of the sequences is different from that number.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

map-into Function

Syntax:
map-into result-sequence function krest sequences -+ result-sequence

Arguments and Values:
result-sequence-a proper sequence.

function-a designator for a function of as many arguments as there are sequences.

sequence-a proper sequence.

Description:
Destructively modifies result-sequence to contain the results of applying function to each element
in the argument sequences in turn.

17-10 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

result-sequence and each element of sequences can each be either a list or a vector. If result-
sequence and each element of sequences are not all the same length, the iteration terminates
when the shortest sequence (of any of the sequences or the result-sequence) is exhausted. If
result-sequence is a vector with a fill pointer, the fill pointer is ignored when deciding how many
iterations to perform, and afterwards the fill pointer is set to the number of times function was
applied. If result-sequence is longer than the shortest element of sequences, extra elements at the
end of result-sequence are left unchanged. If result-sequence is nil, map-into immediately returns
nil, since nil is a sequence of length zero.

If function has side effects, it can count on being called first on all of the elements with index 0,
then on all of those numbered 1, and so on.

Examples:

(setq a (list 1 2 3 4) b (list 10 10 10 10)) -) (10 10 10 10)
(rap-into a X’+ a b) -) (11 12 13 14)
a 4 (11 12 13 14)
b + (10 10 10 10)
(setq k *(one two three)) + (ONE TV0 THREE)
(map-into a #‘cons k a) -+ ((ONE . 11) (TYO . 12) (THREE . 13) 14)
(map-into a Il’gensylP) + (X:G9090 S:G9091 #:G9092 #:G9093)
a -+ (t:G9090 #:G9091 #:G9092 #:G9093)

Exceptional Situations:
Should be prepared to signal an error of type type-error if result-sequence is not a proper se-
quence. Should be prepared to signal an error of type type-error if sequence is not a proper
sequence.

Notes:
map-into differs from map in that it modifies an existing sequence rather than creating a new
one. In addition, map-into can be called with only two arguments, while map requires at least
three arguments.

map-into could be dellned by:

(defun map-intci (result-sequence function &rest sequences)
(loop for index belov (apply X’min

(length result-sequence)
(mapcar #'length sequences))

do (setf (elt result-sequence index)
(apply function

(mapcar *'(lambda (seq) (elt seq index))
sequences))))

result-sequence)

reduce Function

Syntax:
reduce function sequence &key key from-end start end initial-value - result

Arguments and Values:
function-a designator for a function that might be called with either zero or two arguments.

Sequences 17-11

ANSI X3.226-1994 Programming Language-Common Lisp

sequence-a proper sequence.

key-a designator for a function of one argument, or nil.

from-end-a generalized boolean. The default is false.

start, end-bounding indez designators of sequence. The defaults for start and end are 0 and nil,
respectively.

initial-value-an object.

result-an object.

Description:
reduce uses a binary operation, function, to combine the elements of sequence bounded by start
and end.

The function must accept as arguments two elements of sequence or the results from combining
those elements. The function must also be able to accept no arguments.

If key is supplied, it is used is used to extract the values to reduce. The key function is applied
exactly once to each element of sequence in the order implied by the reduction order but not to
the value of initial-value, if supplied. The key function typically returns part of the element of
sequence. If key is not supplied or is nil, the sequence element itself is used.

The reduction is left-associative, unless from-end is irue in which case it is right-associative.

If initial-value is supplied, it is logically placed before the subsequence (or after it if from-end is
true) and included in the reduction operation.

In the normal case, the result of reduce is the combined result of function’s being applied to
successive pairs of elements of sequence. If the subsequence contains exactly one element and no
initial-value is given, then that element is returned and function is not called. Xf the subsequence
is empty and an initial-value is given, then the initial-value is returned and function is not called.
If the subsequence is empty and no initial-value is given, then the function is called with zero
arguments, and reduce returns whatever function does. This is the only case where the function is
called with other than two arguments.

Examples:

(reduce #'* '(1 2 3 4 5)) --* 120
(reduce #‘append '((1) (2)) :initial-value ‘(in it)) + (I I I T 12)
(reduce #‘append '((1) (2)) :fron-end t

:initial-value ‘(i n i t)) + (1 2 I I I T)
(reduce #'- '(1 2 3 4)) E (- (- (- 1 2) 3) 4) + -8
(reduce #'- '(1 2 3 4) :from-end t) ;Alternating sum.

z (- 1 (- 2 (- 3 4))) 3 -2
(reduce t'+ '0) -) 0
(reduce #'+ '(3)) -+ 3
(reduce t'+ '(foe)) -+ FOO
(reduce #'list '(1 2 3 4)) + (((I 2) 3) 4)
(reduce #'list '(1 2 3 4) :from-endt) + (1 (2 (3 4)))
(reduce #'list '(1 2 3 4) :initial-value 'fool -) ((((foe 1) 2) 3) 4)
(reduce #'list '(1 2 3 4)

:from-end t :initial-value 'foe) -+ (1 (2 (3 (4 foe))))

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

17-12 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
Section 3.6 (Traversal Rules and Side Effects)

count, count-if, count-if-not Function

Syntax:
count item sequence tkey from-end start end key test test-not + n

count-if predicate sequence tkey from-end start end key + n

count-if-not predicate sequence &key from-end start end key --* n

Arguments and Values:
item-an object.

sequence-a proper sequence.

predicate-a designator for a function of one argument that returns a generalized boolean.

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

start, end-bounding indez designators of sequence. The defaults for start and end are o and nil,
respectively.

key-a designator for a function of one argument, or nil.

n-a non-negative integer less than or equal to the length of sequence.

Description:
count, count-if, and count-if-not count, and return the number of elements in the sequence
bounded by start and end that satisfy the test.

The from-end has no direct effect on the result,. However, if from-end is true, the elements of
sequence will be supplied as arguments to the test, test-not, and key in reverse order, which may
change the side-effects, if any, of those functions.

Examples:

(count #\a “hov many A’s are there in here?“) -+ 2
(count-if-not *‘oddp ‘((1) (2) (3) (4)) :key #‘car) --) 2
(count-if #‘upper-case-p “The Crying of Lot 49” :start 4) - 2

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
Section 17.2 (Rules about Test Functions), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not argument is deprecated.

The function count-if-not is deprecated.

Sequences 17-13

ANSI X3.226-1994 Programming Language-Common Lisp

length Function

syntax:
length sequence -+ n

Arguments and Values:
sequence-a proper sequence.

n-a non-negative integer.

Description:
Returns the number of elements in sequence.

If sequence ia a vector with a fill pointer, the active length as specified by the fill pointer is
returned.

Examples:

(length “abc”) + 3
(setq str (make-array ‘(3) :elenent-type ‘character

: initial-contents B’abc)c”
:fill-pointer t)) -+ “abc”

(length str) * 3
(setf (fill-pointer str) 2) + 2
(length str) + 2

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
list-length, sequence

reverse, nreverse Function

Syntax:
reverse sequence --) reversed-sequence

nreverse sequence -* reversed-sequence

Arguments and Values:
sequence-a proper sequence.

reversed-sequence-a sequence.

Description:
reverse and nreverse return a new sequence of the same kind as sequence, containing the same
elements, but in reverse order.

reverse and nreverse differ in that reverse always creates and returns a new sequence, whereas
nreverse might modify and return the given sequence. reverse never modifies the given sequence.

17-14 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

For reverse, if sequence is a vector, the result ia a fresh simple army of mnk one that has the
same actual army element type as sequence. If sequence is a list, the result is a fresh list.

For nreverse, if sequence is a vector, the result is a vector that has the same actual anvry element
type as sequence. If sequence is a list, the result is a list.

For nreverse, sequence might be destroyed and reused to produce the result. The result might
or might not be identical to sequence. Specifically, when sequence is a list, nreverse is permitted
to setf any part, car or cdr, of any cons that is part of the list structure of sequence. When
sequence is a vector, nreverse is permitted to re-order the elements of sequence in order to
produce the resulting vector.

Examples:

(s&q str 8’abcg1) -+ “abc”
(reverse str) + “cba”
str * “abc”
(setq str (copy-s8q str)) + “abe”
hreverse str) * “cba”
str -+ implementation-dependent
(S8tq 1 (list 1 2 3)) * (1 2 3)
(nreverse 1) + (3 2 1)
1 w implementation-dependent

Side Effects:
nreverse might either create a new sequence, modify the argument sequence, or both. (reverse
does not modify sequence.)

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

sort, stable-sort Function

Syntax:
sort sequence predicate &key key -+ sorted-sequence

stable-sort sequence predicate &key key + sorted-sequence

Arguments and Values:
sequence-a proper sequence.

predicate--a designator for a function of two arguments that returns a generalized boolean.

key-a designator for a function of one argument, or nil.

sorted-sequence-a sequence.

Description:
sort and stable-sort destructively sort sequences according to the order determined by the
predicate function.

If sequence is a vector, the result is a vector that has the same actual array element type as
sequence. If sequence is a list, the result is a list.

Sequences 17-15

ANSI X3.226-1994 Programming Language-Common Lisp

sort determines the relationship between two elements by giving keys extracted from the elements
to the predicate. The first argument to the predicate function is the part of one element of se-
quence extracted by the key function (if supplied); the second argument is the part of another
element of sequence extracted by the key function (if supplied). Predicate should return irue if
and only if the first argument is strictly less than the second (in some appropriate sense). If the
first argument is greater than or equal to the second (in the appropriate sense), then the predicate
should return false.

The argument to the key function is the sequence element. The return value of the key function
becomes an argument to predicate. If key is not supplied or nil, the sequence element itself is
used. There is no guarantee on the number of times the key will be called.

If the key and predicate always return, then the sorting operation will always terminate, produc-
ing a sequence containing the same elements as sequence (that is, the result is a permutation of
sequence). This is guaranteed even if the predicate does not really consistently represent a total
order (in which case the element will be scrambled in some unpredictable way, but no element
will be lost). If the key consistently returns meaningful keys, and the predicate does reflect some
total ordering criterion on those keys, then the elements of the sorted-sequence will be properly
sorted according to that ordering.

The sorting operation performed by sort is not guaranteed stable. Elements considered equal by
the predicate might or might not stay in their original order. The predicate is assumed to consider
two elements x and y to be equal if (funcall predicate t y) and (funcal. predicate y t) are both
false. stable-sort guarantees stability.

The sorting operation can be destructive in all cases. In the case of a vector argument, this is
accomplished by permuting the elements in place. In the case of a fisi, the list is destructively
reordered in the same manner as for nreverse.

Examples:

(setq tester (copy-seq "lkjashd")) + "lkjashd"
(sort tester #‘char-lessp) + “adhjkls”
(setqtester (list '(1 2 3) '(4 5 6) '(7 8 9))) + ((1 2 3) (4 5 6) (7 8 9))
(sort tester #‘> :key #‘car) --+ ((7 8 9) (4 5 6) (I 2 3))
(setq tester (list 1 2 3 4 5 6 7 8 9 0)) -+ (1 2 3 4 5 6 7 8 9 0)
(stable-sort tester #'(lambda (X y) (and Coddp x) (evenp y))))

*(1357924680)
(sort (setq committee-data

(vector (list (list “JonL” White”) “Iteration”)
(list (list "Dick" 'Waters") "Iteration")
(list (list "Dick" "Gabriel") "Objects")
(list (list "Kent" "Pitman") "Conditions")
(list (list "Gregor" "Kiczales") "Objects")
(list (list "David" 'I Moon") "Objects")
(list (list "Kathy" 'I Chapman") "Editorial")
(list (list "Larry" I' Hasinter") "Cleanup")
(list (list '%mlra" "Loosemore") "Compiler")))

#'string-lessp :key Il'cadar)
-+ #((("Kathy" " Chapman") "Editorial")

(("Dick" "Gabriel") "Objects")
(("Gregor" 'I Kiczales") "Objects")
(("Sandra" "Loosemore") Wompiler")
(("Larry" 'Wasinter") "Cleanup'@)
(("David" '* Moon") "Objects")
(("Kent" "Pitman") "Conditions'*)
(("Dick" "Waters") "Iteration")
(("JonL" 'White") "Iteration"))

17-16 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

;; Mote that individual alphabetical order within ‘committees
;; is preserved.
(setq committee-data

(stable-sort committee-data #Sstring-lessp :key S'cadr))
+ X((PLarry I' 9&5nter") "Cleanup")

((%dra" " Loosemore") "Compiler")
((“Kent" "Pitran") "Conditions")
(("Kathy " Vhapman") W3itorial")
(("Dick" "Uaterst*) "Iteration")
(("JonL" White") "Iteration")
(("Dick" "Gabriel") "Objects")
(("Gregor 'I "Kiczales") "Objects")
((fSDavid" Woon") "Objects"))

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
merge, Section 3.2.1 (Compiler Terminology), Section 3.6 (naversal Rules and Side Effects),
Section 3.7 (Destructive Operations)

Notes:
If sequence is a vector, the result might or might not be simple, and might or might not be
identical to sequence.

find, find-if, find-if-not

Syntax:
And item sequence tkey from-end test test-not start end key + element

And-if predicate sequence &key from-end start end key -+ element

And-if-not predicate sequence &key from-end start end key -* element

Arguments and Values:
item-an object.

sequence-a proper sequence.

predicate-a designator for a function of one argument that returns a generalized boolean.

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

start, end-bounding indez designators of sequence. The defaults for start and end are o and nil,
respectively.

key-a designator for a function of one argument, or nil.

element-an element of the sequence, or nil.

Sequences 17-17

ANSI X3.226-1994 Programming Languag~Common Lisp

Description:
And, And-if, and And-if-not each search for an element of the sequence bounded by start and end
that satisjies the pnzdicate predicate or that satisfies the test test or test-not, as appropriate.

If from-end is true, then the result is the rightmost element that satisfies the test.

If the sequence contains an element that satisfies the test, then the leftmost or rightmost sequence
element, depending on from-end, is returned; otherwise nil is returned.

Examples:

(find It\d “here are some letters that can be looked atI8 :test lt’char>)
+ *\Space

(find-if g’oddp ‘(1 2 3 4 5) :end 3 :froa-end t) + 3
(find-if -not *‘complerp

‘ir(3.5 2 tct1.0 0.0) N(O.0 1.0))
:start 2) -+ lDIL

Exceptional Situations:
Should be prepared to signal au error of type type-error if sequence is not a proper sequence.

See Also:
position, Section 17.2 (Rules about Test Functions), Section 3.6 (‘Ikaversal Rules and Side
Effects)

Notes:
The :test-not argument is deprecated.

The function find-if-not is deprecated.

position, position-if, position-if-not Function

Syntax:
position item sequence kkey from-end test test-not start end key -+ position

position-if predicate sequence kkey from-end start end key + position

position-if-not predicate sequence &key from-end start end key + position

Arguments and Values:
item-an object.

sequence-a proper sequence.

predicate-a design&or for a function of one argument that returns a generalized boolean.

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a junction of two arguments that returns a genemlized boolean.

start, end-bounding indez designators of sequence. The defaults for start and end are o and nil,
respectively.

key-a designator for a junction of one argument, or nil.

17-18 SeqUeIlceS

Programming Language-Common Lisp ANSI X3.226-1994

positiott-a bounding indez of sequence, or nil.

Description:
position, position-if, and position-if-not each search sequence for an element that satisfies the
test.

The position returned is the index within sequence of the leftmost (if from-end is true) or of the
rightmost (if from-end is false) element that satisfies the test; otherwise nil is returned. The
index returned is relative to the left-hand end of the entire sequence, regardless of the value of
start, end, or from-end.

Examples:

(position #\a “baobab” :f rom-end t) 4 4
(position-if t’oddp ‘((1) (2) (3) (4)) :start 1 :key *‘car) + 2
(position 595 ’ 0) -+ HIL
(position-if-not s’integerp ‘(1 2 3 4 5.0)) + 4

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
And, Section 3.6 (‘Ikaversal Rules and Side Effects)

Notes:
The :test-not argument is deprecated.

The function position-if-not is deprecated.

search Function

Syntax:
search sequence-l sequence-2 &key from-end test test-not

key start1 start2
end1 end2

-+ position

Arguments and Values:
Sequenctl -a sequence.

Sequenctl-a sequence.

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a genemlized boolean.

key-a designator for a function of one argument, or nil.

start1 , end1 -bounding indez designators of sequence-l. The defaults for start1 and end1 are o
and nil, respectively.

Sequences 17-19

ANSI X3.226-1994 Programming Language-Common Lisp

start2, e&2-bounding indez designators of sequence-l. The defaults for start2 and end2 are 0
and nil, respectively.

position-a bounding indez of sequenct2, or nil.

Description:
Searches sequencc2 for a subsequence that matches sequcnctl.

The implementation may choose to search sequence-2 in any order; there is no guarantee on
the number of times the test is made. For example, when start-end is true, the sequence might
actually be searched from left to right instead of from right to left (but in either case would
return the rightmost matching subsequence). If the search succeeds, search returns the offset into
sequence-2 of the first element of the leftmost or rightmost matching subsequence, depending on
from-end; otherwise search returns nil.

If from-end is true, the index of the leftmost element of the rightmost matching subsequence is
returned.

Examples:

(search “dog ‘I “it’s a dog’s life”) * 7
(search ‘(0 1) ‘(2 4 6 1 3 5) :key **oddp) -+ 2

See Also:
Section 3.6 (‘Traversal Rules and Side Effects)

Notes:
The : test-not argument is deprecated.

mismatch Function

Syntax:
mismatch sequence-l sequence-2 &key from-end test test-not key start1 start2 end1 end2

+ position

Arguments and Values:
Sequence-l -a sequence.

Sequence-2-a sequence.

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

start1 , end1 -bounding index designators of sequence-l. The defaults for start1 and end1 are 0
and nil, respectively.

start2, l nd2-bounding indez designators of sequence-2. The defaults for start2 and end2 are 0
and nil, respectively.

key-a designator for a function of one argument, or nil.

position-a bounding index of sequenccl, or nil.

17-20 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

Description:
The specified subsequences of sequenctl and sequence-2 are compared element-wise.

The key argument is used for both the sequence1 and the sequenccl.

If sequence-l and sequence-2 are of equal length and match in every element, the result is false.
Otherwise, the result is a non-negative inieger, the index within sequcnccl of the leftmost or
rightmost position, depending on from-end, at which the two subsequences fail to match. If one
subsequence is shorter than and a matching prefix of the other, the result is the index relative to
sequence-l beyond the last position tested.

If from-end is true, then one plus the index of the rightmost position in which the sequences
differ is returned. In effect, the subsequences are aligned at their right-hand ends; then, the last
elements are compared, the penultimate elements, and so on. The index returned is an index
relative to sequcnccl.

Examples:

(mismatch “abed” "ABCDP :test #'char-equal) + 4
(mismatch '(3 2 1 1 2 3) ‘(I 2 3) :froa-endt) -, 3
(mismatch '(1 2 3) '(2 3 4) :test-not #*eq :key #'oddp) d NIL
(mismatch '(1 2 3 4 5 6) '(3 4 5 6 7) :startl 2 :endl 4) -+ NIL

See Also:
Section 3.6 (Traversal Rules and Side Effects)

Notes:
The : test-not argument is deprecated.

replace Function

Syntax:
replace sequence-l sequence-2 &key start1 end1 start2 end2 -* sequence-l

Arguments and Values:
sequenctl -a sequence.

sequence-2-a sequence.

startl, endl-bounding index designators of sequence1 . The defaults for start1 and end1 are 0
and nil, respectively.

start2, end2-bounding index designators of sequence-2. The defaults for start2 and end2 are 0
and nil, respectively.

Description:
Destructively modifies sequence-l by replacing the elements of subsequenca-1 bounded by start1
and end1 with the elements of subsequence-2 bounded by start2 and end2.

Sequence-l is destructively modified by copying successive elements into it from sequence2,
Elements of the subsequence of sequence2 bounded by start2 and end2 are copied into the
subsequence of sequenccl bounded by start1 and endl. If these subsequences are not of the same
length, then the shorter length determines how many elements are copied; the extra elements

Sequences 17-21

ANSI X3.226-1994 Programming Language-Common Lisp

near the end of the longer subsequence are not involved in the operation. The number of elements
copied can be expressed as:

(min (- end1 startl) (- end2 sfati2))

If sequence-1 and sequence-2 are the same object and the region being modified overlaps the
region being copied from, then it is as if the entire source region were copied to another place
and only then copied back into the target region. However, if sequenccl and sequence-2 are not
the same, but the region being modified overlaps the region being copied from (perhaps because
of shared list structure or displaced arrays), then after the replace operation the subsequence
of sequence-l being modified will have unpredictable contents. It is an error if the elements of
sequence-2 are not of a type that can be stored into sequence-l.

Examples:

(replace **abcdefghij" "0123456789" :startl 4 :endl 7 :startZ 4)
-+ "abcd456hij"

(setq 1st "012345678") + "012345678"
(replace 1st 1st :startl 2 :startZ 0) -+ "010123456"
1st -+ "010123456"

Side Effects:
The sequence-l is modified.

See Also:
fill

substitute, substitute-if, substitute-if-not, nsubsti-
tute, nsubstitute-if, nsubstitute-if-not Function

Syntax:
substitute newitem olditem sequence kkey from-end test

test-not start
end count key

-+ result-sequence

substitute-if newitem predicate sequence &key from-end start end count key
-+ result-sequence

substitute-if-not newitem predicate sequence tkey from-end start end count key
‘-t result-sequence

nsubstitute newitem olditem sequence tkey from-end test test-not start end count key
-4 sequence

nsubstitute-if newitem predicate sequence tkey from-end start end count key
+ sequence

nsubstitute-if-not newitem predicate sequence &key from-end start end count key
-+ sequence

Arguments and Values:
newitem-an object.

17-22 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

olditem-an object.

sequence-a proper sequence.

predicate--a designator for a function of one argument that returns a genemlired boolean.

from-end-a generalized boolean. The default is false.

t-t--a designator for a function of two arguments that returns a genemlized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

start, end-bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

count-an integer or nil. The default is nil.

key-a designator for a function of one argument, or nil.

result-sequence-a sequence.

Description:
substitute, substitute-if, and substitute-if-not return a copy of sequence in which each element
that satisfies the test has been replaced with newitem.

nsubstitute, usubstitute-if, and nsubstitute-if-not are like substitute, substitute-if, and
substitute-if-not respectively, but they may modify sequence.

If sequence is a vector, the result is a vector that has the same actual army element type as
sequence. If sequence is a list, the result is a list.

Count, if supplied, limits the number of elements altered; if more than count elements satisfy the
test, then of these elements only the leftmost or rightmost, depending on from-end, are replaced,
as many as specified by count. If count is supplied and negative, the behavior is as if zero had
been supplied instead. If count is nil, all matching items are affected.

Supplying a from-end of true matters only when the count is provided (and non-nil); in that case,
only the rightmost count elements satisfying the test are removed (instead of the leftmost).

predicate, test, and test-not might be called more than once for each sequence element, and their
side effects can happen in any order.

The result of all these functions is a sequence of the same type as sequence that has the same
elements except that those in the subsequence bounded by start and end and satisfying the test
have been replaced by newitem.

substitute, substitute-if, and substitute-if-not return a sequence which can share with sequence
or may be identical to the input sequence if no elements need to be changed.

nsubstitute and usubstitute-if are required to setf any car (if sequence is a list) or aref (if
sequence is a vector) of sequence that is required to be replaced with newitem. If sequence is a
list, none of the cdrs of the top-level list can be modified.

Examples:

(substitute S\. #\SPACE “0 2 4 6”) 4 180.2.4.6t1
(substitute 9 4 ‘(1 2 4 1 3 4 5)) + (1 2 9 1 3 9 5)
(substitute 9 4 ‘(1 2 4 1 3 4 5) :count 1) + (1 2 9 1 3 4 5)
(substitute 9 4 ‘(1 2 4 1 3 4 5) :count 1 :from-end t)

--) (12 4 13 9 5)
(substitute 9 3 ‘(1 2 4 1 3 4 5) :test #‘>I -+ (9 9 4 9 3 4 5)

Sequences 17-23

ANSI X3.226-1994 Programming Language-Common Lisp

(substitute-if 0 #'evenp '((I) (2) (3) (4)) :start 2 :key *'car)
- ((I) (2) (3) 0)

(substitute-if 9 #'oddp '(I 2 4 13 4 5)) -+ (9 2 4 9 9 4 9)
(substitute-if 9 t'evenp '(I 2 4 1 3 4 5) :count 1 :from-endt)

--r(l241395)

(setq some-things (list 'a 'car ‘b ‘cdr ‘c)) * (A CAR B CDR C)
(uaubstitute-if “function ~a8 here” t’fboundp sore-things

:count 1 :fror-end t) --) (A CAR B "function was here” C)
some-things + (A CAR B "function vas here" C)
(setq alpha-tester (copy-seq “ab “1) + “ab ”
(nsubstitute-if-not t\z #‘alpha-char-p alpha-tester) + “abz”
alpha-tester + "abz"

Side Effects:
nsubstitute, usubstitute-if, and nsubstitute-if-not modify sequence.

Exceptional Situations:
Should be prepared to signal an error of fype typeerror if sequence is not a proper sequence.

See Also:
subst, nsubst, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side
Effects)

Notes:
If sequence is a uecfor, the result might or might not be simple, and might or might not be
identical to sequence.

The : test-not argument is deprecated.

The functions substitute-if-not and nsubstitute-if-not are deprecated.

nsubstitute and nsubstitute-if can be used in for-effect-only positions in code.

Because the side-effecting variants (e.g., nsubstitute) potentially change the path that is being
traversed, their effects in the presence of shared or circular structure may vary in surprising
ways when compared tlo their non-side-effecting alternatives. To see this, consider the following
side-effect behavior, which might be exhibited by some implementations:

(defun test-it (fn)
(let ((x (cons ‘b nil)))

(rplacd x x)
(funcall fn 'a 'b x :count I)))

(test-it #'substitute) + (A . #I-(B . #I#))
(test-it s'nsubstitute) -) (A . #I#)

concatenate Function

Syntax:
concatenate result-type &rest sequences --* result-sequence

17-24 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
result-type-a sequence fype specifier.

sequences-a sequence.

result-seguence-a proper sequence of type result-type.

Description:
concatenate returns a sequence that contains all the individual elements of all the sc9uences in
the order that they are supplied. The sequence is of type result-type, which must be a subtype of
type sequence.

All of the sequences are copied from; the result does not share any structure with any of the
sequences. Therefore, if only one sequence is provided and it is of type result-type, concatenate is
required to copy sequence rather than simply returning it.

It is an error if any element of the sequences cannot be an element of the sequence result.

If the result-type is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(concatenate ‘string “all” ” ” “together” ” ” “nov”) + “all together nov”
(concatenate ‘list “ABC” ‘(d e f) #(I 2 3) #*loll)
+ (#\A X\B #\C D E F 1 2 3 1 0 1 1)
(concatenate ‘list) -+ NIL

(concatenate ‘(vector * 2) “a” “bc”) should signal an error

Exceptional Situations:
An error is signaled if the result-type is neither a recognizable subtype of list, nor a recognizable
subtype of vector.

An error of type type-error should be signaled if result-type specifies the number of elements and
the sum of sequences is different from that number.

See Also:
append

merge Function

Syntax:
merge result-type sequence-l sequence-2 predicate tkey key --+ result-sequence

Arguments and Values:
result-type-a sequence type specifier.

sequence-l -a sequence.

Sequences 17-25

ANSI X3.226-1994 Programming Language-Common Lisp

sequenct2-a sequence.

predicate-a designator for a finction of two arguments that returns a genemlired boolean.

key-a designator for a function of one argument, or nil.

result-sequence-a proper sequence of type result-type.

Description:
Destructively merges sequence-l with sequence-2 according to an order determined by the predi-
cate. merge determines the relationship between two elements by giving keys extracted from the
sequence elements to the predicate.

The first argument to the predicate function is an element of sequence-l as returned by the key (if
supplied); the second argument is an element of sequencc2 as returned by the key (if supplied).
Predicate should return true if and only if its Crst argument is strictly less than the second (in
some appropriate sense). If the first argument is greater than or equal to the second (in the
appropriate sense), then predicate should return false. merge considers two elements x and y to
be equal if (funcall predicate x J) and (funcall predicate J x1 both yield false.

The argument to the key is the sequence element. Typically, the return value of the key becomes
the argument to predicate. If key is not supplied or nil, the sequence element itself is used. The
key may be executed more than once for each sequence element, and its side effects may occur in
any order.

If key and predicate return, then the merging operation will terminate. The result of merging two
sequences x and y is a new sequence of type result-type z, such that the length of z is the sum of
the lengths of x and y, and z contains all the elements of x and y. If xl and x2 are two elements of
x, and xl precedes x2 in x, then x1 precedes x2 in z, and similarly for elements of y. In short, z is
an interleaving of x and y.

If x and y were correctly sorted according to the predicate, then z will also be correctly sorted. If
x or y is not so sorted, then z will not be sorted, but will nevertheless be an interleaving of x and
Y*

The merging operation is guaranteed stable; if two or more elements are considered equal by the
predicate, then the elements from sequence-l will precede those from sequence-2 in the result.

sequenccl and/or sequence-2 may be destroyed.

If the result-type is a subtype of list, the result will be a list.

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgmding
that element type; or, if the implementation can determine that the element type is unspecified
(or l), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(setq test1 (list 1 3 4 6 7))
(setq test2 (list 2 5 8))
(merge ‘list test1 test2 8’C) * (1 2 3 4 5 6 7 8)
(setq test1 (copy-seq “BOY”))
(setq test2 (copy-seq :nosy”) 1
(merge ‘string test1 test2 *X’char-lessp) + VnOosYy”
(setq test1 (vector ((red . 1) (blue . 4))))
(setq test2 (vector ((yellow . 2) (green . 7))))
(merge ‘vector test1 test2 It’< :hey *‘ah-)

* #((RED . 1) (YELLOW . 2) (BLUE . 4) (GlEEIf . 7))

17-26 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

(merge ‘(vector l 4) '(1 5) '(2 4 6) t'<) should aigxml an error

Exceptional Situations:
An error must be signaled if the result-type is neither a recognizable subtype of list, nor a recognit-
able subtype of vector.

An error of type type-error should be signaled if result-type specifies the number of elements and
the sum of the lengths of sequcncc-1 and sequence-2 is different from that number.

See Also:
sort, stable-sort, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side
Effects)

remove, remove-if, remove-if-not, delete, delete-if,
delete-if-not Function

Syntax:
remove item sequence tlrey from-end test test-not start end count key + result-sequence

remove-if test sequence &key from-end start end count key + result-sequence

remove-if-not test sequence &key from-end start end count key 4 result-sequence

delete item sequence &key from-end test test-not start end count key + result-sequence

delete-if test sequence &key from-end start end count key --* result-sequence

delete-if-not test sequence tkey from-end start end count key -+ result-sequence

Arguments and Values:
item-an object.

sequence-a proper sequence.

test-a designator for a function of one argument that returns a generalized boolean.

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generalized boolean.

start, end-bounding indez designators of sequence. The defaults for start and end are o and nil,
respectively.

count-an integer or nil. The default is nil.

key-a designator for a function of one argument, or nil.

result-sequence-a sequence.

Description:
remove, remove-if, and remove-if-not return a sequence from which the elements that satisfy the
test have been removed.

Sequences 17-27

ANSI X3.226-1994 Programming Language-Common Lisp

delete, delete-if, and delete-if-not are like remove, remove-if, and remove-if-not respectively,
but they may modify sequence.

If sequence is a vector, the result is a vector that has the same actual amay element type as
sequence. If sequence is a lid, the result is a list.

Supplying a from-end of true matters only when the count is provided; in that case only the
rightmost count elements saiisfying the test are deleted.

Count, if supplied, limits the number of elements removed or deleted; if more than count elements
satisfy the test, then of these elements only the leftmost or rightmost, depending on from-end, are
deleted or removed, as many as specified by count. If count is supplied and negative, the behavior
is as if zero had been supplied instead. If count is nil, all matching items are affected.

For all these functions, elements not removed or deleted occur in the same order in the result as
they did in sequence.

remove, remove-if, remove-if-not return a sequence of the same type as sequence that has the
same elements except that those in the subsequence bounded by start and end and satisfying the
test have been removed. This is a non-destructive operation. If any elements need to be removed,
the result will be a copy. The result of remove may share with sequence; the result may be
identical to the input sequence if no elements need to be removed.

delete, delete-if, and delete-if-not return a sequence of the same type as sequence that has the
same elements except that those in the subsequence bounded by start and end and satisfying the
test have been deleted. Sequence may be destroyed and used to construct the result; however, the
result might or might not be identical to sequence.

delete, when sequence is a list, is permitted to setf any part, car or cdr, of the top-level list
structure in that sequence. When sequence is a vector, delete is permitted to change the di-
mensions of the vector and to slide its elements into new positions without permuting them to
produce the resulting vector.

delete-if is constrained to behave exactly as follows:

(delete nil sequence
:test #'(lambda (ignore item) (funcall test item))
. . . 1

Examples:

(remove 4 '(1 3 4 5 9)) -) (1 3 5 9)
(remove 4 '(1 2 4 1 3 4 5)) + (1 2 1 3 5)
(remove 4 '(1 2 4 1 3 4 5) :count 1) + (1 2 1 3 4 5)
(remove 4 '(1 2 4 1 3 4 5) :count 1 :from-endt) -+ (1 2 4 1 3 5)
(remove 3 '(1 2 4 1 3 4 5) :test X8>) -+ (4 3 4 5)
(setq 1st '(list of four elements,)) + (LIST OF FOUR ELEMEMTS)
(setq lst2 (copy-seq 1st)) * (LIST OF FOUR ELEHEIiJTS)
(setq lst3 (delete 'four 1st)) * (LIST OF ELEHE?iTS)
(equal 1st lst2) + false
(remove-if #'oddp '(1 2 4 1 3 4 5)) -, (2 4 4)
(remove-if ll'evenp '(1 2 4 1 3 4 5) :count 1 :from-endt)

--,(124135)
(remove-if-not t'evenp '(1 2 3 4 5 6 7 8 9) :count 2 :from-end t)

*(1234568)
(setq tester (list 1 2 4 1 3 4 5)) + (1 2 4 1 3 4 5)
(delete 4 tester) + (1 2 1 3 5)
(setq tester (list 1 2 4 1 3 4 5)) + (1 2 4 1 3 4 5)

17-28 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

(delete 4 tester :count 1) -+ (1 2 1 3 4 5)
(setq tester (list 1 2 4 1 3 4 5)) -+ (1 2 4 1 3 4 5)
(delete 4 tester :count 1 :from-endt) + (1 2 4 1 3 5)
(setq tester (list 1 2 4 1 3'4 5)) + (1 2 4 1 3 4 5)
(delete 3 tester :test #'>) + (4 3 4 5)
(setq tester (list 1 2 4 1 3 4 5)) + (1 2 4 1 3 4 5)
(delete-if s’oddp tester) -* (2 4 4)
(setq tester (list 1 2 4 1 3 4 5)) + (1 2 4 1 3 4 5)
(delete-if I’evenp tester :count 1 :frowend t) -P (1 2 4 1 3 5)
(setq tester (list 1 2 3 4 5 6)) + (1 2 3 4 5 6)
(delete-if X’evenp tester) -+ (1 3 5)
tester + implementation-dependent

(setq foo (list ‘a ‘b ‘c>) 4 (A B Cl
(setq bar (cdr foe)) + (B C)
(setq foo (delete ‘b foe)) + (A C)
bar -) ((C)) or . . .
(eq (cdr foe) (car bar)) -) T or . . .

Side Effects:
For delete, delete-if, and delete-if-not, sequence may be destroyed and used to construct the
result.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
If sequence is a vector, the result might or might not be simple, and might or might not be
identical to sequence.

The : test-not argument is deprecated.

The functions delete-if-not and remove-if-not are deprecated.

remove-duplicates, delete-duplicates Function

Syntax:
remove-duplicates sequence &key from-end test test-not

start end key

--t result-sequence

delete-duplicates sequence &key from-end test test-not
start end key

- result-sequence

Arguments and Values:
sequence-a proper sequence

Sequences 17-29

-.-x- _/_-. -

ANSI X3.226 1994 Programming Language-Common Lisp

from-end-a generalized boolean. The default is false.

test-a designator for a function of two arguments that returns a generalized boolean.

test-not-a designator for a function of two arguments that returns a generaked boolean.

start, end-bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

key-a designator for a function of one argument, or nil.

result-sequence-a sequence.

Descr iption:
remove-duplicates returns a modified copy of sequence from which any element that matches
another element occurr ing in sequence has been removed.

If sequence is a vector, the result is a vector that has the same actual amay element type as
sequence. If sequence is a list, the result is a list.

delete-duplicates is like remove-duplicates, but delete-duplicates may modify sequence.

The elements of sequence are compared pairwise, and if any two match, then the one occurr ing
earlier in sequence is discarded, unless from-end is true, in which case the one later in sequence is
discarded.

remove-duplicates and delete-duplicates return a sequence of the same type as sequence with
enough elements removed so that no two of the remaining elements match. The order of the
elements remaining in the result is the same as the order in which they appear in sequence.

remove-duplicates returns a sequence that may share with sequence or may be identical to
sequence if no elements need to be removed.

delete-duplicates, when sequence is a Iis i, is permitted to s&f any part, ear or cdr, of the top-
level list structure in that sequence. W hen sequence is a vector, delete-duplicates is permitted
to change the dimensions of the vector and to s lide its elements into new positions without
permuting them to produce the resulting vector.

Examples :

(remove-duplicates '*aBcDAbCd'* :test #'char-equal :from-end t) + %BcD"
(remove-duplicates '(a b c b d d e)) -+ (A C B D E)
(remove-duplicates ‘(a b c b d d e) :from-end t) + (A B C D E)
(remove-duplicates '((foe #\a) (bar #\%I (baz *\A))

:test #'char-equal :key t'cadr) + ((BAR #\X) (BAZ #\A))
(remove-duplicates '((foe #\a) (bar #\X) (baz *\A))

:test #'char-equal :key S’cadr :from-endt) + ((FOO #\a) (BAR Ir\X))
(setq tester (list 0 1 2 3 4 5 6))
(delete-duplicates tester :hey S'oddp :start 1 :end 6) + (0 4 5 6)

Side Effec ts :
delete-duplicates might destructively modify sequence.

Exceptional Situations :
Should s ignal an error of type type-error if sequence is not a proper sequence.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

17-30 Sequences

Programming Language-Common Lisp ANSI X3.226-1994

Notes:
If sequence is a uecfw, the result might or might not be simple, and might or might not be
identical to sequence.

The : teat-not argument is deprecated.

These functions are useful for converting sequence into a canonical form suitable for representing
a set.

Sequences 17-31

ANSI X3.226-1994 Programming Language-Common Lisp

17-32 Sequences

ANSI X3.226-1994

Programming Language-Cdmmon Lisp

18. Hash Tables

ANSI X3.226-1994 Programming Language-Common Lisp

ii Hash Tablee

Programming Language-Common Lisp ANSI X3.226- 1994

18.1 Hash Table Concepts

18.1.1 Hash-Table Operations
Figure 18-1 lists some dejined names that are applicable to hash tables. The following rules apply
to hush tables.

- A hash table can only associate one value with a given key. If an attempt is made to add
a second value for a given key, the second value will replace the first. Thus, adding a
value to a hush table is a destructive operation; the hash table is modified.

- There are four kinds of hash tables: those whose keys are compared with eq, those whose
keys are compared with eql, those whose keys are compared with equal, and those whose
keys are compared with equalp.

- Hash tables are created by make-hash-table. gethash is used to look up a key and find
the associated value. New entries are added to hash tables using s&f with gethash.
remhash is used to remove an entry. For example:

(setq a (make-hash-table)) + #<BASH-TABLE EQL O/120 32536573>
(setf (gethash ‘color a) ‘brown) + BROW
(setf (gethash ‘name a) ‘fred) * FRED
(gethash ‘color a) 4 BROW, true
(gethash ‘name a) -* FBED, twe
(gethash ‘pointy a) -+ ML, f&e

In this example, the symbols color and name are being used as keys, and the symbols
brown and fred are being used as the associated values. The hash table has two items in
it, one of which associates from color to broun, and the other of which associates from
naae to fred.

- A key or a value may be any object.

- The existence of an entry in the hash table can be determined from the secondary value
returned by gethash.

clrhash
gethash
hash-table-count

hash-table-p
make-hash-table
maphash

remhash
sxhaah

Figure 18-1. Hash-table defined names

18.1.2 Modifying Hash Table Keys
The function supplied as the : test argument to make-hash-table specifies the ‘equivalence test’
for the hash table it creates.

An object is ‘visibly modified’ with regard to an equivalence test if there exists some set of objects
(or potential objects) which are equivalent to the object before the modification but are no longer
equivalent afterwards.

If an object 01 is used as a key in a hash table H and is then visibly modified with regard to the
equivalence test of H, then the consequences are unspecified if 01, or any object 02 equivalent to
01 under the equivalence test (either before or after the modification), is used as a key in further

Hash Tables 18-1

ANSI X3.226-1994 Programming Language-Common Lisp

operations on H. The consequences of using 01 as a key are unspecified even if Or is visibly
modified and then later modified again in such a way as to undo the visible modification.

Following are specifications of the modifications which are visible to the equivalence tests which
must be supported by hash tables. The modifications are described in terms of modification of
components, and are defined recursively. Visible modifications of components of the object are
visible modifications of the object.

18.1.2.1 Visible Modification of Objects with respect to EQ and EQL
No standardized function is provided that is capable of visibly modifying an object with regard to
eq or eql.

18.1.2.2 Visible Modification of Objects with respect to EQUAL
As a consequence of the behavior for equal, the rules for visible modification of objects not explic-
itly mentioned in this section are inherited from those in Section 18.1.2.1 (Visible Modification of
Objects with respect to EQ and E&L).

18.1.2.2.1 Visible Modification of Conses with respect to EQUAL

Any visible change to the car or the cdr of a cons is considered a visible modification with regard
to equal.

18.1.2.2.2 Visible Modification of Bit Vectors and Strings with respect to EQUAL

For a vector of type bit-vector or of type string, any visible change to an active element of the
vector, or to the length of the vector (if it is actually adjustable or has a fill pointer) is considered
a visible modification with regard to equal.

18.1.2.3 Visible Modification of Objects with respect to EQUALP

As a consequence of the behavior for equalp, the rules for visible modification of objects not ex-
plicitly mentioned in this section are inherited from those in Section 18.1.2.2 (Visible Modification
of Objects with respect to EQUAL).

18.1.2.3.1 Visible Modification of Structures with respect to EQUALP

Any visible change to a slot of a structure is considered a visible modification with regard to
equalp.

18.1.2.3.2 Visible Modification of Arrays with respect to EQUALP

In an array, any visible change to an active element, to the fill pointer (if the array can and
does have one), or to the dimensions (if the array is actually adjustable) is considered a visible
modification with regard to equalp.

18.1.2.3.3 Visible Modification of Hash Tables with respect to EQUALP

In a hash table, any visible change to the count of entries in the hash table, to the keys, or to the
values associated with the keys is considered a visible modification with regard to equalp.

Note that the visibility of modifications to the keys depends on the equivalence test of the hash
table, not on the specification of equalp.

18-2 Hash Tables

Programming Language-Common Lisp ANSI X3.226-1994

18.1.2.4 Visible Modifications by Language Extensions

Implementations that extend the language by providing additional mutator functions (or addi-
tional behavior for existing mutator functions) must document how the use of these extensions
interacts with equivalence tests and hash fable searches.

Implementalions that extend the language by defining additional acceptable equivalence tests
for hash tables (allowing additional values for the :test argument to make-hash-table) must
document the visible components of these tests.

Hash Tables 18-3

ANSI X3.226-1994 Programming Language-Common Lisp

hash-table System Class

Class Precedence List:
hash-table, t

Description:
Bash tables provide a way of mapping any objecf (a key) to an associated object (a value).

See Also:
Section 18.1 (Hash Table Concepts), Section 22.1.3.13 (Printing Other Objects)

Notes:
The intent is that this mapping be implemented by a hashing mechanism, such as that described
in Section 6.4 “Hashing” of The Art of Computer Programming, Volume 3 (pp506-549). In
spite of this intent, no conforming implement&ion is required to use any particular technique to
implement the mapping.

make-hash-table Function

Syntax:
make-hash-table &key test size rehash-size rehash-threshold 4 hash-tab/e

Arguments and Values:
test-a designator for one of the fundions eq, eql, equal, or equalp. The default is eql.

size-a non-negative integer. The default is implemeniation-dependent.

rehash-size-a real of lype (or (integer 1 *) (float (1 .O) *I>. The default is implemen2alion-
dependent,

rehash-threshold-a real of type (real 0 1). The default is implementation-dependeni.

hash-table-a hash table.

Description:
Creates and returns a new hash table.

test determines how keys are compared. An object is said to be present in the hash-table if that
object is the same under the test as the key for some entry in the hash-tab/e.

size is a hint to the implementa2ion about how much initial space to allocate in the hash-tab/e.
This information, taken together with the rehash-threshold, controls the approximate number of
entries which it should be possible to insert before the table has to grow. The actual size might
be rounded up from size to the next ‘good’ size; for example, some implemeniations might round
to the next prime number.

rehash-size specifies a minimum amount to increase the size of the hash-tab/e when it becomes full
enough to require rehashing; see rehash-thashold below, lf rehash-sire is an integer, the expected
growth rate for the table is additive and the integer is the number of entries to add; if it is a
float, the expected growth rate for the table is multiplicative and the fioal & the ratio of the new
size to the old size. As with size, the actual size of the increase might be rounded up.

18-4 Hash Tables

Programming Language-Common Lisp ANSI X3.226-1994

rehash-threshold specifies how full the hash-table can get before it must grow. It specifies the
maximum desired hash-table occupancy level.

The values of rehash-size and rehash-threshold do not constrain the implemenfation to use any
particular method for computing when and by how much the size of hash-table should be en-
larged. Such decisions are implementation-dependent, and these values only hints from the
programmer to the implementation, and the implementation is permitted to ignore them.

Examples:

(setq table (make-hash-table)) + #<HASH-TABLE EQL O/120 46142754>
(setf (gethash "one" table) 1) -+ 1
(gethash "one" table) -+ NIL, f&e
(setq table (make-hash-table :test 'equal)) -+ #<HASH-TABLE EQUAL O/139 46145547>
(setf (gethash "one" table) 1) + 1
(gethash "one" table) -+ 1, T
(make-hash-table :rehash-size 1.5 :rehash-threshold 0.7)

+ t<HASH-TABLE EQL O/120 46156620>

See Also:
gethash, hash-table

hash-t able-p Function

Syntax:
hash-table-p object + generalized-boolean

Arguments and Values:
object-an object.

generakzed-boolean-a generalized boolean.

Description:
Returns true if object is of type hash-table; otherwise, returns false.

Examples:

(setq table (make-hash-table)) + #<HASH-TABLE EIJL O/120 32511220>
(hash-table-p table) + true
(hash-table-p 37) -+ false
(hash-table-p '((a . 1) (b . 2))) * false

Notes:

(hash-table-p object) E (typep object 'hash-table)

Hash Tables 18-5

ANSI X3.226-1994 Programming Language-Common Lisp

hash-table-count Function

Syntax:
hash-table-count hash-tab/e -+ count

Arguments and Values:
hash-table-a hash table.

count-a non-negative integer.

Description:
fiturns the number of entries in the hash-table. If hash-tab/e has just been created or newly
cleared (see clrhash) the entry count iz 0.

Examples:

(setq table (make-hash-table)) + #<HASB-TABLE EQL O/120 321X135>
(hash-table-count table) -t 0
(setf (gethash 57 table) “fifty-seven”) 4 “fifty-seven”
(hash-table-count table) + 1
(dotimes (i 100) (setf (gethash i table) i)) -+ WXL
(hash-table-count table) -+ 100

Affected By:
clrhazh, remhash, setf of gethash

See Also:
hash-table-size

Notes:
The following relationships are functionally correct, although in practice using hash-table-count
is probably much faster:

(hash-table-count table) Z
(loop for value being the hash-values of table count t) E
(let ((total 0))

(maphash #'(lambda (key value)
(declare (ignore key value))
(incf total))

table>
total)

hash-table-rehash-size Function

Syntax:
hash-table-rehash-size hash-table + rehash-size

Arguments and Values:
hash-table-a hash table.

18-6 Hash Tables

Programming Language-Common Lisp ANSI X3.226-1994

rehash-size-a real of lype (or (integer 1 *) (float (1.0) *I).

Description:
Returns the current rehash size of hash-table, suitable for use in a call to make-hash-table in
order to produce a hash table with state corresponding to the current state of the hash-table.

Examples:

(setq table (make-hash-table :size 100 :rehash-size 1.4))
- #<HASH-TABLE EQL O/100 2556371>

(hash-table-rehash-size table) + 1.4

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
make-hash-table, hash-table-rehash-threshold

Notes:
If the hash table was created with an integer rehash size, the result is an integer, indicating that
the rate of growth of the hash-table when rehashed is intended to be additive; otherwise, the
result, is a float, indicating that the rate of growth of the hash-table when rehashed is intended to
be multiplicative. However, this value is only advice to the implementation; the actual amount by
which the hash-table will grow upon rehash is implementation-dependent.

hash-table-rehash-threshold Function

Syntax:
hash-table-rehash-threshold hash-table -) rehash-threshold

Arguments and Values:
hash-tab/e-a hash table.

rehash-threshold-a real of type (real 0 1).

Description:
Returns the current rehash threshold of hash-table, which is suitable for use in a call to
make-hash-table in order to produce a hash table with state corresponding to the current state of
the hash-table.

Examples:

(setq table (make-hash-table :size 100 :rehash-threshold 0.5))
- #<HASH-TABLE EQL O/100 2562446>

(hash-table-rehash-threshold table) + 0.5

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
make-hash-table, hash-table-rehash-size

Hash Tables 18-7

ANSI X3.226-1994 Programming Language-Common Lisp

hash-table-size Function

Syntax:
hash-table-size hash-table + size

Arguments and Values:
hash-table-a hash table.

size-a non-negative integer.

Description:
Returns the current size of hash-table, which is suitable for use in a call to make-hash-table in
order to produce a hash table with state corresponding to the current state of the hash-table.

Exceptional Situations:
Should signal an error of type type-error if hash-tab/e is not a hash table.

See Also:
hash-table-count, make-hash-table

hash-table-test Function

Syntax:
hash-table-test hash-tab/e -+ test

Arguments and Values:
hash-table-a hash table.

test-a function designator. For the four standardized hash table test functions (see
make-hash-table), the test value returned is always a symbol. If an implementation permits
additional tests, it is implementation-dependent whether such tests are returned as function
objects or junction names.

Description:
Returns the test used for comparing keys in hash-tab/e.

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
make-hash-table

18-8 Hash Tables

Programming LanguageCommon Lisp ANSI X3.226-1994

gethash Accessor

Syntax:
gethash key hash-tab/e &optional default -+ value. present-p

(setf (gethash key hash-tab/e &optional default) new-value)

Arguments and Values:
key-an object.

hash-table-a hash table.

default-an object. The default is nil.

value-an object.

present-p-a generalized boolean.

Description:
Value is the object in hash-table whose key is the same as key under the hash-table’s equivalence
test. If there is no such entry, value is the default.

Present-p is true if an entry is found; otherwise, it is false.

setf may be used with gethash to modify the value associated with a given key, or to add a new
entry. When a gethash form is used aa a setf place, any default which is supplied is evaluated
according to normal left-to-right evaluation rules, but its value is ignored.

Examples:

(setq table (make-hash-table)) * #<HASH-TABLE EQL O/120 32206334>
(gethash 1 table) + NIL, fake
(gethash 1 table 2) + 2. fake

I

(setf (gethash 1 table) "one") + "one"
(setf (gethash 2 table "two") "two") -+ "two"
(gethash 1 table) -+ "one". true
(gethash 2 table) -) "tvo", tme
(gethash nil table) -* NIL, fake
(setf (gethashnil table) nil) -+ NIL
(gethash nil table) + NIL, true
(defvar *counters* (make-hash-table)) -+ *COUNTERS*
(gethash 'foe *counters*) + NIL, fake
(gethash 'foe *counters* 0) + 0, fake
(defmacro hov-many (obj) ‘(values (gethash ,obj *counters* 0))) * HOW-HANY
(defun count-it (obj) (incf (hov-many obj))) w COUNT-IT
(dolist (x '(bar foo foo bar bar baz)) (count-it x))
(hov-many 'fool --) 2
(how-many 'bar) + 3
(how-many 'quux) --) 0

See Also:
remhash

Hash Tables 18-9

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
The secondary value, present-p, can be used to distinguish the absence of an entry from the
presence of an entry that has a value of default.

remhash Function

Syntax:
remhash key hash-table -+ generalized-boolean

Arguments and Values:
key-an object.

hash-table-a hash table.

generalized-boolean-a generalized boolean.

Description:
Removes the entry for key in hash-table, if any. Returns true if there was such an entry, or false
otherwise.

Examples:

(setq table (make-hash-table)) + #<HASH-TABLE EQL O/120 32115666>
(setf (gethash 100 table) “C”) -+ “C”
(gethash 100 table) + “C”, true
(remhash 100 table) -+ true
(gethash 100 table) -+ IIL, false
(rernhash 100 table) -+ ffZlse

Side Effects:
The hash-table is modified.

maphash Function 5

Syntax:
maphash function hash-tab/e + nil

Arguments and Values:
function-a designator for a function of two arguments, the key and the value.

hash-table-a hash table.

Description:
Iterates over all entries in the hash-tab/e. For each entry, the function is called with two argu-
ments-the key and the value of that entry.

The consequences are unspecified if any attempt is made to add or remove an entry from the
hash-table while a maphash is in progress, with two exceptions: the function can use can use setf
of gethash to change the value part of the entry currently being processed, or it can use remhash
to remove that entry.

18-10 Hash Tables

Prog~3~11ming Language-Common Lisp ANSI X3.226-1994

Examples:

(setq table (make-hash-table)) + #<HASH-TABLE EQL O/120 32304110)
(dotires (i 10) (setf (gethash i table) i)) --+ UIL
(let ((sur-of-squares 0))

(raphash #‘(lambda (key vii)
(let ((square (* val val)))

(incf sm-of-squares square)
(setf (gethash key table) square)))

table)
sum-of-squares) --+ 285

(hash-table-count table) + 10
(maphash X ’ (lambda (key val)

(vhen (oddp val) (remhaah key table)))
table) + NIL

(hash-table-count table) -+ 5
(naphash #‘(lambda (k v) (print (list k v))) table)

(0 0)
(8 64)
(2 4)
(6 36)
(4 16)
* NIL

Side Effects:
None, other than any which might be done by the function.

See Also:
loop, with-hash-table-iterator, Section 3.6 (Traversal Rules and Side Effects)

with-hash-table-iterator Macro

Syntax:
with-hash-table-iterator (name hash-tab/e) { dec/aration}* {form}* * {resu/t}*

Arguments and Values:
name-a name suitable for the first argument to macrolet.

hash-table-a form, evaluated once, that should produce a hash table.

declaration-a declare expression; not evaluated.

forms-an implicit progn.

results--the values returned by forms.

Description:
Within the lexical scope of the body, name is defined via macrolet such that successive invoca-
tions of (name) return the items, one by one, from the hash table that is obtained by evaluating
hash-table only once.

An invocation (name) returns three values as follows:

1. A generalized boolean that is true if an entry is returned.

Hash Tables 18-11

ANSI X3.226-1994 Programming Language-Common Lisp

2. The key from the hash-table entry.
3. The value from the hash-tab/e entry.

After all entries have been returned by successive invocations of (name), then only one value is
returned, namely nil.

It is unspecified what happens if any of the implicit interior state of an iteration is returned
outside the dynamic extent of the with-hash-table-iterator form such as by returning some
closure over the invocation form.

Any number of invocations of with-hash-table-iterator can be nested, and the body of the
innermost one can invoke all of the locally esiablished macros, provided all of those macros have
distinct names.

Examples:
The following function should return t on any hash table, and signal an error if the usage of
with-hash-table-iterator does not agree with the corresponding usage of maphash.

(defun test-hash-table-iterator (hash-table)
(let ((all-entries ‘0)

(generated-entries ‘0)
(unique (list nil)))

(maphash t’(larbda (key value) (push (list key value) all-entries) 1
hash-table)

(with-hash-table-iterator (generator-fn hash-table)
(loop

(multiple-value-bind (more? key value) (generator-fn)
(unless more? (return))
(unless (eql value (gethash key hash-table unique))

(error "Key 'S not found for value 'S" key value))
(push (list key value) generated-entries))))

(unless (= (length all-entries)
(length generated-entries)
(length (union all-entries generated-entries

:key #'car :test (hash-table-test hash-table))))
(error "Generated entries and Haphash entries don't correspond"))

t))

The following could be an acceptable definition ofmaphssh, implemented by
with-hash-table-iterator.

(defun maphash (function hash-table)
(Pith-hash-table-iterator (next-entry hash-table)

(loop (multiple-value-bind (more key value) (next-entry)
(unless more (return nil))
(funcall function key value)))))

Exceptional Situations:
The consequences are undefined if the local function named name established by
with-hash-table-iterator is called after it has returned false as its primary t&e.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

18-12 Hash Tables

Programming Language-Common Lisp ANSI X3.226-1994

&hash Function

Syntax:
clrhash hash-table -+ hash-table

Arguments and Values:
hash-table-a hash table.

Description:
Removes all entries from hash-tab/e, and then returns that empty hash table.

Examples:

(setq table (w&e-hash-table)) + #<HASH-TABLE EQL O/l20 32004073>
(dotimes (i 100) (setf (gethash i table) (format nil "-R" i))) + IIIL
(hash-table-count table) + 100
(gethash 57 table) -+ "fifty-seven", f?W
(clrhash table) + #<HASH-TABLE EQL O/120 32004073>
(hash-table-count table) + 0
(gethaah 57 table) * !iIL. false

Side Effects:
The hash-table is modified.

sxhash Function

Syntax:
sxhash object + hash-code

Arguments and Values:
object-an object.

hash-code-a non-negative fiznum.

Description:
sxhash returns a hash code for object.

The manner in which the hash code is computed is implementation-dependent, but subject to
certain constraints:

1. (equal x y) implies (- (sxhash x) (sxhash y)).

2. For any two objecfs, x and y, both of which are bit vectors, characters, conses, numbers,
pathnames, strings, or symbols, and which are similar, (sxha8h x) and (sxhaah y) yield
the same mathematical value even if x and y exist in different Lisp images of the same
implementation. See Section 3.2.4 (Literal Objects in Compiled Files).

3. The hash-code for an object is always the same within a single session provided that the
objecf is not visibly modified with regard to the equivalence test equal. See Section 18.1.2
(Modifying Hash Table Keys).

Hash Tables 18-13

ANSI X3.226-1994 Programming Language-Common Lisp

4. The hash-code is intended for hashing. This places no verifiable constraint on a conform-
ing implementation, but the intent is that an implementation should make a good-faith
effort to produce hash-codes that are well distributed within the range of non-negative
fiznums.

5. Computation of the hash-code must terminate, even if the object contains circularities.

Examples:

(= (sxhash (list ‘list @‘abt’)) (szhash (list ‘list “ab”))) + frue
(= (sxhash “a”) (srhash (rake-string 1 :initial-element #\a))) --) true
(let ((r (make-random-state)))

(= (sxhash r) (sxhaeh (make-raudoa-state r))))
-) implementation-dependent

Affected By:
The implementation.

Notes:
Many common hashing needs are satisfied by make-hash-table and the related functions on
hash tables. sxhash is intended for use where the pm-defined abstractions are insufficient. Its
main intent is to allow the user a convenient means of implementing more complicated hashing
paradigms than are provided through hash tables.

The hash codes returned by sxhash are not necessarily related to any hashing strategy used by
any other function in Common Lisp.

For objects of types that equal compares with eq, item 3 requires that the hash-code be based
on some immutable quality of the identity of the object. Another legitimate implementation
technique would be to have sxhash assign (and cache) a random hash code for these objects, since
there is no requirement that similar but non-eq objects have the same hash code.

Although similarity is defined for symbols in terms of both the symbol’s name and the packages
in which the symbol is accessible, item 3 disallows using package information to compute the hash
code, since changes to the package status of a symbol are not visible to equal.

18-14 Hash Tables

ANSI X3.226-1994

Programming Language--Common Lisp

19. Filenames

ANSI X3.226-1994 Programming Language-Common Lisp

ii Filenames

Programming Language-Common Lisp ANSI X3.226-1994

19.1 Overview of Filenames
There are many kinds of fire systems, varying widely both in their superficial syntactic details,
and in their underlying power and structure. The facilities provided by Common Lisp for referring
to and manipulating files has been chosen to be compatible with many kinds of file systems, while
at the same time minimizing the program-visible differences between kinds of file systems.

Since file systems vary in their conventions for naming files, there are two distinct ways to
represent filenames: as namestrings and as pathnames.

19.1.1 Namestrings as Filenames
A namestring is a string that represents a filename.

In general, the syntax of namestrings involves the use of implementation-defined conventions,
usually those customary for the file system in which the named file resides. The only exception
is the syntax of a logical pathname namestring, which is defined in this specification; see Section
19.3.1 (Syntax of Logical Pathname Namestrings).

A conforming program must never unconditionally use a literal namestring other than a logical
pathname namestring because Common Lisp does not define any namestring syntax other than
that for logical pathnames that would be guaranteed to be portable. However, a conforming
program can, if it is careful, successfully manipulate user-supplied data which contains or refers to
non-portable namestrings.

A namestring can be coerced to a pathname by the functions pathname or parse-namestring.

19.1.2 Pathnames as Filenames
Pathnames are structured objects that can represent, in an implementation-independent way,
the filenames that are used natively by an underlying file system.

In addition, pathnames can also represent certain partially composed filenames for which an
underlying file system might not have a specific namestring representation.

A pathname need not correspond to any file that actually exists, and more than one pathname
can refer to the same file. For example, the pathname with a version of :newest might refer to
the same file as a pathname with the same components except a certain number as the version.
Indeed, a pathname with version :neoest might refer to different files as time passes, because the
meaning of such a pathname depends on the state of the file system.

Some file systems naturally use a structural model for their filenames, while others do not.
Within the Common Lisp pathname model, all filenames are seen as having a particular struc-
ture, even if that structure is not reflected in the underlying file system. The nature of the
mapping between structure imposed by pathnames and the structure, if any, that is used by the
underlying file system is implementation-defined.

Every pathname has six components: a host, a device, a directory, a name, a type, and a version.
By naming files with pathnames, Common Lisp programs can work in essentially the same way
even in file systems that seem superficially quite different. For a detailed description of these
components, see Section 19.2.1 (Pathname Components).

The mapping of the pathname components into the concepts peculiar to each file system is
implementation-defined. There exist conceivable pathnames for which there is no mapping to a
syntactically valid filename in a particular implementation. An implementation may use various
strategies in an attempt to find a mapping; for example, an implementation may quietly truncate
filenames that exceed length limitations imposed by the underlying file system, or ignore certain
pathname components for which the file system provides no support. If such a mapping cannot be
found, an error of type Ale-error is signaled.

Filenames 19-1

-. ---- -- . <^ -_

ANSI X3.226-1994 Programming Language-Common Lisp ,

The time at which this mapping and associated error signaling occurs is implementation-
dependent. Specifically, it may occur at the time the pathname is constructed, when coercing
a pathname to a namestring, or when an attempt is made to open or otherwise access the file
designated by the pathname.

Figure 19-1 lists some defined names that are applicable to pathnames.

default-pathname-defaults namestring
directory-namestring open
enough-namestring parse-namestring
Ale-namestring pathname
Ale-string-length pa&name-device
host-name&ring pathname-directory
make-pathname pathname-host
merge-pathnames pathnamematch-p

pathname-name
pathname-type
pathname-version
pathnamep
translate-pathname
truename
user-homedir-pathname
wild-pathname-p

Figure 19-l. Pathname Operations

19.1.3 Parsing Namestrings Into Pathnames
Parsing is the operation used to convert a namestring into a pathname. Except in the case of
parsing logical pathname namestrings, this operation is implementation-dependent, because the
format of namestrings is implementation-dependent.

A conforming implementation is free to accommodate other fire system features in its pathname
representation and provides a parser that can process such specifications in namestrings. Con-
forming programs must not depend on any such features, since those features will not be portable.

19-2 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

19.2 Pathnames

19.2.1 Pathname Components
A pathname has six components: a host, a device, a directory, a name, a type, and a version.

19.2.1.1 The Pathname Host Component
The name of the file system on which the file resides, or the name of a logical host.

19.2.1.2 The Pathname Device Component
Corresponds to the “device” or “file structure” concept in many host file systems: the name of a
logical or physical device containing files.

19.2.1.3 The Pathname Directory Component
Corresponds to the “directory” concept in many host file systems: the name of a group of related
files.

19.2.1.4 The Pathname Name Component
The “name” part of a group of files that can be thought of as conceptually related.

19.2.1.5 The Pathname Type Component
Corresponds to the Wetype” or “extension” concept in many host file systems. This says what
kind of file this is. This component is always a string, nil, :uild, or :unspecific.

19.2.1.6 The Pathname Version Component
Corresponds to the “version number” concept in many host file systems.

The version is either a positive integer or a symbol from the following list: nil, :wild,
:unspecific, or :neuest (refers to the largest version number that already exists in the file system
when reading a file, or to a version number greater than any already existing in the file system
when writing a new file). Implementations can define other special version symbols.

19.2.2 Interpreting Pathname Component Values

19.2.2.1 Strings in Component Values

19.2.2.1.1 Special Characters in Pathname Components

Strings in pathname component values never contain special characters that represent separation
between pathname fields, such as slush in Unix filenames. Whether separator characters are
permitted as part of a string in a pathname component is implementation-defined; however, if
the implementation does permit it, it must arrange to properly “quote” the character for the file
system when constructing a namestring. For example,

;; In a TOPS-20 implementation, which uses “V to quote

Filenames 19-3

ANSI X3.226-1994 Programming Language-Common Lisp

(B~STRING (HAKE-PATH~ME :msT ~~0~~~ :HMIE ~xTE~T>~~))
--* #P"OZ~PS~"V<TEST"VV>" . .

"2 #P"OZ:PS:CTEST>"

19.2.2.1.2 Case in Pathname Components

Namesltings always use local file system case conventions, but Common Lisp functions that ma-
nipulate p&name components allow the caller to select either of two conventions for representing
case in component values by supplying a value for the :case keyword argument. Figure 19-2 lists
the functions relating to pathnames that permit a :case argument:

makepathname pathname-directory
pathname-device pathname-host

Figure 19-Z. Pathname functions using a :CASE argument

pathname-name
pathname-type

19.2.2.1.2.1 Local Case in Pathname Components

For the functions in Figure 19-2, a value of :10&l for the :case argument (the default for these
functions) indicates that the functions should receive and yield strings in component values as if
they were already represented according to the host file system’s convention for case.

If the file system supports both cases, strings given or received as pothname component values
under this protocol are to be used exactly as written. If the file system only supports one case,
the strings will be translated to that case.

19.2.2.1.2.2 Common Case in Pathname Components

For the functions in Figure 19-2, a value of :common for the :case argument that these functions
should receive and yield strings in component values according to the following conventions:

l All uppercase means to use a file system’s customary case.
l All lowercase means to use the opposite of the customary case.
l Mixed case represents itself.

Note that these conventions have been chosen in such a way that translation from :local to
:common and back to :loc& is information-preserving.

19.2.2.2 Special Pathname Component Values

19.2.2.2.1 NIL as a Component Value

As a pathname component value, nilrepresents that the component is “unfilled”; see Section
19.2.3 (Merging Pathnames).

The value of any pathname component can be nil.

When constructing a pathname, nil in the host component might mean a default host rather than
an actual nil in some implementations.

19-4 Filenames

Programming LanguageCommon Lisp ANSI X3.226-1994

19.2.2.2.2 :WILD as a Component Value

If :oild is the value of a pathname component, that component is considered to be a wildcard,
which matches anything.

A conforming program must be prepared to encounter a value of :rrild as the value of any path-
name component, or as an element of a list that is the value of the directory component.

When constructing a pathname, a conforming program may use :vild as the value of any or all of
the directory, name, type, or version component, but must not use :vild as the value of the host,
or device component.

If :vild is used as the value of the directory component in the construction of a pathname,
the effect is equivalent to specifying the list (:absolute :vild-inferiors), or the same as
(:absolute :vild) in a file system that does not support :vild-inferiors.

19.2.2.2.3 :UNSPECIFIC as a Component Value

If :unspecific is the value of a pathname component, the component is considered to be “absent”
or to “have no meaning” in the filename being represented by the pathname.

Whether a value of :unspecific is permitted for any component on any given file system ac-
cessible to the implementation is implementation-defined. A conforming program must never
unconditionally use a :unspecific as the value of a pathname component because such a value is
not guaranteed to be permissible in all implementations. However, a conforming program can, if
it is careful, successfully manipulate user-supplied data which contains or refers to non-portable
pathname components. And certainly a conforming program should be prepared for the possibility
that any components of a pathname could be :unspecific.

When reading, the value of any pathname component, conforming programs should be prepared
for the value to be :nnspecific.

When writing1 the value of any pathname component, the consequences are undefined if
:nnspecific is given for a pathname in a file system for which it does not make sense.

19.2.2.2.3.1 Relation between component values NIL and :UNSPECIFIC

If a pathname is converted to a namestring, the symbols nil and :unspecific cause the field to be
treated as if it were empty. That is, both nil and :unspecific cause the component not to appear
in the namestring.

However, when merging a pathname with a set of defaults, only a nil value for a component will
be replaced with the default for that component, while a value of :unspecific will be left alone
as if the field were ‘Yilled”; see the function merge-pathnames and Section 19.2.3 (Merging
Pathnames).

19.2.2.3 Restrictions on Wildcard Pathnames

Wildcard pathnames can be used with directory but not with open, and return true from
wild-pathname-p. When examining wildcard components of a wildcard pathname, conforming
programs must be prepared to encounter any of the following additional values in any component
or any element of a list that is the directory component:

l The symbol :vild, which matches anything.

l A string containing implementation-dependent special wildcard characters.

l Any objecf, representing an implementation-dependent wildcard pattern.

Filenames 19-5

ANSI X3.226-1994 Programming Language-Common Lisp

19.2.2.4 Restrictions on Examining Pathname Components

The space of possible objects that a conforming program must be prepared to read1 as the
value of a pothnnme component is substantially larger than the space of possible objects that a
conforming program is permitted to write1 into such a component.

While the values discussed in the subsections of this section, in Section 19.2.2.2 (Special Path-
name Component Values), and in Section 19.2.2.3 (Restrictions on Wildcard Pathnames) apply to
values that might be seen when reading the component values, substantially more restrictive rules
apply to constructing pathnames; see Section 19.2.2.5 (Restrictions on Constructing Pathnames).

When examining pathname components, conforming programs should be aware of the following
restrictions.

19.2.2.4.1 Restrictions on Examining a Pathname Host Component

It is implementation-dependent what object is used to represent the host.

19.2.2.4.2 Restrictions on Examining a Pathname Device Component

The device might be a string, :vild, :unspecific, or nil.

Note that :vild might result from an attempt to read1 the pathname component, even though
portable programs are restricted from writingl such a component value; see Section 19.2.2.3
(Restrictions on Wildcard Pathnames) and Section 19.2.2.5 (Restrictions on Constructing Path-
names).

19.2.2.4.3 Restrictions on Examining a Pathname Directory Component

The directory might be a siring, :vild, :unspecif ic, or nil.

The directory can be a list of strings and symbols. The car of the list is one of the symbols
:absolute or :relative, meaning:

: absolute

A list whose car is the symbol :absolute represents a directory path starting from
the root directory. The list (:absolute) represents the root directory. The list
(:absolute “f oo” “bar” ” baz”) represents the directory called ‘l/f oo/bar/baz*’ in Unix (except
possibly for case).

:relative

A list whose car is the symbol :relative represents a directory path starting from a default
directory. The list (:relative) has the same meaning as nil and hence is not used. The list
(:relative “foe” “bar”) represents the directory named “ba?’ in the directory named “foe”
in the default directory.

Each remaining element of the list is a string or a symbol.

Each string names a single level of directory structure. The strings should contain only the
directory names themselves-no punctuation characters.

In place of a string, at any point in the list, symbols can occur to indicate special file notations.
Figure 19-3 lists the symbols that have standard meanings. Implementations are permitted to add
additional objects of any type that is disjoint from string if necessary to represent features of their
file systems that cannot be represented with the standard strings and symbols.

Supplying any non-string, including any of the symbols listed below, to a file system for which
it does not make sense signals an error of type file-error. For example, Unix does not support
: vild-inf eriors in most implementations.

19-6 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Symbol Meaning
: wild Wildcard match of one level of directory structure
:vild-inferiors Wildcard match of any number of directory levels
:llp Go upward in directory structure (semantic)
:back Go upward in directory structure (syntactic)

Figure 19-3. Special Markers In Directory Component

The following notes apply to the previous figure:

Invalid Combinations

Using : absolute or :vild-inf eriors immediately followed by :up or : back signals an error of
type Ale-error.

Syntactic vs Semantic

L‘Syntactic” means that the action of :back depends only on the pathname and not on the
contents of the file system.

“Semantic” means that the action of :up depends on the contents of the file system; to resolve
a pathname containing :up to a pathname whose directory component contains only :absolute
and strings requires probing the file system.

:up differs from :back only in file systems that support multiple names for directories, perhaps
via symbolic links. For example, suppose that there is a directory (:absolute 8m~1t I@Y~~ I*z)~)
linked to (:absolute “A ” "B" V") and there also exist directories (:absolute BfAv6 llB1l ItQtS)
and (:absolute “X” “Y” ‘Xl”). Then (:absolute “X” “Y” “2” :up YJ*‘) designates
(:absolute “A” "?I" “Cl”) while (:absolute “X” “Y” tqZ’t :back VJ*‘> designates
(:absolute "X" "Y" "Q")

19.2.2.4.3.1 Directory Components in Non-Hierarchical File Systems

In non-hierarchical file systems, the only valid list values for the directory component of a path-
name are (:absolute string) and (:absolute :vild) . :relative directories and the keywords
:vild-inferiors, :up, and :back are not used in non-hierarchical file systems.

19.2.2.4.4 Restrictions on Examining a Pathname Name Component

The name might be a string, :vild, :unspecific, or nil.

19.2.2.4.5 Restrictions on Examining a Pathname Type Component

The type might be a string, :vild, :unspecific, or nil.

19.2.2.4.6 Restrictions on Examining a Pathname Version Component

The version can be any symbol or any integer.

The symbol :nevest refers to the largest version number that already exists in the file system
when reading, overwriting, appending, superseding, or directory listing an existing file. The
symbol :nevest refers to the smallest version number greater than any existing version number
when creating a new file.

The symbols nil, :unspecif ic, and :vild have special meanings and restrictions; see Section
19.2.2.2 (Special Pathname Component Values) and Section 19.2.2.5 (Restrictions on Construct-
ing Pathnames).

Filenames 19-7

ANSI X3.226-1994 Programming Language-Common Lisp

Other symbols and integers have implementation-defined meaning.

19.2.2.4.7 Notes about the Pathname Version Component

It is suggested, but not required, that implementations do the following:

l Use positive integers starting at 1 as version numbers.

l Recognize the symbol :oldest to designate the smallest existing version number.

l Use keywords for other special versions.

19.2.2.5 Restrictions on Constructing Pathnames

When constructing a pathname from components, conforming programs must follow these rules:

l Any component can be nil. nil in the host might mean a default host rather than an
actual nil in some implementations.

l The host, device, directory, name, and type can be strings. There are implementation-
dependent limits on the number and type of characters in these strings.

l The directory can be a list of strings and symbols. There are implementation-dependent
limits on the list’s length and contents.

l The version can be :neuest.

l Any component can be taken from the corresponding component of another pathname.
When the two pothnames are for different file systems (in implementations that support
multiple file systems), an appropriate translation occurs. If no meaningful translation
is possible, an error is signaled. The definitions of “appropriate” and “meaningful” are
implementation-dependent.

l An implementation might support other values for some components, but a portable pro-
gram cannot use those values. A conforming program can use implementation-dependent
values but this can make it non-portable; for example, it might work only with Unix file
systems.

19.2.3 Merging Pathnames
Merging takes a pathname with unfilled components and supplies values for those components
from a source of defaults.

If a component’s value is nil, that component is considered to be unfilled. If a component’s value
is any non-nil object, including :unspecific, that component is considered to be filled.

Except as explicitly specified otherwise, for functions that manipulate or inquire about
files in the file system, the pathname argument to such a function is merged with
default-pathname-defaults before accessing the file system (as if by merge-pathnames).

19.2.3.1 Examples of Merging Pathnames

Although the following examples are possible to execute only in implementations which permit
:unepecific in the indicated position andwhich permit four-letter type components, they serve to
illustrate the basic concept of pathname merging.

19-8 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

(pathname-type
(merge-pathuaaes (rake-pathnaae : type “LISP”)

(make-pathname :type “TEXT”)))
+ “LISP”

(pathname-type
(merge-pathnames (make-pathname :type nil)

(make-pathname :type “LISP”)))
+ “LISP”

(pathname-type
(merge-pathnames (make-pathname :type :unspecific)

(make-pathname :type “LISP”)))
- :WSPECIFIC

Filenames 19-9

. - - - . - -___ ___ - ._ _“-._- _- . . -__ -_ . - -~_- c~-~~Y_-~-___- - -_ . -~~ . .__- - _ _ _ ._ . _ . _ _ _LL I _ -_ ._c . >. l . . .

A N S I X 3 .226 -1994 P r o g r a m m i n g L a n g u a g e - - C o m m o n L isp

1 9 .3 L o g ical P a th n a m e s

1 9 .3 .1 S yn tax o f Log ica l P a th n a m e N a m e s trings
T h e syntax of a logical p a t h n a m e names t r i ng is as fol lows. (Note that un l ike m a n y notat ional de -
scr ipt ions in this document , this is a syntactic descr ip t ion of character sequences , not a structural
descr ip t ion of objects.)

l og ica l -pa thname: := [lhos t hos t -marker]

[1 re la t ive-d i rec tory-marker] { 1 d i rec tory d i rec to ry -marker } *

[l n a m e] [t ype-marker 1 type [vers ion-marker 1 vers ion]]

host: .zJ w o r d

d i rec tory : :=1 w o r d 1 1 w i l dca rd -word 1 1 w i ld - in fe r io rs -word

n a m e : : = 1 w o r d 1 1 w i l dca rd -word

type ::= 1 w o r d 1 1 w i ldcard- w o r d

vers ion: := lpos- in t I newes t -wo rd 1 w i ldcard-vers ion

hos t -marke r -a co lon .

re la t ive-d i rec tory -marker -a semico lon .

d i rec to ry -marker -a semico lon .

t ype -marke r -a dot .

ve rs ion -marke r -a dot .

w i ld - in fe r io rs -word-The two character sequence % *” (two aster isks).

newes t -word-The six character sequence “newest” or the six character sequence “H E Y E S I’ .

wi ldcard -ve rs ion -an aster isk.

w i l dca rd -wo rd -one or m o r e aster isks, uppercase letters, digits, a n d hyphens , inc lud ing at least
o n e aster isk, with n o two aster isks adjacent .

w o r d - o n e or m o r e uppercase letters, digits, a n d hyphens .

pos- in t -a posi t ive in teger .

1 9 .3 .1 .1 A d d i tiona l In fo r m a tio n a b o u t Pa rs ing Log ica l P a th n a m e N a m e s tr ings

1 9 .3 .1 .1 .1 T h e Host p a r t o f a Log ica l P a th n a m e N a m e s tr ing

T h e host must have b e e n de f ined as a logical p a t h n a m e host; this can b e d o n e by us ing setf of
log ica l -pathname-t ranslat ions.

T h e logical p a t h n a m e host n a m e Y 3 Y S ” is reserved for the implementat ion. T h e ex is tence a n d
m e a n i n g of S Y S : log ica l p a t h n a m e s is imp lementa t ion -de f ined .

1 9 - 1 0 Fi lenames

Programming Language-Common Lisp ANSI X3.226-1994

19.3.1.1.2 The Device part of a Logical Pathname Namestring

There is no syntax for a logical pathname device since the device component of a logical pathname
is always :unspecific; see Section 19.3.2.1 (Unspecific Components of a Logical Pathname).

19.3.1.1.3 The Directory part of a Logical Pathname Namestring

If a relative-directory-marker precedes the directories, the directory component parsed is as relative;
otherwise, the directory component is parsed as absolute.

If a wild-inferiors-marker is specified, it parses into :uild-inferiors.

19.3.1.1.4 The Type part of a Logical Pathname Namestring

The type of a logical pathname for a source file is “LISP”. This should be translated into whatever
type is appropriate in a physical pathname.

19.3.1.1.5 The Version part of a Logical Pathname Namestring

Some file systems do not have versions. Logical pathname translation to such a file system ignores
the version. This implies that a program cannot rely on being able to store more than one version
of a file named by a logical pathname.

If a wildcard-version is specified, it parses into :vild.

19.3.1.1.6 Wildcard Words in a Logical Pathname Namestring

Each asterisk in a wildcard-word matches a sequence of zero or more characters. The wildcard-
word I’*” parses into :vild; other wildcard-words parse into strings.

19.3.1.1.7 Lowercase Letters in a Logical Pathname Namestring

When parsing words and wildcard-words, lowercase letters are translated to uppercase.

19.3.1.1.8 Other Syntax in a Logical Pathname Namestring

The consequences of using characters other than those specified here in a logical pathname
namestring are unspecified.

The consequences of using any value not specified here as a logical pathname component are
unspecified.

19.3.2 Logical Pathname Components

19.3.2.1 Unspecific Components of a Logical Pathname
The device component of a logical pathname is always :unspecific; no other component of a
logical pathname can be :unspecific.

19.3.2.2 Null Strings as Components of a Logical Pathname

The null string, ““, is not a valid value for any component of a logical pathname.

Filenames 19-11

ANSI X3.226-1994 Programming Language-Common Lisp

pathname System Class

Class Precedence List:
pathname, t

Description:
A pathname is a structured object which represents a filename.

There are two kinds of pathnames-physical pathnames and logical pathnames.

logical-pat hname System Class

Class Precedence List:
logical-pathname, pathname, t

Description:
A pathname that uses a namestring syntax that is implementation-independent, and that has
component values that are implementation-independent. Logical pathnames do not refer directly
to filenames

See Also:
Section 20.1 (File System Concepts), Section 2.4.8.14 (Sharpsign P), Section 22.1.3.11 (Printing
Pathnames)

pathname Function

Syntax:
pathname pathspcc -+ pathname

Arguments and Values:
pathspec-a pathname designator.

pathname-a pathname.

Description:
Returns the pathname denoted by pathspec.

If the pathspec designator is a stream, the stream can be either open or closed; in both cases,
the pathname returned corresponds to the filename used to open the file. pathname returns the
same pathname for a file stream after it is closed as it did when it was open.

If the pathspec designator is a file stream created by opening a logical pathname, a logical path-
name is returned.

19-12 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

;; There is a great degree of variability permitted here. The next
;; several examples are intended to illustrate just a fev of the many
;; possibilities. Whether the name is canonicalized to a particular
;; case (either upper or lover) depends on both the file system and the
;; implementation since too different implementations using the save
;; file system might differ on many issues. Hov information is stored
;; internally (and possibly presented in #S notation) might vary,
;; possibly requiring ‘accessorsy such as PATHNAME+NAKB to perforv case
;; conversion upon access. The format of a namestring is dependent both
;; on the file system and the implementation since, for example, one
;; implementation might include the host nave in a namestring. and
;; another might not. #S notation vould generally only be used in a
;: situation vhere no appropriate nsmestring could be constructed for use
;; vith #P.
(setq pl (pathname "test"))

+ tP"CHOCOLATE*TEST" ; . vith case canonicalization (e.g., VHS)
4 #P"VANILLA*test" . ; vithout case canonicalixation (e.g., Unix)
4 #P"test"
2 #S(PATHNAHE :HOST “STRAYBERRY” :NAI’E "TEST")
z #S(PATHNAME :HOST "BELGIAN-CHOCOLATE" :NAHE "test")

(setq p2 (pathname "test"))
+ #P"CHOCOLATE.TEST" .
4 #P"VANILLA:test"
4 #P"test"
2 sS(PATHNAME :HOST "STBAUBEBBY" :NAHE "TEST")
4 #S(PATHNAHE :HOST "BELGIAN-CHOCOLATE" :NAME "test")

(pathnamep pi) --+ irue
(eq pl (pathname ~1)) --) kve
(eq pl ~2)

-b true
Z false

(vith-open-file (stream "test" :direction :output)
(pathuaue stream))

* XP"OBANGE-CHOCOLATE:>Gus>test.lisp.nevest"

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

make-pat hname Function

Syntax:
make-pathname &key host device directory name type version defaults case

+ pathnamc

Arguments and Values:
host-a valid physical pathname host. Complicated defaulting behavior; see below.

device-a valid pathname device. Complicated defaulting behavior; see below.

directory-a valid pathname directory. Complicated defaulting behavior; see below.

Filenames 19-13

ANSI X3.226-1994 Programming Language-Common Lisp

name-a valid pathname name. Complicated defau4ting behavior; see below.

type-a valid pathname type. Complicated defaulting behavior; see below.

version-a valid pathname version. Complicated defaulting behavior; see below.

defaults-a pathname designator. The default is a pathname whose host component is the same as
the host component of the value of *default-pathname-defaults*, and whose other components
are all nil.

case-one of : common or : local. The default is : local.

pathname-a pathname.

Description:
Constructs and returns a pathname from the supplied keyword arguments.

After the components supplied explicitly by host, device, directory, name, type, and version
are filled in, the merging rules used by merge-pathnames are used to fill in any unsupplied
components from the defaults supplied by defaults.

Whenever a pathname is constructed the components may be canonicalized if appropriate., For
the explanation of the arguments that can be supplied for each component, see Section 19.2.1
(Pathname Components).

If case is supplied, it is treated as described in Section 19.2.2.1.2 (Case in Pathname Compo-
nents).

The resulting pathname is a logical pathname if and only its host component is a logical host or a
string that names a defined logical host.

If the directory is a string, it should be the name of a top level directory, and should not con-
tain any punctuation characters; that is, specifying a string, str, is equivalent to specify-
ing the list (:absolute str). Specifying the symbol :uild is equivalent to specifying the list
(:absolute :wild-inferiors),or (:absolute :vild) in a file system that does not support
:vild-inferiors.

Examples:

:; Implementation A -- an implementation vith access to a single
;; Unix file system. This implementation happens to never display
. . the 'host' information in a namestring
&Ire-pathname :directory

, since there is only one host.
'(:absolute "public" "games")

:name "chess" :type "db")
- tP"/public/games/chess.db"

;; Implementation B -- an implementation vith access to one or more
;; VHS file systems. This implementation displays 'host' information
:; in the namestring only vhen the host is not the local host.
;; It uses a double colon to separate a host name from the host's local
;; file name.
(make-pat&name :directory '(:absolute "PUBLIC" "GAHBS")

:name "CHESS" :type "DB")
- w5.Ys$DIsK: PUBLIC. GA~B~IcHESS. DBtl

(make-pat&name :host "BOBBY"
:directory '(:absolute "PUBLIC" "GAMES")
:neme "CHESS" :type "DB'O

-, tP"BOBBY::SYS$DISK:~PDBLIC.GAHESlCIiESS.DB"

19-14 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

;; Implementation C -- an implementation with simultaneous access to
;; multiple file systems from the same Lisp image. In this
;; implementation, there is a convention that any text preceding the
;; first colon in a pathname namestring is a host name.
(dolist (case '(:common :local))

(dolist (host '("MY-LISP!!" WY-VAX" WY-UNIX"))
(print (make-pathname :host host :case case

:directory '(:absolute "PUBLIC" "GAHRS")
:name "CBRSS" :type "DB"))))

D #PWY-LISPH:>public>games>chess.db"
D #P"I¶Y-VAX:SYS$DISK:[PDBLIC.GAHES]CBESS.DB"
D #PWY-UNIX:/public/games/chess.db"
D #PWY-LISPM:>public>games>chess.db"
D tP”MY-VAX: SYS$DISK : [PUBLIC .GAHBSl CHESS. DB”
D #P"MY-UNIX:/PUBLIC/GAMES/CBESS.DB"
+ UIL

Affected By:
The file system.

See Also:
merge-pathnames, pathname, logical-pathname, Section 20.1 (File System Concepts), Section
19.1.2 (Pathnames as Filenames)

Notes:
Portable programs should not supply :unspecific for any component. See Section 19.2.2.2.3
(:UNSPECIFIC as a Component Value).

pat hnamep Function

Syntax:
pathnamep object -+ generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type pathname; otherwise, returns f&e.

Examples:

(setq q "test") + "test"
(pathnamep q) --i false
(setq q (pathname "test"))

-* #S(PATHNAHE :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAHE “test” :TYPE NIL
:VERSION NIL)

(pathnamep q) -* true

Filenames 19-15

ANSI X3.226-1994 Programming Language-Common Lisp

(setq q (logical-pathname “SYS: SITE; FOCI .SYSTEH”))
+ #P”SYS:SITE;FOCl.SYSTM”

(pathnamep q) + ifwe

Notes:

(pathnamep object) s (typep object ‘pathname)

pat hname-host, pat hname-device, pathname-
directory, pathname-name, pathname-type,
pat hname-version Function

Syntax:
pathname-host pathname Okey case -+ host

pathname-device pathname kkey case - device

pathname-directory pathname kkey case -+ directory

pathname-name pathname kkey case -+ name

pathname-type pathname kkey case -+ type

pathname-version pathname + version

Arguments and Values:
pathname-a pathname designator.

case-one of : local or : common. The default is : local.

host-a valid pathname host.

device-a valid pathname device.

directory-a valid pathname directory.

name-a valid pathname name.

type-a valid pathname type.

version-a valid pathname version.

Description:
These functions return the components of pathname.

If the pathname designator is a pathname, it represents the name used to open the file. This may
be, but is not required to be, the actual name of the file.

If case is supplied, it is treated as described in Section 19.2.2.1.2 (Case in Pathname Compo-
nents) .

19-16 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(setq q (make-pathname :host “KATHY”
: direct ory “CHAPMAN”
:name “LOGIN” : type “COW’))

+ #P”KATHY: : [CHAPMAN] LOGIN. COW
(pathname-host q) + “KATHY”
(pathname-name q) + “LOGIN”
(pathname-type q) + “COW

;; Because namestrings are used, the results shovn in the remaining
; ; examples are not necessarily the only possible results. Mappings
; ; from namestring representation to pathname representation are
;; dependent both on the file system involved and on the implementation
;; (since there may be several implementations vhich can manipulate the
;; the same file system, and those implementations are not constrained
;; to agree on all details). Consult the documentation for each
;; implementation for specific information on hov namestrings are treated
; ; that implementation.

;; VMS
(pathname-directory (parse-namestring II 1~00. * . BARI BAZ . LSP”))

+ (:ABSOLOTE “FOO” “BAR”)
(pathname-directory (parse-namestring ~~CFOO.*.BARIBA~.LSP~*) :case :common)

- (: ABSOLUTE “FOO” “BAR” 1

;; Unix
(pathname-directory “f oo. 1”) + NIL
(pathname-device “f oo. 1”) + :OBSPECIFIC
(pathname-name “f 00.1”) -) “f 00”
(pathname-name “foo.1” :case :local) -) “foe”
(pathname-name “f oo .l” :case : common) -) “FOO”
(pathname-type “f 00.1”) + “1”
(pathname-type “f 00.1” :case : local) + “1”
(pathname-type “fo0.1” : case :common) + “L”
(pathname-type “foe”) + :ONSPECIFIC
(pathname-type “f oo” : case :common) + :IJNSPECIFIC
(pathname-type “foe .“) + “”
(pathname-type “foe. ” :case : common) + “”
(pathname-directory (parse-namestring “/foo/bar/bax.lisp”) :case :local)

-) (-ABSOLUTE “foe” “bar”) .
(pathname-directory (parse-namestring ‘l/f oo/bar/bax. lisp”) : case : local)

- (: ABSOLUTE “FOO” “BAR”)
(pathname-directory (parse-namestring ‘I. . /bax. lisp’0)

-* (:RELATIVE :OP)
(PATHNAHE-DIRECTORY (PARSE-NAMESTRING “/foo/BAR/../Hum/baz”))

-) (:ABSOLUTE “foe” “BAR” :UP “Hum”)
(PATHNAHE-DIRECTORY (PARSE-NAMESTRING ‘l/f oo/BAR/. . /Num/bax”) : case : common)

+ (:ABSOLOTE “FOO” “bar” :OP “Mum”)
(PATHNAME-DIRECTORY (PARSE-NAHESTRING “/foo/*/bar/bax.l”))

+ (: ABSOLUTE “f oo” :l?ILD “bar”)
(PATHNABE-DIRECTORY (PARSE-NAHESTRING @~/f00/*/bar/baz.l") :case :common)

+ (:ABSOLOTE “FOO” :WILD “BAR”)

Filenames 19-17

ANSI X3.226-1994 Programming Language-Common Lisp

;; Symbolic8 LHFS
(pat&name-directory (parse-namestring ">foo>**>bar>baz.lisp"))

4 (:ABSOLuTE "foe" :YILD-INFERIORS "bar")
(pathname-directory (parse-namestring ">foo>*>bar>baz.lisp"))

+ (:ABSOLUTB "foe" :YILB "bar")
(pathname-directory (parse-namestring '@>foo>*>bar>baz.lisp") :case :common)

-+ (:ABSOLUTE "FOO" :YILB "BAB")
(pathname-device (parse-namestring "?foo>baz.lisp")) -+ :UNSPECIFIC

Affected By:
The implementation and the host file system.

Exceptional Situations:
Should signal an error of type type-error if its first argument is not a pathname.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

load-logical-pat hname-translations Function

syntax:
load-logical-pathname-translations host 4 just-loaded

Arguments and Values:
host-a string.

just-loaded-a generalized boolean.

Description:
Searches for and loads the definition of a logical host named host, if it is not already defined. The
specific nature of the search is implementation-defined.

If the host is already defined, no attempt to find or load a definition is attempted, and false is
returned. If the host is not already defined, but a definition is successfully found and loaded, true
is returned. Otherwise, an error is signaled.

Examples:

(translate-logical-pathname "hacks:ueather;barometer.lisp.neuest")
D Error: The logical host HACKS is not defined.

(load-logical-pathnsme-translations "BACKS")
D ;; Loading SYS:SITE;HACKS.TBANSLATIONS
D :: Loading done.
-, trve

(translate-logical-pathname "hacks:veather;barometer.lisp.nevest")
* #P"HELIIRI:[SHARED.HACKS.YEATHER]BAR~TER.LSP:O"

(load-logical-pathname-translations "BACKS")
-+ false

19-18 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Exceptional Situations:
If no definition is found, an error of type error is signaled.

See Also:
logical-pathname

Notes:
Logical pathname definitions will be created not just by implementors but also by programmers.
As such, it is important that the search strategy be documented. For example, an implementation
might define that the definition of a host is to be found in a file called “host.translations” in some
specifically named directory.

logical-pathname-translations Accessor

Syntax:
logical-pathname-translations host + translations

(setf (logical-pathname-translations host) new-translations)

Arguments and Values:
host-a logical host designator.

translations, new-translations-a list.

Description:
Returns the host’s list of translations. Each translation is a list of at least two elements: from-
wildcard and to-wildcard. Any additional elements are implementation-defined. From-wildcard is a
logical pathname whose host is host. To-wildcard is a pathname.

(setf (logical-pathname-translations host) translations) sets a logical pathname host’s list of
translations. If host is a string that has not been previously used as a logical pathname host, a
new logical pathname host is defined; otherwise an existing host’s translations are replaced. logical
pathname host names are compared with string-equal.

When setting the translations list, each from-wildcard can be a logical pathname whose host
is host or a logical pathname namestring parseable by (parse-naaestring string host), where
host represents the appropriate object as defined by parse-namestring. Each to-wildcard can be
anything coercible to a pathname by (pathname to-wildcard). If to-wildcard coerces to a logical
pathname, translate-logical-pathname will perform repeated translation steps when it uses it.

host is either the host component of a logical pathname or a string that has been defined as a
logical pathname host name by setf of logical-pathname-translations.

Examples:

;;;A very simple example of setting up a logical pathname host. No
:;:translations are necessary to get around file system restrictions, so
;;;a11 that is necessary is to specify the root of the physical directory
;;;tree that contains the logical file system.
;;;The namestring syntax on the right-hand side is implementation-dependent.
(setf (logical-pathname-translations “foe”)

‘((‘I**-* * *” t . . “MY-LISPR: >library>foo>+*>“) 1)

Filenames 19-19

ANSI X3.226-1994 Programming Language--Common Lisp

;;;Sample use of that logical pathname. The return value
;;;is implementation-dependent.
(translate-logical-pathname "foo:bar;baz;m~.quux.3")

+ #P"HY-LISPH:>library>foo>bar>bax>mum.quux.3"

;;;A more complex example, dividing the files among two file servers
;;;and several different directories. This Unix doesn't support
;;
::
::
;;
(8

;:YILD-INFERIORS in the directory, so each directory level must
;be translated individually. lio file name or type translations
;are required except for BAIL to .HDX.
;The namestring syntax on the right-hand side is implementation-dependent.
etf (logical-pathname-translations "prog")

'(("RELEASED;*.*.*" WY-UNIX:/sys/binhy-prog/")
("RELEASED-*-* * *'I I , - * WY-UNIX:/sys/bin/my-prog/*/")
("EXPERIMENTAL* * 8" . . "HY-UNIX:/usr/Joe/development/prog/")
("EXPERIHKNTAL;DOCUMENTATION:*.*.*"

w-VAX:SYSSDISK:CJOE.DOC~~~)
("EXPERIMENTAL;*;* * *" . . 'WY-UNIX:/usr/Joe/development/prog/*/")
("pLAIL***-* HAIL" , ,. "HY-VAX:SYS$DISK:[JOE.HAIL.PROG...]*.HElX",))

;;;Sample use of that logical pathname. The return value
;;;is implementation-dependent.
(translate-logical-pathname "prog:mail;save;ideas.mail.3")

- #P"HY-VAX:SYS$DISK:[JOE.MIL.P?lOG.SAVE]IDKAS.HDX.3"

;;Example translations for a program that uses three files main.lisp,
;;auxiliary.lisp, and documentation.lisp. These translations might be
;;supplied by a software supplier as examples.

;;;For Unix uith long file names
(setf (logical-pathname-translations "prog")

'((*CODE;*.*.*" "/lib/prog/")))

;:;Sample use of that logical pathname. The return value
;;;is implementation-dependent.
(translate-logical-pathname "prog:code:documentation.lisp")

-+ ItP"/lib/prog/documentation.lisp"

;:;For Unix vith 14-character file names, using .lisp as the type
(setf (logical-pathname-translations "prog")

'(("CODE;DOCUMWTATION.*.*" "/lib/prog/doc~.*")
(*CODE;*.*.*'* "/lib/prog/")))

;;;Sample use of that logical pathname. The return value
;;;is implementation-dependent.
(translate-logical-pathname "prog:code;documentation.lisp")

-+ #P"/lib/prog/docum.lisp"

19-20 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

;:;For Unix with 14-character file names, using .l as the type
;;;The second translation shortens the compiled file type to .b
(setf (logical-pathname-translations "prog")

‘(("**;*.LISP.*" ,(logical-pathname "PROG:**;*.L.*"))
(,(compile-file-pathname (logical-pathname "PROG:**;*.LISP.*"))

,(logical-pathname "PROG:**;*.B.*"))
("CODE;DOWHENTATION.*.*" "/lib/prog/documentatio.*")
(“CODE-* + a" * * . "/lib/prog/")))

;;;Sample use of that logical pathname. The return value
;;;is implementation-dependent.
(translate-logical-pathname "prog:code;documentation.lisp")

+ #P"/lib/prog/documentatio.l"

;;;For a Gray with 6 character names and no directories, types, or versions.
(setf (logical-pathname-translations "prog")

(let ((1 '(("HAIN~ "PGMN")
("AUXILIARY" "PGAUX")
(~*DOCUBENTATION~~ IIPGDOCII)))

(logpath (logical-pathname "prog:code;"))
(phypath (pathname "XXX")))

(append
;; Translations for source files
(mapcar #'(lambda (xl[)

(let ((log (first x)1
(phy (second x)1)

(list (make-pathname :name log
:type "LISP"
:version :vild
:defaults logpath)

(make-pathname :name phy
:defaults phypath))))

1)
;; Translations for compiled files
(mapcar *'(lambda (x1

(let* ((log (first x1)
(phy (second x))
(corn (compile-file-pathname

(make-pathname :name log
:type "LISP"
:version :vild
:defaults logpath))))

(setq phy (concatenate 'string phy "B"))
(list corn

(make-pathname :name phy
:defaults phypath))))

1))))

;;;Sample use of that logical pathname. The return value
;;;is implementation-dependent.
(translate-logical-pathname "prog:code;documentation.lisp")

+ #P"PGDOC"

Filenames 19-21

. ---

ANSI X3.226-1994 Programming Language-Common Lisp

Exceptional Situations:
If host is incorrectly supplied, an error of type type-error is signaled.

See Also:
logic&patbname, Section 19.1.2 (Pathnames as Filenames)

Notes:
Implementations can define additional functions that operate on logical pathname hosts, for
example to specify additional translation rules or options.

logical-pathname Function

Syntax:
logical-patbname pathspec + logical-pathname

Arguments and Values:
pathspec-a logical pathname, a logical pathname namestring, or a stream.

logical-pathname-a logical pathname.

Description:
logical-pathname converts pathspec to a logical pathname and returns the new logical pathname.
If pathspec is a logical pathname namestring, it should contain a host component and its following
colon. If pathspec is a stream, it should be one for which pathname returns a logical pathname.

If pathspec is a stream, the stream can be either open or closed. logical-pathname returns
the same logical pathname after a file is closed as it did when the file was open. It is an er-
ror if pathspec is a stream that is created with make-two-way-stream, make-echo-stream,
make-broadcast-stream, make-concatenated-stream, make-string-input-stream, or
make-string-output-stream.

Exceptional Situations:
Signals an error of type type-error if pathspec isn’t supplied correctly.

See Also:
logical-pathname, translate-logical-pathname, Section 19.3 (Logical Pathnames)

default-pathname-defaults Variable

Value Type:
a pathname object.

Initial Value:
An implementation-dependent pathname, typically in the working directory that was current when
Common Lisp was started up.

Description:
a pathname, used as the default whenever a function needs a default pathname and one is not
supplied.

19-22 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

;; This example illustrates a possible usage for a hypothetical Lisp running on a
;; DEC TOPS-20 file system. Since pathname conventions vary between Lisp
;; implementations and host file system types, it is not possible to provide a
.* general-purpose, conforming example.
idefault-pathname-defaults* + tP"PS:<FRED>"
(merge-pathnames (make-pathname :name "CALENDAR"))

+ #P"PS:<FRRD>CALl?NDAR"
(let ((*default-pathname-defaults* (pathname "WARY>")))

(merge-pathnames (make-patbname :name "CALENDAR")))
- #P"<MARY>CALRNDAR"

Affected By:
The implementation.

namestring, file-namestring, directory-namestring,
host-namestring, enough-namestring Function

Syntax:
namestring pathname -+ mm&ring

Ale-namestring pathname --+ namestring

directory-namestring pathname -) namestring

host-namestring pathname - namestring

enough-namestring pathname &optional defaults + namestring

Arguments and Values:
pathname-a pathname designator.

defaults-a pathname designator. The default is the value of *default-pathname-defaults*.

namestring-a string or nil.

Description:
These functions convert pathnamc into a namestring. The name represented by pathname is
returned as a namestring in an implementation-dependent canonical form.

namestring returns the full form of pathname.

file-namestring returns just the name, type, and version components of pathname.

directory-name&ring returns the directory name portion.

host-namestring returns the host name.

enough-namestring returns an abbreviated namestring that is just sufficient to identify the file
named by pathname when considered relative to the defaults. It is required that

(merge-pathnames (enough-namestring pathname defaults) defaults)
E (merge-pathnames (parse-namestring patbnarne nil defaults) defaults)

Filenames 19-23

ANSI X3.226-1994 Programming Language-Common Lisp

in all cases, and the result of enough-name&ring is the shortest reasonable string that will
satisfy this criterion.

It is not necessarily possible to construct a valid namestring by concatenating some of the three
shorter namestrings in some order.

Examples:

(nsmestring "getty")
+ "getty"

(setq q (make-pathuame :host "kathy"
:directory

(pathname-directory *default-pathname-defaults*)
:name "getty"))

+ XS(PATIiNAHE :HOST "kathy" :DEVICE NIL :DIREXTORY directory-name
:NAHE "getty" :TYPE NIL :vERSION NIL)

(file-namestring q) -+ "getty"
(directory-namestring q) --* directory-name
(host-namestring q) -+ "kathy"

;;;Using Unix syntax and the vildcard conventions used by the
;;;particular version of Unix on which this example vas created:
(namestring

(translate-patbname "/usr/dmr/hacks/frob.l"
"/usr/d*/hacks/*.l"
"/usr/d*/backup/hacks/backup-*.*"))

-+ "/usr/dar/backup/hacks/backup-frob.l"
(namestring

(translate-pathniuae "/usr/dmr/hacks/frob.l"
"/usr/d*/hacks/fr*.l"
"/usr/d*/backup/hacks/backup-*.*"))

* "/usr/dmr/backup/hacks/backup-0b.l"

:;;This is similar to the above example but uses two different hosts,
;;;U: which is a Unix and V: which is a VHS. Note the translation
;;;of file type and alphabetic case conventiona.
(namestring

(translate-pathname "U:/usr/dur/hacks/frob.l"
"U:/usr/d*/hacks/*.l"
"V:SYSSDISK: CD*.BACKUP.HACKSIBACKUP-*.*“))

+ w:srst~IsK: CD~.BAC~UP.DACKSIDAC~UP-F~oD.LSP"
(namestring

(translate-pathuame "U:/usr/dmr/hacks/frob.l"
"U:/usr/d*/hacks/fr*.l"
v:srsmsK: [D:D*.BACKUP.~UCK~IBA~KUP-*.*~~))

-+ vf : srsmm: CDm. BACW. HAcKsI B~cRup-oB. LsPl*

See Also:
truename, merge-pathnames, pathname, logical-pathname, Section 20.1 (File System Con-
cepts), Section 19.1.2 (Pathnames as Filenames)

19-24 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

parse-namestring Function

Syntax:
parse-namestring thing toptiond host default-pathname &key start end junk-allowed

+ pathname. position

Arguments and Values:
thing-a string, a pathname, or a stream associated with a file.

host-a valid pathname host, a logical host, or nil.

default-pathname-a pathname designator. The default is the value of *default-pathname-defaults*

start, end-bounding index designators of thing. The defaults for start and end are Q and nil,
respectively.

junk-allowed-a generalized boolean. The default is false.

pathname-a pathname, or nil.

position-a bounding index designator for thing.

Description:
Converts thing into a pathname.

The host supplies a host namk with respect to which the parsing occurs.

If thing is a stream associated with a file, processing proceeds as if the pathname used to open
that file had been supplied instead.

If thing is a pathname, the host and the host component of thing are compared. If they match,
two values are immediately returned: thing and start; otherwise (if they do not match), an error is
signaled.

Otherwise (if thing is a string), parse-namestring parses the name of a file within the substring
of thing bounded by start and end.

If thing is a string then the substring of thing bounded by start and end is parsed into a pathname
as follows:

l If host is a logical host then thing is parsed as a logical pathname namestring on the host.

l If host is nil and thing is a syntactically valid logical pathname namestring containing an
explicit host, then it is parsed as a logical pathname namestring.

l If host is nil, default-pathname is a logical pathname, and thing is a syntactically valid
logical pathname namestring without an explicit host, then it is parsed as a logical
pathname namestring on the host that is the host component of default-pathname.

l Otherwise, the parsing of thing is implementation-defined.

In the first of these cases, the host portion of the logical pathname namestring and its following
colon are optional.

If the host portion of the namestring and host are both present and do not match, an error is
signaled.

Filenames 19-25

ANSI X3.226-1994 Programming Language-Common Lisp

If junk-allowed is true, then the primary value is the pathname parsed or, if no syntactically
correct pathname was seen, nil. If junk-allowed is false, then the entire substring is scanned, and
the primary value is the pathname parsed.

In either case, the secondary value is the index into thing of the delimiter that terminated the
parse, or the index beyond the substring if the parse terminated at the end of the substring (as
will always be the case if junk-allowed is false).

Parsing a null string always succeeds, producing a pathname with all components (except the
host) equal to nil.

If thing contains an explicit host name and no explicit device name, then it is implementation-
defined whether parse-namestring will supply the standard default device for that host as the
device component of the resulting pathname.

Examples:

(setq q (parse-namestring “test”))
-* ItS(PATHNAME :IiOST NIL :DEVICE NIL :DIRECTORY NIL :Nm “test”

:TYPE NIL :VERSION NIL>
(pathnamep q) + true
(parse-namestring “test”)

- #S(PATHNAME :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAHE “test”
:TYPE NIL :VERSION NIL), 4

(setq s (open zzz)) -) *<Input File Stream...>
(parse-namestring 9)

- tS(PATHNAHE :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAMR zzz
:TYPE NIL :VERSION NIL) , 0

(parse-namestring “test” nil nil :start 2 :end 4 1
4 #S(PATHNAHE . ..). 15
(parse-namestring "f 00. lisp”)

-* #P"f 00. lisp”

Exceptional Situations:
If junk-allowed is false, an error of type parse-error is signaled if thing does not consist entirely of
the representation of a pathname, possibly surrounded on either side by whitespacel characters if
that is appropriate to the cultural conventions of the implementation.

If host is supplied and not nil, and thing contains a manifest host name, an error of type error is
signaled if the hosts do not match.

If thing is a logical pathname namestring and if the host portion of the namestring and host are
both present and do not match, an error of type error is signaled.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.2.2.2.3 (:UNSPE-
CIFIC as a Component Value), Section 19.1.2 (Pathnames as Filenames)

wild-pat hname-p Function

Syntax:
wild-pathname-p pathnamc &optional field-key w generalized-boolean

19-26 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
pathname-a pathname designator.

Field-key-one of :host, :device :directory, :name, :type, :version, or nil.

generalized-boolean-a generalized boolean.

Description:
wild-pathname-p tests pathname for the presence of wildcard components.

If pathname is a pathname (as returned by pathname) it represents the name used to open the
file. This may be, but is not required to be, the actual name of the file.

If field-key is not supplied or nil, wild-pathname-p returns true if pathname has any wildcard
components, nil if pathnamc has none. If field-key is non-nil, wild-pathname-p returns true if the
indicated component of pathname is a wildcard, nil if the component is not a wildcard.

Examples:

; ; ;Tbe follouing examples are not portable. They are vritten to run
; ; ;vith particular file systems and particular vildcard conventions.
;;;Other implementations sill behave differently. These examples are
;;;intended to be illustrative, not to be prescriptive.

(wild-patbname-p (make-patbname :narae :uild)) + true
(wild-patbname-p (make-patbname :name :uild) :name) + true
(vild-patbname-p (make-patbnane :name :vild) :type) + false
(wild-patbname-p (patbname “s : >f oo>**>“) > 4 true ; Lispm
(vild-patbname-p (pathname :name “F*O”)) + true ;Host places

Exceptional Situations:
If pathname is not a pathname, a string, or a stream associated with a file an error of type
type-error is signaled.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

Notes:
Not all implementations support wildcards in all fields. See Section 19.2.2.2.2 (:WILD as a
Component Value) and Section 19.2.2.3 (Restrictions on Wildcard Pathnames).

pat hname-mat ch-p Function

Syntax:
pathname-match-p pathname wildcard + generalized-boolean

Arguments and Values:
pathname-a pathname designator.

wildcard-a designator for a wild pathname.

generalized-boolean-a generalized boolean.

Filenames 19-27

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
pathname-match-p returns true if pathname matches wildcard, otherwise nil. The matching
rules are implementation-defined but should be consistent with directory. Missing components of
wildcard default to :vild.

It is valid for pathname to be a wild pathname; a wildcard field in pathnamc only matches a
wildcard field in wildcard (i.e., pathname-match-p is not commutative). It is valid for wildcard to
be a non-wild pathname.

Exceptional Situations:
If pathnamc or wildcard is not a pathname, string, or stream associated with a file an error of type
type-error is signaled.

See Also:
directory, pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2
(Pathnames as Filenames)

translate-logical-pat hname Function

Syntax:
translate-logic+pathname pathname tkey + physical-pathname

Arguments and Values:
pathname-a pathname designator, or a logical pathname namestring.

physical-pathname-a physical pathname.

Descriptiou:
Translates pathname to a physical pathname, which it returns.

If pathname is a stream, the stream can be either open or closed. translate-logical-pathname
returns the same physical pathname after a file is closed as it did when the file was open. It is an
error if pathname is a stream that is created with make-two-way-stream, make-echo-stream,
make-broadcast-stream, make-concatenated-stream, make-string-input-stream,
make-string-output-stream.

If pathname is a logical pathname namestring, the host portion of the logical pathname namestring
and its following colon are required.

Pathname is first coerced to a pathname. If the coerced palhname is a physical pathname, it is re-
turned. If the coerced pafhname is a logical pathname, the first matching translation (according to
pathname-match-p) of the logical pathname host is applied, as if by calling translate-pathname.
If the result is a logical pathname, this process is repeated. When the result is finally a physical
pathname, it is returned. If no translation matches, an error is signaled.

translate-logical-pathname might perform additional translations, typically to provide transla-
tion of file types to local naming conventions, to accomodate physical file systems with limited
length names, or to deal with special character requirements such as translating hyphens to un-
derscores or uppercase letters to lowercase. Any such additional translations are implementation-
defined. Some implementations do no additional translations.

There are no specified keyword arguments for translate-logical-pathname, but implementations
are permitted to extend it by adding keyword arguments.

19-28 Filenames

Programming Language--Common Lisp ANSI X3.226- 1994

Examples:
See logical-pathname-translations.

Exceptional Situations:
If pathname is incorrectly supplied, an error of type type-error is signaled.

If no translation matches, an error of type Ale-error is signaled.

See Also:
logical-pathname, logical-pathname-translations, logical-pathname, Section 20.1 (File System
Concepts), Section 19.1.2 (Pathnames as Filenames)

translate-pathname Function

Syntax:
translate-patbname source from-wildcard to-wildcard &key

-+ translated-pathname

Arguments and Values:
source-a pathname designator.

from-wildcard-a pathname designator.

to-wildcard-a pathname designator.

translated-pathname-a pathname.

Description:
translate-pathname translates source (that matches from-wildcard) into a corresponding path-
name that matches to-wildcard, and returns the corresponding pathname.

The resulting pathname is to-wildcard with each wildcard or missing field replaced by a portion
of source. A “wildcard field” is a pathname component with a value of :oild, a :uild element of
a list-valued directory component, or an implementation-defined portion of a component, such
as the 11*11 in the complex wildcard string “foo*bar” that some implementations support. An
implementation that adds other wildcard features, such as regular expressions, must define how
translate-pathname extends to those features. A “missing field” is a pathname component with a
value of nil.

The portion of source that is copied into the resulting pathname is implementation-defined.
Typically it is determined by the user interface conventions of the file systems involved. Usually it
is the portion of source that matches a wildcard field of from-wildcard that is in the same position
as the wildcard or missing field of to-wildcard. If there is no wildcard field in from-wildcard at that
position, then usually it is the entire corresponding pathname component of source, or in the case
of a list-valued directory component, the entire corresponding list element.

During the copying of a portion of source into the resulting pathname, additional implementation-
defined translations of case or file naming conventions might occur, especially when from-wildcard
and to-wildcard are for different hosts.

It is valid for source to be a wild pathname; in general this will produce a wild result. It is valid
for from-wildcard and/or to-wildcard to be non-wild pathnames.

There are no specified keyword arguments for translate-pathname, but implementations are
permitted to extend it by adding keyword arguments.

Filenames 19-29

ANSI X3.226-1994 Programming Language-Common Lisp

translate-pathname maps customary case in source into customary case in the output pathname.

Examples:

;; The results of the folloving five forms are all implementation-dependent.
;; The second item in particular is shown vith multiple results just to
;; emphasize one of many particular variation5 vhich commonly occurs.
(pathname-name (translate-pathname "foobar" "foe*" "ebax")) - "barbar"
(pathname-name (translate-pathname "foobar" "fooe" "+"))

-+ "foobar"
4 "bFV"

(pathname-name (translate-pathname "foobar" 9" "foe+")) + "foofoobar"
(pathname-name (translate-pathname "bar" ,,*,I "foe*")) + "foobar"
(pathname-name (translate-pathname "foobar" "fooe" "baxe")) + "baxbar"

(defun translate-logical-pathname-1 (pathname rules)
(let ((rule (assoc pathname rules :test *'pathname-match-p)))

(unless rule (error "No translation rule for -A" pathname))
(translate-pathname pathname (first rule) (second rule))))

(translate-logical-pathname-l "FOO:CODE;BASIC.LISP"
'(("FOO:DOCIJBENTATION;" 'W-UNIX:/doc/foo/")

("FOO.CODE;" . "HT4JNIX:/lib/foo/")
("FOO:PATCBES**-" , 9 "MT-UNIX:/lib/foo/patch/*/")))

4 ItP"MT-lJNIX:/lib/foo/basic.l"

;;;This example assumes one particular set of vildcard convention5
;;;Not all file systems vi11 run this example exactly as written

(defun rename-files (from to)
(dolist (file (directory from))

(rename-file file (translate-pathname file from to))))
(rename-files "/usr/me/*.lisp" "/dev/her/*.l")

;Renames /usr/me/init.lisp to /dev/her/init.l
(rename-files "/usr/me/pcl*/*" "/sys/pcl/*/")

;Renames /usr/me/pcl-S-may/lov.lisp to /sye/pcl/pcl-5-may/lov.lisp
;In some file systems the result might be /sys/pcl/5-may/lou.lisp

(rename-files "/usr/me/pcl*/+" "/sys/library/+/")
;Renames /usr/me/pcl-5-may/lov.liep to /sys/library/pcl-5-may/lov.lisp
;In some file systems the result might be /sys/library/5-may/lov.lisp

(rename-files "/usr/me/foo.bar" "/usr/me2/")
;Renames /usr/me/foo.bar to /usr/ae2/foo.bar

(rename-files "/usr/joe/*-recipes.text" 'I /uar/jim/cookbook/joe's-*-rec.text")
:Renames /usr/joe/lamb-recipes.text to /usr/jim/cookbook/joe's-lamb-rec.text
:Renames /usr/joe/pork-recipes.text to /usr/jim/cookbook/joe'e-pork-rec.text
;Aenames /usr/joe/veg-recipes.text to /usr/jim/cookbook/joe's-veg-rec.text

Exceptional Situations:
If any of source, from-wildcard, or to-wildcard is not a pathname, a string, or a stream associated
with a file an error of type type-error is signaled.

(pathname-match-p source from-wildcard) must be true or an error of type error is signaled.

See Also:
namestring, pathname-host, pathname, logical-pathname, Section 20.1 (File System Concepts),
Section 19.1.2 (Pathnames as Filenames)

19-30 Filenames

Programming Language-Common Lisp ANSI X3.226-1994

Notes:
The exact behavior of translate-pathname cannot be dictated by the Common Lisp language and
must be allowed to vary, depending on the user interface conventions of the file systems involved.

The following is an implementation guideline. One file system performs this operation by ex-
amining each piece of the three pathnames in turn, where a piece is a pathname component or
a list element of a structured component such as a hierarchical directory. Hierarchical directory
elements in from-wildcard and to-wildcard are matched by whether they are wildcards, not by
depth in the directory hierarchy. If the piece in to-wildcard is present and not wild, it is copied
into the result. If the piece in to-wildcard is :vild or nil, the piece in source is copied into the
result. Otherwise, the piece in to-wildcard might be a complex wildcard such as “foo*bar” and the
piece in from-wildcard should be wild; the portion of the piece in source that matches the wildcard
portion of the piece in from-wildcard replaces the wildcard portion of the piece in to-wildcard and
the value produced is used in the result.

merge-pat hnames Function

syntax:
merge-pathnames pathname &optional default-pathname default-version

+ merged-pathname

Arguments and Values:
pathname-a pathname designator.

default-pathname-a pathname designator. The default is the valve of *default-pathname-defaults*

default-version-a valid pathname version. The default is :neveet.

merged-pathname-a pathname.

Description:
Constructs a pathname from pathname by filling in any unsupplied components with the corre-
sponding values from default-pathname and default-version.

Defaulting of pathname components is done by filling in components taken from another path-
name. This is especially useful for cases such as a program that has an input file and an output
file. Unspecified components of the output pathname will come from the input pathname, except
that the type should not default to the type of the input pathname but rather to the appropriate
default type for output from the program; for example, see the function compile-fllepathname.

If no version is supplied, default-version is used. If default-version is nil, the version component will
remain unchanged.

If pathname explicitly specifies a host and not a device, and if the host component of default-
pathname matches the host component of pathname, then the device is taken from the default-
pathname; otherwise the device will be the default file device for that host. If pathname does
not specify a host, device, directory, name, or type, each such component is copied from default-
pathname. If pathname does not specify a name, then the version, if not provided, will come from
default-pathname, just like the other components. If pathname does specify a name, then the
version is not affected by default-pathname. If this process leaves the version missing, the defauk-
version is used. If the host’s file name syntax provides a way to input a version without a name
or type, the user can let the name and type default but supply a version different from the one in
default-pathname.

Filenames 19-31

ANSI X3.226-1994 Programming Language-Common Lisp

If pathname is a stream, pathnamc effectively becomes (pathname pathname). merge-pathnames
can be used on either an open or a closed stream.

If pathnamc is a pathname it represents the name used to open the file. This may be, but is not
required to be, the actual name of the file.

merge-pathnames recognizes a logical pathname namestring when default-pathnamc is a logical
pathname, or when the namestring begins with the name of a defined logical host followed by a
colon. In the first of these two cases, the host portion of the logical pathname namestring and its
following colon are optional.

merge-pathnames returns a logical pathname if and only if its first argument is a logical path-
name, or its first argument is a logical pathname namestring with an explicit host, or its first
argument does not specify a host and the default-pathname is a logical pathname.

Pathname merging treats a relative directory specially. If (pathname-directory pathname) is a
list whose car is :relative, and (pathname-directory default-pathname) is a list, then the merged
directory is the value of

(append (pathname-directory default-pathname)
(cat- ;remove :relative from the front

(pathname-directory pathname) 1)

except that if the resulting list contains a string or :uild immediately followed by
:back, both of them are removed. This removal of redundant :back keywords is repeated
as many times as possible. If (pathname-directory default-pathname) is not a list or
(pathname-directory pathname) is not a list whose car is :relative, the merged directory is
(or (pathname-directory pathname) (pathname-directory default-pathname) 1

merge-pathnames maps customary case in pathname into customary case in the output path-
name.

Examples:

(merge-pathnames “CHUC: : FORMAT"
"CMJC::PS:<LISPIO>.FASL")

- XP"CHUC::PS:<LISPIO>FORHAT.FASL.O"

See Also:
default-pathname-defaults, pathname, logical-pathname, Section 20.1 (File System Con-
cepts), Section 19.1.2 (Pathnames as Filenames)

Notes:
The net effect is that if just a name is supplied, the host, device, directory, and type will come
from default-pathname, but the version will come from default-version. If nothing or just a direc-
tory is supplied, the name, type, and version will come from default-pathname together.

19-32 Filenames

ANSI X3.226-1994

Programming Language-Common Lisp

20. Files

___ . -__-- . . - ._-- ---~ _ , - - .k. _ --

A N S I X 3 .2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e - C o m m o n L isp

ii Fi les

Programming Languag~Common Lisp ANSI X3.226-1994

20.1 File System Concepts
This section describes the Common Lisp interface to file systems. The model used by this in-
terface assumes that files are named by filenames, that a filename can be represented by a
pathname object, and that given a pathname a stream can be constructed that connects to a file
whose Flename it represents.

For information about opening and closing files, and manipulating their contents, see Chapter 21
(Streams).

Figure 20-l lists some operators that are applicable to files and directories.

compile-file Ale-length
delete-Ale Ale-position
directory file-write-date
f&-author load

Figure 20-l. File and Directory Operations

open
probe-file
rename-file
with-open-file

20.1.1 Coercion of Streams to Pathnames
A stream associated with a file is either a file stream or a synonym stream whose target is a
stream associated with a file. Such streams can be used as pathname designators.

Normally, when a stream associated with a file is used as a pathname designator, it denotes the
pathname used to open the file; this may be, but is not required to be, the actual name of the
file.

Some functions, such as truename and delete-file, coerce streams to pathnames in a different way
that involves referring to the actual file that is open, which might or might not be the file whose
name was opened originally. Such special situations are always notated specifically and are not
the default.

20.1.2 File Operations on Open and Closed Streams
Many functions that perform file operations accept either open or closed streams as arguments;
see Section 21.1.3 (Stream Arguments to Standardized Functions).

Of these, the functions in Figure 20-2 treat open and closed streams differently.

I delete-Ale file-author probe-file
directory Ale-write-date truename I

Figure 20-2. File Functions that Treat Open and Closed Streams Differently

Since treatment of open streams by the file system may vary considerably between implementa-
tions, however, a closed stream might be the most reliable kind of argument for some of these
functions-in particular, those in Figure 20-3. For example, in some file systems, open files are
written under temporary names and not renamed until closed and/or are held invisible until
closed. In general, any code that is intended to be portable should use such functions carefully.

I directory probe-file truename

Figure 20-2. File Functions where Closed Streams Might Work Best

Files 20-l

ANSI X3.226-1994 Programming Language-Common Lisp

20.1.3 Truenames
Many file systems permit more than one filename to designate a particular file.

Even where multiple names are possible, most file systems have a convention for generating a
canonical filename in such situations. Such a canonical filename (or the pathname representing
such a filename) is called a truename.

The truename of a file may differ from other Flenames for the file because of symbolic links,
version numbers, logical device translations in the file system, logical pathname translations
within Common Lisp, or other artifacts of the file system.

The truename for a file is often, but not necessarily, unique for each file. For instance, a Unix file
with multiple hard links could have several truenames.

20.1.3.1 Examples of Truenames
For example, a DEC TOPS-20 system with files PS: <JOE>FOO.TXT. 1 and PS:<JOE>FOO.TXT.:!
might permit the second file to be referred to as PS:<JOE>FOO.TXT.O, since the “.O" notation
denotes “newest” version of several files. In the same file system, a “logical device” “JOE:"
might be taken to refer to PS : <JOE>" and so the names JOE: FOO . TXT. 2 or JOE: FOO . TXT. 0 might
refer to PS:CJOE>FOO.TXT.~. In all of these cases, the truename of the file would probably be
PS:<JOE>FOO.TXT.2.

If a file is a symbolic link to another fiZe (in a file system permitting such a thing), it is conven-
tional for the truename to be the canonical name of the file after any symbolic links have been
followed; that is, it is the canonical name of the file whose contents would become available if an
input stream to that file were opened.

In the case of a file still being created (that is, of an output stream open to such a file), the exact
truename of the file might not be known until the stream is closed. In this case, the junction
truename might return different values for such a stream before and after it was closed. In fact,
before it is closed, the name returned might not even be a valid name in the file system-for
example, while a file is being written, it might have version :newest and might only take on
a specific numeric value later when the file is closed even in a fire system where all files have
numeric versions.

20-2 Files

Programming Language-Common Lisp ANSI X3.226-1994

directory Function

Syntax:
directory pathspec kkey + pathnama

Arguments and Values:
pathspec-a pathname designator, which may contain wild components.

pathnames-a list of physical pathnames.

Description:
Determines which, if any, files that are present in the file system have names matching pathspcc,
and returns a fresh list of pathnames corresponding to the truenames of those files.

An implementation may be extended to accept implementation-defined keyword arguments to
directory.

Affected By:
The host computer’s file system.

Exceptional Situations:
If the attempt to obtain a directory listing is not successful, an error of hype Ale-error is signaled.

See Also: .
pathname, logical-pathname, ensure-directories-exist, Section 20.1 (File System Concepts),
Section 21.1.1.1.2 (Open and Closed Streams), Section 19.1.2 (Pathnames as Filenames)

Notes:
If the pathspec is not wild, the resulting list will contain either zero or one elements.

Common Lisp specifies “kkey” in the argument list to directory even though no standardized
keyword arguments to directory are defined. “:allou-other-keys t” may be used in conforming
programs in order to quietly ignore any additional keywords which are passed by the program but
not supported by the implementation.

probe-file Function

Syntax:
probe-file pathspcc + truename

Arguments and Values:
pathspec-a pathname designator.

truename-a physical pathname or nil.

Description:
probe-file tests whether a file exists.

Files 20-3

_ ___---- _ _ ^_ .~ L- _._.. _ - _

ANSI X3.226-1994 Programming Language--Common Lisp

probe-file returns false if there is no file named pathspcc, and otherwise returns the truename of
pathspec.

If the pathspcc designator is an open stream, then probe-file produces the truename of its
associated file. If pathspec is a stream, whether open or closed, it is coerced to a pathname as if
by the junction pathname.

Affected By:
The host computer’s file system.

Exceptional Situations:
An error of type Ale-error is signaled if pathspcc is wild.

An error of type file-error is signaled if the $1, system cannot perform the requested operation.

See Also:
truename, open, ensure-directories-exist, pathname, logical-pathname, Section 20.1 (File
System Concepts), Section 21.1.1.1.2 (Open and Closed Streams), Section 19.1.2 (Pathnames es
Filenames)

ensure-directories-exist

syntax:
ensure-directories-exist pathspec &key verbose + pathspcc. created

Arguments and Values:
pathspec-a pathname designator.

verbose-a generalized boolean.

created-a generalized boolean.

Description:
Tests whether the directories containing the specified file actually exist, and attempts to create
them if they do not.

If the containing directories do not exist and if verbose is true, then the implementation is
permitted (but not required) to perform output to standard output saying what directories were
created. If the containing directories exist, or if verbose is false, this function performs no output.

The primary value is the given pathspec so that this operation can be straightforwardly composed
with other file manipulation expressions. The secondary value, created, is true if any directories
were created.

Affected By:
The host computer’s file system.

Exceptional Situations:
An error of type file-error is signaled if the host, device, or directory part of pathspec is wild.

If the directory creation attempt is not successful, an error of type Ale-error is signaled; if this
occurs, it might be the case that none, some, or all of the requested creations have actually
occurred within the file system.

204 Files

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
probe-file, open, Section 19.1.2 (Pathnames as Filenames)

truename

Syntax:
truename fdespec + truename

Arguments and Values:
fikspec-a pathname designator.

truename-a physical pathname.

Description:
truename tries to find the file indicated by fikspec and returns its truename. If the filespec
designator is an open stream, its associated file is used. If filespec is a stream, truename can be
used whether the stream is open or closed. It is permissible for truename to return more specific
information after the stream is closed than when the stream was open. If filespec is a pathname
it represents the name used to open the file. This may be, but is not required to be, the actual
name of the file.

Examples:

;; An example involving version numbers. Note that the precise nature of
;; the truename is implementation-dependent while the file is still open.

(with-open-file (stream ">vistor>test.text.nevest")
(values (pathname stream)

(truename stream)))
- #P"S:>vistor>test.text.nevest". #PYi:>vistor>test.text.l"
2 tP"S:>vistor>test.text.nevest", #P"S:>vistor>test.text.nepest"
Z #P"S:>vistor>test.text.nevest", #P"S:>vistor>_temp-.-temp-.l"

;; In this case, the file is closed vhen the truename is tried, so the
;; truename information is reliable.

(vith-open-file (stream ">vistor>test.text.nevest")
(close stream)
(values (pathname stream)

(truename stream)))
- tP"S:>vistor>test.text.nevest", tP"S:>vistor>test.text.l"

;; An example involving TOP-20's implementation-dependent concept
;; of logical devices -- in this case, "DOC:" is shorthand for
;; "PS:<DOCUHENTATION>" . . .

(pith-open-file (stream 'WlUC::DOC:DUHPER.HLP")
(values (pathname stream)

(truename stream)))
+ #P"CHUC::DOC:DUMPER.HLP", #P"CHUC::PS:<DOCUHlZNTATION>DUMPER.HLP.13"

Exceptional Situations:
An error of type file-error is signaled if an appropriate file cannot be located within the file
system for the given filespec, or if the file system cannot perform the requested operation.

An error of type Ale-error is signaled if pathname is wild.

Files 20-5

ANSI x3.226-1994 Programming Language-Common Lisp

.
See Also:

pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

Notes:
truename may be used to account for any filename translations performed by the file system.

file-author Function

Syntax:
file-author pathspec -+ author

Arguments and Values:
pathspec-a pathname designator.

author-a string or nil.

Description:
Returns a string naming the author of the file specified by pathspec, or nil if the author’s name
cannot be determined.

Examples:

(Pith-open-file (stream ">relativity>general.text")
(file-author s))

-+ "albert"

Affected By:
The host computer’s file system.

Other users of the file named by pathspec.

Exceptional Situations:
An error of type Ale-error is signaled if pathspec is wild. _

An error of type Ale-error is signaled if the fire system cannot perform the requested operation.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

20-6 Files

Programming Language-Common Lisp ANSI X3.226-1994

file-write-date Function

Syntax:
Ale-write-date pathspec + date

Arguments and Values:
pathspec--a pathname designator.

date-a universal time or nil.

Description:
Returns a universal time representing the time at, which the file specified by pathspec was last
written (or created), or returns nil if such a time cannot be determined.

Examples:

(with-open-file (s “noel. text”
:direction :output :if-exists :error)

(format s “‘&Dear Santa, ‘2x1 was good this year. -
Please leave lots of toys.-2Y.Love. Sue’

-2Xattachments: milk, cookies-X”)
(truename s) 1

-+ IIPWJPID: /susan/noel. text”
(uith-open-f ile (s “noel. text”)

(file-vrite-date 8))
- 2902600800

Affected By:
The host computer’s file system.

Exceptional Situations:
An error of type file-error is signaled if pathspcc is wild.

An error of type file-error is signaled if the file system cannot perform the requested operation.

See Also:
Section 25.1.4.2 (Universal Time), Section 19.1.2 (Pathnames as Filenames)

rename-file

Syntax:
rename-file filespcc new-name -+ defaulted-new-name, old-truename, new-truename

Arguments and Values:
tilespec-a pathname designator.

new-name-a pathname designator other than a stream.

defaulted-new-name-a pathname

old-truename-a physical pathname.

Files 20-7

ANSI X3.226-1994 Programming LanguagpCommon Lisp

new-truename-a physical pathname.

Description:
rename-file modifies the file system in such a way that the file indicated by filespec is renamed to
defaulted-new-name.

It is an error to specify a filename containing a wild component, for fikspec to contain a nil
component where the file system does not permit a nil component, or for the result of defaulting
missing components of new-name from fiicspcc to contain a nil component where the file system
does not permit a nil component.

If new-name is a logical pathname, rename-file returns a logical pathname as its primary vaiue.

rename-file returns three values if successful. The primary value, defaulted-new-name, is the re-
sulting name which is composed of new-name with any missing components filled in by performing
a merge-pathnames operation using fikspec as the defaults. The secondary value, old-truename,
is the truename of the file before it was renamed. The tertiary value, new-truename, is the true-
name of the file after it was renamed.

If the fikspec designator is an open stream, then the stream itself and the file associated with it
are affected (if the fire system permits).

Examples:

;; An example involving logical pathnames.
(with-open-file (stream “sys:cheristry;lead.text”

:direction :output :if-exists :error)
(print “eureka” stream)
(values (pathname stream> (truename stresm)))

+ #P”SYS : CHEMISTRY; LEAD. TEXT. NEWEST”, #P”Q : >sys>chem>lead. text. 1”
(rename-file “sys:chemistry;lead.text” “gold.text”)

+ #P”SYS:CHEnISTRY;GOLD.TEXT.NEVEST”,
#P”Q : >sys>chem>lead. text. 1”.
#P”Q:>sys>chem>gold.text.l”

Exceptional Situations:
If the renaming operation is not successful, an error of type Ale-error is signaled.

An error of type file-error might be signaled if fikpec is wild.

See Also:
truename, pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2
(Pathnames as Filenames)

delete-file Function

Syntax:
delete-file filespec --) t

Arguments and Values:
filespec-a pathname designator.

Description:
Deletes the file specified by filespec.

20-8 Files

Programming Language-Common Lisp ANSI X3.226-1994

If the fhspec designator is an open stream, then filespec and the file associated with it are
affected (if the file system permits), in which case fikpec might be closed immediately, and
the deletion might be immediate or delayed until filespec is explicitly closed, depending on the
requirements of the file system.

It is implementation-dependent whether an attempt to delete a nonexistent file is considered to be
successful .

delete-file returns true if it succeeds, or signals an error of type file-error if it does not.

The consequences are undefined if fikspec has a wild component, or if fikspec has a nil compo
nent and the file system does not permit a nil component.

Examples:

(with-open-file (s “delete-me.text” :direction :output :if-exists :error>>
* NIL

(setq p (probe-file “delete-me.text”)) + SP”R:>fred>delete-me.text.1”
(delete-file p) -* T
(probe-file “delete-me. text”) + fake

(with-open-file (s “delete-me.text” :direction :output :if-exists :error)
(delete-file s))

--+T
(probe-file “delete-me. text”) * fake

Exceptional Situations:
If the deletion operation is not successful, an error of type file-error is signaled.

An error of type Ale-error might be signaled if filcspec is wild.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

file-error Condition Type

Class Precedence List:
Ale-error, error, serious-condition, condition, t

Description:
The type file-error consists of error conditions that occur during an attempt to open or close
a file, or during some low-level transactions with a file system. The “offending pathname” is
initialized by the :pathnae initialization argument to make-condition, and is accessed by the
function Ale-error-pathname.

See Also:
Ale-error-pathname, open, probe-file, directory, ensure-directories-exist

Files 20-9

ANSI X3.226-1994 Programming Language-Common Lisp

file-error-pat hname

Syntax:
Ale-error-pathname condition + pathspcc

Arguments and Values:
condition-a condition of type Ale-error.

pathspec-a pathname designator.

Description:
Returns the “offending pathname” of a condition of type Ale-error.

Exceptional Situations:

See Also:
Ale-error, Chapter 9 (Conditions)

Function

20-10 Files

ANSI X3.226-1994

Programming Language-Common Lisp

21. Streams

ANSI X3.226-1994 Programming Language--Common Lisp

ii Streams

Programming Language-Common Lisp ANSI X3.226-1994

21.1 Stream Concepts

21.1.1 Introduction to Streams
A stream is an object that can be used with an input or output function to identify an appropri-
ate source or sink of characters or bytes for that operation. A character stream is a source or
sink of characters. A binary stream is a source or sink of bytes.

Some operations may be performed on any kind of stream; Figure 21-1 provides a list of stan-
dardized operations that are potentially useful with any kind of stream.

close
input-stream-p
interactive-stream-p
OutDut-stream-r, -

stream-element-type
streamp
with-open-stream

Figure 21-1. Some General-Purpose Stream Operations

Other operations are only meaningful on certain stream types. For example, read-char is only
defined for character streams and read-byte is only defined for binary streams.

21.1.1.1 Abstract Classifications of Streams

21.1.1.1.1 Input, Output, and Bidirectional Streams

A stream, whether a character stream or a binary stream, can be an input stream (source of
data), an output stream (sink for data), both, or (e.g., when “:direction :probe” is given to
open) neither.

Figure 21-2 shows operators relating to input streams.

clear-input read-byte
listen read-char
peek-char read-char-no-hang
read read-delimited-list

Figure 21-2. Operators relating to Input Streams.

read-from-string
read-line
read-preserving-whitespace
unread-char

Figure 21-3 shows operators relating to output streams.

clear-output
finish-output
force-output
format
fresh-line
DDrint

prinl
prinl-to-string
print
print-to-string
print
terDri

write
write-byte
write-char
write-line
write-string
write-to-string

Figure 21-3. Operators relating to Output Streams.

A stream that is both an input stream and an output stream is called a bidirectional stream.
See the functions input-stream-p and output-stream-p.

Any of the operators listed in Figure 21-2 or Figure 21-3 can be used with bidirectional streams.
In addition, Figure 21-4 shows a list of operators that relate specificaly to bidirectional streams.

Streams 21-1

ANSI X3.226-1994 Programming Language-Common Lisp

I y-or-n-p yes-or-no-p

Figure 21-4. Operators relating to Bidirectional Streams.

1

21.1.1.1.2 Open and Closed Streams

Streams are either open or closed.

Except as explicitly specified otherwise, operations that create and return streams return open
streams.

The action of closing a stream marks the end of its use as a source or sink of data, permitting the
implementation. to reclaim its internal data structures, and to free any external resources which
might have been locked by the stream when-it was opened.

Except as explicitly specified otherwise, the consequences are undefined when a closed stream is
used where a stream is called for.

Coercion of streams to pathnames is permissible for closed streams; in some situations, such as
for a truename computation, the result might be different for an open stream and for that same
stream once it has been closed.

21.1.1.1.3 Interactive Streams

An interactive stream is one on which it makes sense to perform interactive querying.

The precise meaning of an interactive stream is implementation-defined, and may depend on the
underlying operating system. Some examples of the things that an implementation might choose
to use as identifying characteristics of an interactive stream include:

l The stream is connected to a person (or equivalent) in such a way that the program can
prompt for information and expect to receive different input depending on the prompt.

l The program is expected to prompt for input and support “normal input editing”.

l read-char might wait for the user to type something before returning instead of immedi-
ately returning a character or end-of-file.

The general intent of having some streams be classified as interactive streams is to allow them to
be distinguished from streams containing batch (or background or command-file) input. Output
to batch streams is typically discarded or saved for later viewing, so interactive queries to such
streams might not have the expected effect.

Terminal I/O might or might not be an interactive stream.

21.1.1.2 Abstract Classifications of Streams

21.1.1.2.1 File Streams

Some streams, called file streams, provide access to files. An object of class file-stream is used
to represent a file stream.

The basic operation for opening a file is open, which typically returns a file stream (see its
dictionary entry for details). The basic operation for closing a stream is close. The macro
with-open-file is useful to express the common idiom of opening a fire for the duration of a
given body of code, and assuring that the resulting stream is closed upon exit from that body.

21-2 Streams

Programming Language-Common Lisp ANSI X3.226-1994

21.1.1.3 Other Subclasses of Stream
The class stream has a number of subclasses defined by this specification. Figure 21-5 shows
some information about these subclasses.

Class
broadcast-stream

concatenated-stream

echo-stream

string-stream

synonym-stream

two-way-stream

Related Operators
make-broadcast-stream
broadcast-stream-streams
make-concatenated-stream
concatenated-stream-streams
make-echo-stream
echo-stream-input-stream
echo-stream-output-stream
make-string-input-stream
with-input-from-string
make-string-output-stream
with-output-to-string
get-output-stream-string
make-synonym-stream
synonym-stream-symbol
make-two-way-stream
two-way-stream-input-stream
two-way-stream-output-stream

Figure 21-5. Defined Names related to Specialized Streams

21.1.2 Stream Variables
Variables whose values must be streams are sometimes called stream variables.

Certain stream variables are defined by this specification to be the proper source of input or
output in various situations where no specific stream has been specified instead. A complete list
of such standardized stream variables appears in Figure 21-6. The consequences are undefined if
at any time the value of any of these variables is not an open stream.

Glossary Term
debug I/O
error output
query I/O
standard input
standard output
terminal I/O
trace output

Variable Name
debug-io
error-output
query-io
standard-input
standard-output
terminal-io
trace-output

Figure 21-6. Standardized Stream Variables

Note that, by convention, standardked stream variables have names ending in “-input*” if they
must be input streams, ending in “-output*” if they must be output streams, or ending in “-io*”
if they must be bidirectional streams.

User programs may assign or bind any standardized stream variable except *terminal-io*.

Streams 21-3

ANSI X3.226-1994 Programming Language-Common Lisp

21.1.3 Stream Arguments to Standardized Functions
The operators in Figure 21-7 accept stream arguments that might be either open or closed
streams.

broadcast-stream-streams Ale-author pathnamep
close file-namestring probe-file
compile-fle Ale-write-date renamedlie
compile-file-pathname host-namestring streamp
concatenated-stream-streams load synonym-stream-symbol
delete-file logical-pathname translate-logical-pathname
directory merge-pathnames translate-pathname
directory-name&ring namestring truename
dribble open two-way-stream-input-stream
echo-stream-input-stream open-stream-p two-way-stream-output-stream
echo-stream-ouput-stream parse-namestring wild-pathname-p
ed pathname with-open-file
enough-namestring pathname-match-p

Figure 21-7. Operators that accept either Open or Closed Streams

The operators in Figure 21-8 accept stream arguments that must be open streams.

clear-input output-stream-p read-char-no-hang
clear-output peek-char read-delimited-list
Ale-length pprint read-line
Ale-position pprint-fill read-preserving-whitespace
file-string-length pprint-indent stream-element-type
finish-output pprint-linear stream-external-format
force-output pprint-logical-block terpri
format pprint-newline unread-char
fresh-line pprint-tab with-open-stream
get-output-stream-string pprint-tabular write
input-stream-p prinl write-byte
interactive-stream-p print write-char
listen print write-line
make-broadcast-stream print-object write-string
make-concatenated-stream print-unreadable-object y-or-n-p
make-echo-stream read yes-or-no-p
make-synonym-stream read-byte
make-tw*way-stream read-char

Figure 21-8. Operators that accept Open Streams only

21.1.4 Restrictions on Composite Streams
The consequences are undefined if any component of a composite stream is closed before the
composite stream is closed.

The consequences are undefined if the synonym stream symbol is not bound to an open stream
from the time of the synonym stream’s creation until the time it is closed.

21-4 Streams

Programming Language-Common Lisp ANSI X3.226-1994

stream System Class

Class Precedence List:
stream, t

Description:
A stream is an object that can be used with an input or output function to identify an appropri-
ate source or sink of characters or bytes for that operation.

For more complete information, see Section 21.1 (Stream Concepts).

See Also:
Section 21.1 (Stream Concepts), Section 22.1.3.13 (Printing Other Objects), Chapter 22 (Printer),
Chapter 23 (Reader)

broadcast-stream System Class

Class Precedence List:
broadcast-stream, stream, t

Description:
A broadcast stream is an output stream which has associated with it a set of zero or more output
streams such that any output sent to the broadcast stream gets passed on as output to each of the
associated output streams. (If a broadcast stream has no component streams, then all output to
the broadcast stream is discarded.)

The set of operations that may be performed on a broadcast stream is the intersection of those for
its associated output streams.

Some output operations (e.g., fresh-line) return values based on the state of the stream at the
time of the operation. Since these values might differ for each of the component streams, it is
necessary to describe their return value specifically:

l stream-element-type returns the value from the last component stream, or t if there are
no component streams.

. fresh-line returns the value from the last component stream, or nil if there are no compo-
nent streams.

l The functions Ale-length, Ale-position, Ale-string-length, and stream-external-format
return the value from the last component stream; if there are no component
streams, Ale-length and Ale-position return 0, Ale-string-length returns 1, and
stream-external-format returns :def ault.

l The functions streamp and output-stream-p always return true for broadcast streams.

l The functions open-stream-p tests whether the broadcast stream is openz, not whether
its component streams are open.

Streams 21-5

.. -~ --------

ANSI X3.226-1994 Programming Language-Common Lisp

0 The functions input-stream-p and interactive-stream-p return an implemenlation-defined,
generalized boolean value.

l For the input operations clear-input listen, peek-char, read-byte, read-char-no-hang,
read-char, read-line, and unread-char, the consequences are undefined if the indicated
operation is performed. However, an im.plementation is permitted to define such a
behavior as an implemenla2ion-dependent extension.

For any output operations not having their return values explicitly specified above or elsewhere
in this document, it is defined that the values returned by such an operation are the values
resulting from performing the operation on the last of its componenl streams; the values resulting
from performing the operation on all preceding streams are discarded. If there are no component
streams, the value is implementa2ion-dependent.

See Also:
broadcast-stream-streams, make-broadcast-stream

concatenated-stream System Class

Class Precedence List:
concatenated-stream, stream, t

Description:
A concatenated stream is an input stream which is a composi2e stream of zero or more other
input streams, such that the sequence of data which can be read from the concatenated stream
is the same as the concatenation of the sequences of data which could be read from each of the
constituent streams.

Input from a concatenaied siream is t,aken from the first of the associated input streams until
it reaches end offilel; then that stream is discarded, and subsequent input is taken from the
next input stream, and so on. An end of file on the associated input streams is always managed
invisibly by the concatenated stream--the only time a client of a concatenated stream sees an end
of file is when an attempt is made to obtain data from the concatenated stream but it has no
remaining input streams from which to obtain such data.

See Also:
concatenated-stream-streams, make-concatenated-stream

echo-stream System Class

Class Precedence List:
echo-stream, stream, t

Description:
An echo stream is a bidirectional stream that gets its input from an associated input dream and
sends its output to an associated output stream.

All input taken from the input stream is echoed to the output stream. Whether the input is
echoed immediately after it is encountered, or after it has been read from the input stream is
implementataon-dependent.

21-6 Streams

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
echo-stream-input-stream, echo-stream-output-stream, make-echo-stream

file-stream System Class

Class Precedence List:
file-stream, stream, t

Description:
An object of type file-stream is a stream the direct source or sink of which is a file. Such a stream
is created explicitly by open and with-open-file, and implicitly by functions such as load that
process files.

See Also:
load, open, with-open-file

string-stream System Class

Class Precedence List:
string-stream, stream, t

Description:
A string stream is a stream which reads input from or writes output to an associated string.

The stream element type of a string stream is always a subtype of type character.

See Also:
make-string-input-stream, make-string-output-stream, with-input-from-string,
with-output-to-string

Streams 21-7

ANSI X3.226-1994 Programming Language-Common Lisp

synonym-stream System Class

Class Precedence List:
synonym-stream, stream, t

Description:
A stream that is an alias for another stream, which is the value of a dynamic variable whose
name is the synonym stream symbol of the synonym stream.

Any operations on a synonym stream will be performed on the stream that is then the value of
the dynamic variable named by the synonym stream symbol. If the value of the variable should
change, or if the variable should be bound, then the stream will operate on the new value of the
variable.

See Also:
make-synonym-stream, synonym-stream-symbol

two-way-stream System Class

Class Precedence List:
two-way-stream, stream, t

Description:
A bidirectional composite stream that receives its input from an associated input stream and
sends its output to an associated output stream.

See Also:
make-two-way-stream, two-way-stream-input-stream, two-way-stream-output-stream

input-stream-p, output-stream-p

Syntax:
input-stream-p stream + generalized-boolean

output-stream-p stream + generalized-boolean

Arguments and Values:
stream-a stream.

generalized-boolean-a generalized boolean.

Description:
input-stream-p returns true if stream is an input stream; otherwise, returns false.

output-stream-p returns true if stream is an output stream; otherwise, returns false.

21-8 Streams

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(input-stream-p *standard-input*) - true
(input-stream-p *terminal-io*) + true
(input-stream-p (make-string-output-stream)) - false

(output-stream-p *standard-output*) + true
(output-stream-p *terminal-io*) + true
(output-stream-p (make-string-input-stream "jr")) * false

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

interactive-stream-p Function

Syntax:
interactive-stream-p stream + generalized-boolean

Arguments and Values:
stream-a stream.

generalized-boolean-a generalized boolean.

Description:
Returns true if stream is an interactive stream; otherwise, returns false.

Examples:

(when (> measured limit)
(let ((error (round (* (- measured limit) 100)

limit)))
(unless (if (interactive-stream-p *query-io*)

(yes-or-no-p "The frammis is out of tolerance by -D%.'C
Is it safe to proceed? ' error)

(< error 15)) :15X is acceptable
(error "The frammis is out of tolerance by 'OX." error))))

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

See Also:
Section 2 1. I (Stream Concepts)

Streams 21-9

ANSI X3.226-1994 Programming Language-Common Lisp

open-stream-p Function

Syntax:
open-stream-p stream -) generalized-boolean

Arguments and Values:
stream-a stream.

generalized-boolean-a generalized boolean.

Description:
Returns true if stream is an open stream; otherwise, returns false.

Streams are open until they have been explicitly closed with close, or until they are implicitly
closed due to exit from a with-output-to-string, with-open-file, with-input-from-string, or
with-open-stream form.

Examples:

(open-stream-p *standard-input*) + true

Affected By:
close.

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

stream-element-type Function

Syntax:
stream-element-type stream -+ typespec

Arguments and Values:
stream-a stream.

typespec-a type specifier.

Description:
stream-element-type returns a type specifier that indicates the types of objects that may be read
from or written to stream.

Streams created by open have an element type restricted to integer or a subtype of type
character.

21-10 Streams

Programming Language-Common Lisp ANSI X3.226-1994

Examples:
;; Note that the stream must accomodate at least the specified type,
;; but might accoaodate other types. Further note that even if it does
;; accomodate exactly the specified type, the type might be specified in
;; any of several ways.

(vith-open-file (s “test” :element-type ‘(integer 0 1)
: if -exists : error
:direction :output)

(stream-element-type s))
- INTEGER
z (UNSIGNED-BYTE 16)
2 (UNSIGNED-BYTE 8)
2 BIT
2 (UNSIGNED-BYTE 1)
2 (INTEGER 0 1)
2 (INTEGER 0 (2))

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

streamp Function

Syntax:
streamp object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generaked boolean.

Description:
Returns true if object is of type stream; otherwise, returns false.

streamp is unaffected by whether object, if it is a stream, is open or closed.

Examples:

(streamp *terminal-io*) + true
(streamp 1) - false

Notes:

(streamp object) E (typep object ‘stream)

Streams 21-11

ANSI X3.226-1994 Programming Language-Common Lisp

read-byte Function

Syntax:
read-byte sham &optional eofierror-p eofivalue --) byte

Arguments and Values:
stream-a binary input stream.

l of-error-p-a generalized boolean. The default, is he.

eofivaluc-an object. The default is nil.

byte-an integer, or the cof-value.

Description:
read-byte reads and returns one byte from stream.

If an end of file2 occurs and eofierror-p is false, the eofivalue is returned.

Examples:

(vith-open-file (s “temp-bytes”
:direct ion : output
:element-type 'unsigned-byte)

(vrite-byte 101 s)) -* 101
(vith-open-file (s "temp-bytes" :element-type Wwigned-byte)

(format t 'I-S -9 (read-byte 8) (read-byte s nil 'eof)))
D 101 EOF
+ AIL

Side Effects:
Modifies stream.

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

Should signal an error of type error if stream is not a binary input stream.

If there are no bytes remaining in the dream and eof-error-p is he, an error of type end-of-We is
signaled.

See Also:
read-char, read-sequence, write-byte

write-byte Function

Syntax:
write-byte byte stream + byte

Arguments and Values:
byte-an integer of the stream element type of stream.

21-12 Streams

Programming Language-Common Lisp ANSI X3.226-1994

stream-a bimy output stream.

Description:
write-byte writes one byte, byte, to stream.

Examples:

(with-open-file (s “temp-bytes”
: direct ion : output
:element-type ‘unsigned-byte)

(vrite-byte 101 8)) --) 101

Side Effects:
stream is modified.

Affected By:
The element type of the stream.

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream. Should signal an error of type
error if stream is not a binary output stream.

Might signal an error of type type-error if byte is not an integer of the stream element type of
stream.

See Also:
read-byte, write-char, write-sequence

peek-char Function

Syntax:
peek-char &optional pee&-type input-stream eof-error-p + char

eofivalue recursive-p

Arguments and Values:
peek-type-a character or t or nil.

input-stream-iinput stream designator. The default is standard input.

eofierror-p-a generalized boolean. The default is true.

eof-value-an object. The default is nil.

recursive-p-a generalized boolean. The default is false.

char-a character or the eof-value.

Description:
peek-char obtains the next character in input-stream without actually reading it, thus leaving
the character to be read at a later time. It can also be used to skip over and discard intervening
characters in the input-stream until a particular character is found.

Streams 21-13

ANSI X3.226-1994 Programming Language-Common Lisp

If peek-type is not supplied or nil, peek-char returns the next character to be read from input-
stream, without actually removing it from input-stream. The next time input is done from input-
stream, the character will still be there. If peek-type is t, then peek-char skips over whitespace
characters, but not comments, and then performs the peeking operation on the next character.
The last character examined, the one that starts an object, is not removed from input-stream.
If peek-type is a character, then peek-char skips over input characters until a character that is
char= to that character is found; that character is left in input-stream.

If an end of file2 occurs and eof-error-p is false, eofivalue is returned.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader.

When input-stream is an echo stream, characters that are only peeked at are not echoed. In the
case that peek-type is not nil, the characters that are passed by peek-char are treated as if by
read-char, and so are ec.hoed unless they have been marked otherwise by unread-char.

Examples:

(with-input-from-string (input-stream H 1 2 3 4 5")
(format t "'S -S 'S"

(peek-char t input-stream)
(peek-char #\4 input-stream)
(peek-char nil input-stream)))

0 #\l t\4 #\4
+ NIL

Affected By:
readtable, *standard-input*, *terminal-io*.

Exceptional Situations:
If cof-error-p is true and an end of j/e2 occurs an error of type end-of-file is signaled.

If peek-type is a character, an end of file2 occurs, and eof-error-p is true, an error of type
end-of-file is signaled.

If recursive-p is true and an end of file2 occurs, an error of type end-of-file is signaled.

read-char Function

Syntax:
read-char &optional input-stream eofierror-p eof-value recursive-p -+ char

Arguments and Values:
input-stream-an input stream designator. The default is standard input.

eof-error-p-a generalized boolean. The default is true.

eof-value-an object. The default is nil.

recursive-p-a generalized boolean. The default is false.

char-a character or the eofivalue.

21-14 Streams

Programming Language-Common Lisp ANSI X.3.226-1994

Description:
read-char returns the next character from input-stream.

When input-stream is an echo stream, the character is echoed on input-stream the first time the
character is seen. Characters that are not echoed by read-char are those that were put there by
unread-char and hence are assumed to have been echoed already by a previous call to read-char.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader.

If an end of file2 occurs and eof-error-p is false, eofivaluc is returned.

Examples:

(vith-input-from-string (is “0123”)
(do ((c (read-char is) (read-char is nil ‘the-end)))

((not (characterp c)))
(format t “-S ” c)))

D #\L-l #\I #\2 #\3
+ NIL

Affected By:
standard-input, *terminal-io*.

Exceptional Situations:
If an end of file;! occurs before a character can be read, and eof-error-p is true, an error of type
end-of-file is signaled.

See Also:
read-byte, read-sequence, write-char, read

Notes:
The corresponding output function is write-char.

read-char-no-hang Function

Syntax:
read-char-no-hang &optional input-stream eof-error-p + char

eof-value recurssivtp

Arguments and Values:
input-stream - an input stream designator. The default is standard input.

eofierror-p-a generalized boolean. The default is true.

eof-value-an object. The default is nil.

recursive-p-a generalized boolean. The default is false.

char-a character or nil or the eofivalue.

Streams 21-15

- -. _ _ -.. _-.- _. -

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
read-char-no-hang returns a character from input-stream if such a character is available. If no
character is available, read-char-no-hang returns nil.

If recursive-p is Irue, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader.

If an end of file2 occurs and e&error-p is false, eof-value is returned.

Examples:

;: This code assumes an implementation in uhich a nerrline is not
;; required to terminate input from the console.

(defun test-it 0
(unread-char (read-char))
(list (read-char-no-hang)

(read-char-no-hang)
(read-char-no-hang)))

+ TEST-IT
;; Implementation A, where a Nevline is not required to terminate
;; interactive input on the console.

(test-it)
DZ!
+ (#\a NIL NIL)
;; Implementation B, vhere a Nevline is required to terminate
;; interactive input on the console, and where that Nevline remains
;; on the input stream.

(test-it)
D a+

- (#\a #\Neuline NIL)

Affected By:
standard-input, *terminal-io*.

Exceptional Situations:
If an end of file:! occurs when eofierror-p is true, an error of type end-of-file is signaled .

See Also:
listen

Notes:
read-char-no-hang is exactly like read-char, except that if it would be necessary to wait in order
to get a character (as from a keyboard), nil is immediately returned without waiting.

terpri, fresh-line Function

Syntax:
terpri &optional output-stream -+ nil

fresh-line &optional output-stream -+ generalized-boolean

Arguments and Values:
output-stream - an output stream. designator. The default is standard output.

21-16 Streams

Programming Language-Common Lisp ANSI X3.226-1994

generalized-boolean-a generalized boolean.

Description:
terpri outputs a newline to output-stream.

fresh-line is similar to terpri but outputs a newline only if the output-stream is not already at
the start of a line. If for some reason this cannot be determined, then a newline is output anyway.
fresh-line returns true if it outputs a newline; otherwise it returns false.

Examples:

(vith-output-to-string (s)
(vrite-string “some text” s)
(terpri 5)
(terpri s)
(vrite-string “more text” s))

--) “some text

more text”
Cvith-output-to-string (s)

(vrite-string “some text” s>
(fresh-line s)
(fresh-line s)
(vrite-string “more text” 8))

+ “some text
more text”

Side Effects:
The output-stream is modified.

Affected By:
standard-output, *terminal-io*.

Exceptional Situations:
None.

Notes:
terpri is identical in effect to

(vrite-char #\Nevline output-stream)

unread-char Function

Syntax:
unread-char character &optional input-stream -+ nil

Arguments and Values:
character-a character; must be the last character that was read from input-stream.

input-stream-an input stream designator. The default is standard input.

Streams 21-17

ANSI X3.226- 1994 Programming Language-Common Lisp

Description:
unread-char places character back onto the front of input-stream so that it will again be the next
character in input-stream.

When input-stream is an echo stream, no attempt is made to undo any echoing of the character
that might already have been done on input-stream. However, characters placed on input-stream
by unread-char are marked in such a way as to inhibit later m-echo by read-char.

It is an error to invoke unread-char twice consecutively on the same stream without an interven-
ing call to read-char (or some other input operation which implicitly reads characters) on that
stream.

Invoking peek-char or read-char commits all previous characters. The consequences of invok-
ing unread-char on any character preceding that which is returned by peek-char (including
those passed over by peek-char that has a non-nil pee&-type) are unspecified. In particular, the
consequences of invoking unread-char after peek-char are unspecified.

Examples:

(with-input-from-string (is “0123’0
(dotimes (i 6)

(let (Cc (read-char is)))
(if (evenp i) (format t “X’S ‘ST i c) (unread-char c is)))))

D 0 *\o
D 2 #\I
D 4 #\2
-* NIL

Affected By:
standard-input, *terminal-io*.

See Also:
peek-char, read-char, Section 21.1 (Stream Concepts)

Notes:
unread-char is intended to be an efficient mechanism for allowing the Lisp reader and other
parsers to perform one-character lookahead in input-stream.

write-char

Syntax:
write-char character &optional output-stream + character

Arguments and Values:
character-a character.

output-stream - an outpuf stream designator. The default is standard output.

Description:
write-char outputs character to output-stream.

21-18 Streams

Programming LanguageCommon Lisp ANSI X3.226-1994

Examples:

(write-char #\a)
Da
- #\a

(with-output-to-string (6)
(vrite-char #\a s)
(vrite-char #\Space 6)
(vrite-char #\b 8))

+ “a b”

Side Effects:
The output-stream is modified.

Affected By:
standard-output, *terminal-io*.

See Also:
read-char, write-byte, write-sequence

read-line Function

Syntax:
read-line &optional input-stream cof-error-p cof-value recursive-p

--f line, missing-newline-p

Arguments and Values:
input-stream-an input stream designator. The default is standard input.

eofierror-p-a generaked boolean. The default is true.

eof-value-an object. The default is nil.

recursive-p-a generalized boolean. The default is false.

line-a string or the eof-value.

missing-ncwline-p-a generalized boolean.

Description:
Reads from input-stream a line of text that is terminated by a newline or end offile.

If recursive-p is Irue, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader.

The primary value, line, is the line that is read, represented as a string (without the trailing
newlin.e, if any). If eof-error-p is false and the end of file for input-stream is reached before any
characters are read, eof-value is returned as the line.

The secondary value, missing-new/k-p, is a generalized boolean that is false if the line was termi-
nated by a newline, or true if the line was terminated by the end offile for input-stream (or if the
line is the eof-value).

Streams 21-19

ANSI X3.226-1994 Programming Language--Common Lisp

Examples:

(setq a “line 1
line2”)

-+ “line 1
linel”
(read-line (setq input-stream (make-string-input-stream a)))

- “line 1". false
(read-line input-stream)

- "line2". true
(read-line input-stream nil nil)

+ NIL, true

Affected By:
standard-input, *terminal-io*.

Exceptional Situations:
If an end of file2 occurs before any characters are read in the line, an error is signaled if eof-error-
p is true.

See Also:
read

Notes:
The corresponding output function is write-line.

write-string, write-line Function

Syntax:
write-string string &optional output-stream &key start end + string

write-line string &optional output-stream &key start end --L string

Arguments and Values:
string-a string.

output-stream - an output stream designator. The default is standard output.

start, end-bowding indez designators of string. The defaults for start and end are 0 and nil,
respectively.

Description:
write-string writes the characters of the subsequence of string bounded by start and end to
output-stream. write-line does the same thing, but then outputs a newline afterwards.

Examples:

(progl (vrite-string “books” nil :end 4) (vrite-string “vorms”))
D bookvorms
-) “books”

21-20 Streams

Programming Language-Common Lisp ANSI X3.226-1994

(progn (vrite-char #*)
(vrite-line “testl2” *standard-output* :end 5)
(vrite-line “*test2”)
(vrite-char #*I
nil)

D *test1

D *test:!
D*

+ NIL

Affected By:
standard-output, *terminal-io*.

See Also:
read-line, write-char

Notes:
write-line and write-string return string, not the substring bounded by start and end.

(vrite-string string)
C (dotimes (i (length string)

(vrite-char (char string i)))

(vrite-line string)
3 (progl (vrite-string string) (terpri))

read-sequence Function

Syntax:
read-sequence sequence stream &key start end -+ position

sequence-a sequence.

stream-an input stream.

start, end-bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

position-an integer greater than or equal to zero, and less than or equal to the length of the
sequence.

Description:
Destructively modifies sequence by replacing the elements of sequence bounded by starf and end
with elements read from stream.

Sequence is destructively modified by copying successive elements into it from stream. If the
end of file for stream is reached before copying all elements of the subsequence, then the extra
elements near the end of sequence are not updated.

Position is the index of the first. element of sequence that was not updated, which might be less
than end because the end of file was reached.

Streams 21-21

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(defvar *data* hake-array 15 :initial-element nil))
(values (read-sequence *data* (make-string-input-stream “test string”)) *data*)
-, 11, #(#\t #\e #\s #\t #\Space X\s #\t X\r #\i #\n t\g NIL NIL NIL NIL)

Side Effects:
Modifies stream and sequence.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should signal an error of type type-error if start is not a non-negative integer. Should signal an
error of type type-error if end is not a non-negative integer or nil.

Might signal an error of type type-error if an element read from the stream is not a member of
the element type of the sequence.

See Also:
Section 3.2.1 (Compiler Terminology), write-sequence, read-line

Notes:
read-sequence is identical in effect to iterating over the indicated subsequence and reading
one eiement at a time from stream and storing it into sequence, but may be more efficient than
the equivalent loop. An efficient implementation is more likely to exist for the case where the
sequence is a vector with the same element type as the stream.

write-sequence Function

Syntax:
write-sequence sequence stream &key start end + sequence

sequence-a sequence.

stream-an output stream.

start, end-bounding index designators of sequence. The defaults for start and end are o and nil,
respectively.

Description:
write-sequence writes the elements of the subsequence of sequence bounded by start and end to
stream.

Examples:

(mite-sequence “bookworms” *standard-output* :end 4)
D book
-* "bookworms"

Side Effects:
Modifies stream.

21-22 Streams

Programming Language--Common Lisp ANSI X3.226-1994

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should signal an error of type type-error if start is not a non-negative integer. Should signal an
error of type type-error if end is not a non-negative integer or nil.

Might signal an error of type type-error if an element of the bounded sequence is not a member of
the stream element type of the stream.

See Also:
Section 3.2.1 (Compiler Terminology), read-sequence, write-string, write-line

Notes:
write-sequence is identical in effect to iterating over the indicated subsequence and writing one
element at a time to stream, but may be more efficient than the equivalent loop. An efficient
implementation is more likely to exist for the case where the sequence is a vector with the same
element type as the stream.

file-length Function

Syntax:
file-length stream - length

Arguments and Values:
stream-a stream associated with a file.

length-a non-negative integer or nil.

Description:
Ale-length returns the length of stream, or nil if the length cannot be determined.

For a binary file, the length is measured in units of the element type of the stream.

Examples:

(vith-open-file (s “decimal-digit.s.text”
:direction :output :if-exists :error)

(print “0123456789” s)
(truename 8))

-+ #P”A: >Joe>decimal-digits. text. 1”
(vith-open-f ile (s “decimal-digits. text”)

(file-length s))
4 10

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream associated with a jle.

See Also:
open

Streams 21-23

ANSI X3.226-1994 Programming Language-Common Lisp

file-position Function

Syntax:
Ale-position stream + position

f&-position stream position-spec -+ success-p

Arguments and Values:
stream-a stream.

position-sprc-a file position designator.

position-a file position or nil.

success-p-a generalized boolean.

Description:
Returns or changes the current position within a stream.

When position-spec is not supplied, file-position returns the current file position in the stream, or
nil if this cannot be determined.

When position-spec is supplied, the file position in stream is set to that file position (if possible).
file-position returns true if the repositioning is performed successfully, or false if it is not.

An integer returned by Ale-position of one argument should be acceptable as position-spec for use
with the same file.

For a character file, performing a single read-char or write-char operation may cause the file
position to be increased by more than 1 because of character-set translations (such as translating
between the Common Lisp #\Neuline character and an external ASCII carriage-return/line-
feed sequence) and other aspects of the implementation. For a binary file, every read-byte or
write-byte operation increases the file position by 1.

21-24 Streams

Programming Language--Common Lisp ANSI X3.226-1994

Examples:

(defnn tester 0
(let ((noticed ’ 0 1 f ile-vritten)

(flet ((notice (x) (push x noticed) x1)
(vith-open-f ile (s “test. bin”

: element-type ‘(unsigned-byte 8)
:direction :output
:if-exists :error)

(notice (file-position s)) ;l
(vrite-byte 5 s)
(vrite-byte 6 s)
(let ((p (file-position s) 1)

(notice p) ;2
(notice (vhen p (file-position s (l- p))))) ;3

(vrite-byte 7 s)
(notice (file-position 5)) ;4
(setq file-vritten (truename s)))

(vith-open-file (s file-vritten
:element-type ’ (unsigned-byte 8)
:direction :input)

(notice (file-position s)) ; 5
(let ((length (file-length s)))

(notice length) ;6
(vhen length

(dotimes (i length)
(notice (read-byte s)))))) ;7,...

(nreverse noticed))))
+ tester

(tester)
+ (0 2 T 2 0 2 5 7)
2 (0 2 NIL 3 0 3 5 6 7)
2 (NIL NIL NIL NIL NIL NIL)

Side Effects:
When the position-spcc argument is supplied, the file position in the stream might be moved.

Affected By:
The value returned by file-position increases monotonically as input or output operations are
performed.

Exceptional Situations:
If position-spec is supplied, but is too large or otherwise inappropriate, an error is signaled.

See Also:
file-length, file-string-length, open

Notes:
Implementations that have character files represented as a sequence of records of bounded
size might choose to encode the file position as, for example, ((record-number))*((maz-record-
size))+((character-within-record)). This is a valid encoding because it increases monotonically as
each character is read or written, though not necessarily by 1 at each step. An integer might then
be considered “inappropriate” as position-spec to file-position if, when decoded into record num-
ber and character number, it turned out that the supplied record was too short for the specified
character number.

Streams 21-25

ANSI X3.226-1994 Programming Language-Common Lisp

file-string-length Function

Syntax:
file-string-length stream object - length

Arguments and Values:
stream-an output character file stream.

object-a string or a character.

length-a non-negative integer, or nil.

Description:
Ale-string-length returns the difference between what (file-position stream) would be after
writing object and its current value, or nil if this cannot be determined.

The returned value corresponds to the current state of stream at the time of the call and might
not be the same if it is called again when the state of the stream has changed.

Syntax:
open filespec &key direction element-type

if-exists if-does-not-exist external-format

+ stream

Arguments and Values:
filespec-a pathname design&or.

direction-one of : input, : output, :io, or :probe. The default is :input.

element-type-a type specifier for recognizable subtype of character; or a type specifier for a finite
recognizable subtype of integer; or one of the symbols signed-byte, unsigned-byte, or :default.
The default is character.

if-exists-one of : error, :nev-version, : rename, :rename-and-delete, :overvrite, :append,
:supersede, or nil. The default is :nev-version if the version component of filespec is :nevest,
or : error otherwise.

if-does-not-exist-one of : error , : create, or nil. The default is : error if direction is : input or
if-exists is : overvrite or :append; : create if direction is : output or : io, and if-exists is neither
:overvrite nor :append; or nil when direction is :probe.

external-format-an external file format designator. The default is :default.

stream-a file stream or nil.

Description:
open creates, opens, and returns a file stream that is connected to the file specified by fikpec.
Filespec is the name of the file to be opened. If the filespec designator is a stream, that siream is
not closed first or otherwise affected.

21-26 Streams

Programming Language-Common Lisp ANSI X3.226-1994

The keyword arguments to open specify the characteristics of the file stream that is returned, and
how to handle errors.

If direction is :input or :probe, or if if-exists is not :nev-version and the version component of the
filespec is :nevest, then the file opened is that file already existing in the file system that has a
version greater than that of any other file in the file system whose other pathname components
are the same as those of fhspec.

An implementation is required to recognize all of the open keyword options and to do something
reasonable in the context of the host operating system. For example, if a file system does not
support distinct file versions and does not distinguish the notions of deletion and expunging,
:nev-version might be treated the same as :rename or :supersede, and :rename-and-delete might
be treated the same as :supersede.

: direct ion

These are the possible values for direction, and how they affect the nature of the stream
that is created:

: input

Causes the creation of an input file stream.

: output

Causes the creation of an output file stream.

:io

Causes the creation of a bidirectional file stream.

: probe

Causes the creation of a “no-directional” file stream; in effect, the file stream is
created and then closed prior to being returned by open.

:element-type

The element-type specifies the unit of transaction for the file stream. If it is :default, the
unit is determined by file system, possibly based on the file.

:if-exists

if-exists specifies the action to be taken if direction is : output or : io and a file of the name
filespec already exists. If direction is :input, not supplied, or :probe, if-exists is ignored.
These are the results of open as modified by if-exists:

: error

An error of type Ale-error is signaled.

:nev-version

A new file is created with a larger version number.

: rename

The existing file is renamed to some other name and then a new file is created.

:renave-and-delete

The existing file is renamed to some other name, then it is deleted but not
expunged, and then a new file is created.

Streams 21-27

ANSI X3.226-1994 Programming Language-Common Lisp

: ovemrite

Output operations on the stream destructively modify the existing file. If direc-
tion is :io the file is opened in a bidirectional mode that allows both reading
and writing. The file pointer is initially positioned at the beginning of the file;
however, the file is not truncated back to length zero when it is opened.

: append

Output operations on the stream destructively modify the existing file. The file
pointer is initially positioned at the end of the file.

If direction is :io, the file is opened in a bidirectional mode that allows both
reading and writing.

:supersede

The existing file is superseded; that is, a new file with the same name as the old
one is created. If possible, the implementation should not destroy the old file
until the new stream is closed.

nil

No file or stream is created; instead, nil is returned to indicate failure.

: if -does-not-exist

if-does-not-exist specifies the action to be taken if a file of name filesper does not already
exist. These are the results of open as modified by if-does-not-exist:

:error

An error of type file-error is signaled.

: create

An empty file is created. Processing continues as if the file had already existed
but no processing as directed by if-exists is performed.

nil

No file or stream is created; instead, nil is returned to indicate failure.

: external-f ormat

This option selects an external file format for the file: The only standardized value
for this option is :default, although implementations are permitted to define ad-
ditional external file formats and implementation-dependent values returned by
stream-external-format can also be used by conforming programs.

The external-format is meaningful for any kind of file stream whose element type is a
subtype of character. This option is ignored for streams for which it is not meaningful;
however, zmplementations may define other element types for which it is meaningful. The
consequences are unspecified if a character is written that cannot be represented by the
given external file format.

When a file is opened, a file stream is constructed to serve as the file system’s ambassador to the
Lisp environment; operations on the file stream are reflected by operations on the file in the file
system.

A file can be deleted, renamed, or destructively modified by open.

21-28 Streams

Programming Language-Common Lisp ANSI X3.226-1994

For information about opening relative pathnames, see Section 19.2.3 (Merging Pathnames)

Examples:

(open filespec :direction :probe) - #<Closed Probe File Stream...>
(setq q (merge-pal&names (user-homedir-pathname) “test”))

+ #cPATTHUAHE :HOST NIL :DEVICE device-name :DIRECTORY directory-name
:NAHE “test” :TYPE NIL :VEFWON :NEYEST>

(open filespec :if-does-not-exist :create) -+ *<Input File Stream...>
(setq s (open filespec :direction :probe)) + ScClosed Probe File Stream...)
(truenane 5) -+ #<PATHNAME :HOST NIL :DEVICE device-name :DIRECTORY

directory-name :NAHE jilespec :TYPE extension :VERSION l>
(open 5 :direction :output :if-exists nil) + NIL

Affected By:
The nature and state of the host computer’s file system.

Exceptional Situations:
If if-exists is :error, (subject to the constraints on the meaning of if-exists listed above), an error
of type file-error is signaled.

If if-does-not-exist is :error (subject to the constraints on the meaning of if-does-not-exist listed
above), an error of type file-error is signaled.

If it is impossible for an implementation to handle some option in a manner close to what is
specified here, an error of type error might be signaled.

An error of type Ale-error is signaled if (wild-pathname-p filespec) returns true.

An error of type error is signaled if the external-format is not understood by the implementation.

The various file systems in existence today have widely differing capabilities, and some aspects of
the file system are beyond the scope of this specification to define. A given implementation might
not be able to support all of these options in exactly the manner stated. An implementation is
required to recognize all of these option keywords and to try to do something “reasonable” in the
context of the host file system. Where necessary to accomodate the file system, an implementa-
tion deviate slightly from the semantics specified here without being disqualified for consideration
as a conforming implementation. If it is utterly impossible for an implementation to handle some
option in a manner similar to what is specified here, it may simply signal an error.

With regard to the :element-type option, if a type is requested that is not supported by the
file system, a substitution of types such as that which goes on in upgrading is permissible. As a
minimum requirement, it should be the case that opening an output stream to a file in a given
element type and later opening an input stream to the same file in the same element type should
work compatibly.

See Also:
with-open-file, close, pathname, logical-pathname, Section 19.2.3 (Merging Pathnames),
Section 19.1.2 (Pathnames as Filenames)

Notes:
open does not automatically close the file when an abnormal exit occurs.

When element-type is a subtype of character, read-char and/or write-char can be used on the
resulting file stream.

When element-type is a subtype of integer, read-byte and/or write-byte can be used on the
resulting file stream.

Streams 21-29

ANSI X3.226-1994 Programming Language-Common Lisp

When element-type is :default, the type can be determined by using stream-element-type.

stream-external-format Function

syntax:
stream-external-format stream + format

Arguments and Values:
stream-a file stream.

format-an external file format.

Description:
Returns an extetial file format designator for the stream.

Examples:

(with-open-file (stream "test" :direction :output)
(stream-external-format stream))

-+ :DEFAULT
s :1308859/l-1987
2 (:ASCII :SAIL)
4 ACHE::PROPRIETARY-FILE-FORMAT-17
4 #<FILE-FORHAT :ISO646-1983 2343673>

See Also:
the :externdl-format argument to the function open and the with-open-flle macro.

Notes:
The format returned is not necessarily meaningful to other implementations.

with-open-file maw0

syntax:
with-open-We (stream fikspec {options}*) {declaration}* {form)*

-L results

Arguments and Values:
stream - a variable.

fikspec-a pathname designator.

options - forms; evaluated.

declaration-a declare expression; not evaluated.

forms-an implicit progn.

results-the values returned by the forms.

21-30 Streams

Programming Language-Common Lisp ANSI X3.226-1994

Description:
with-open-file uses open to create a file stream to file named by filespec. Fiiespcc is the name of
the file to be opened. Options are used as keyword arguments to open.

The stream object to which the stream vatiable is bound has dynamic ettent; its extent ends when
the form is exited.

with-open-file evaluates the forms as an implicit progn with stream bound to the value returned
by open.

When control leaves the body, either normally or abnormally (such as by use of throw), the file is
automatically closed. If a new output file is being written, and control leaves abnormally, the file
is aborted and the file system is left, so far as possible, as if the file had never been opened.

It is possible by the use of : if-exists nil or :if-does-not-exist nil for stream to be bound to
nil. Users of :if-does-not-exist nil should check for a valid stream.

The consequences are undefined if an attempt is made to assign the stream variable. The com-
piler may choose to issue a warning if such an attempt is detected.

Examples:

(setq p (merge-pathnames “test”) 1
4 #<PATHUAIIE :HOST NIL :DEVICE device-name :DIRRCTORY directory-name

:BAHE "test" :TYPE BIL :VERSIDI :RRURST>
(vith-open-file (s p :direction :output :if-exists :supersede)

(format s “Here are a couple’%of test data lines’%“)) + BIL
(vith-open-file (8 p)

(do ((1 (read-line s) (read-line s nil ‘aof))) > ((eq 1 'eof) "Reached end of file.")
(format t 'I-&*** -A-r," 1)))

D 8** Here are a COUple

D +** of test data lines
-+ “Reached end of file. "

;; goraally one vould not do this intentionally because it is
;; not perspicuous, but bevare vhen using :IF-DOES-NOT-EXIST NIL
;; that this doesn't happen to you accidentally...

(vith-opeu-file (foe "no-such-file" :if-does-not-exist nil)
(read f oo) 1

t, hello7 f
-+ HELLO? :This value vas read from the terminal, not a file!

;; Here’s another bug to avoid...
(vith-open-file (foe "no-such-file" :direction :output :if-does-not-exist nil)

(foxmat foo "Hello"))
-+ "Hello" ;FORHAT got an argument of BIL!

Side Effects:
Creates a stream to the file named by filename (upon entry), and closes the stream (upon exit).
In some implementations, the fire might be locked in some way while it ia open. If the stream is
an output stream, a file might be created.

Affected By:
The host computer’s file system.

Streams 21-31

ANSI X3.226-1994 Programming Language-Common Lisp

Exceptional Situations:
See the function open.

See Also:
open, close, pathname, logical-pa&name, Section 19.1.2 (Pathnames as Filenames)

close Function

syntax:
close stream &key abort + red

Arguments and Values:
stream-a stream (either open or closed).

abort-a generalized boolean. The default is false.

ram/t-t if the stream was open at the time it was received as an argument, or implementation-
dependent otherwise.

Description:
close closes stream. Closing a stream means that it may no longer be used in input or output
operations. The act of closing a jile stream ends the association between the stream and its
associated file; the transaction with the file system is terminated, and input/output may no
longer be performed on the stream.

If abort is true, an attempt is made to clean up any side effects of having created stream. If
stream performs output to a file that was created when the stream was created, the file is deleted
and any previously existing file is not superseded.

It is permissible to close an already closed stream, but in that case the result is implementation-
dependent.

After stream is closed, it is still possible to perform the following query operations upon it:
streamp, pathname, truename, merge-pathnames, pathname-host, pathname-device,
pathname-directory,pathname-name, pathname-type, pathname-version, namestring,
file-namestring, directory-namestring, host-name&ring, enough-namestring, open, probe-file,
and directory.

The effect of close on a constructed stream is to close the argument stream only. There is no effect
on the constituents of composite streams.

For a stream created with make-string-output-stream, the result of get-outpu@tream-string is
unspecified after close.

Examples:

(setq 8 (rake-broadcast-streiu)) + WBROADCAST-STFlEAB
(close s) -+ T
(output-stream-p 8) + true

Side Effects:
The stream is closed (if necessary). If abort is true and the stream is an output file stream, its
associated file might be deleted.

21-32 Streams

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
open

with-open-stream Macro

syntax:
with-open-stream (wr stream) {declaration}* {form}*

+ {reslJ/t}*

Arguments and Values:
var-a variable name.

stream-a form; evaluated to produce a stream.

declaration-a declare ezpression; not evaluated.

forms-an implicit progn.

results-the values returned by the forms.

Description:
with-open-stream performs a series of operations on stream, returns a value, and then closes the
stream.

Var is bound to the value of stream, and then forms are executed as an implicit progn. stream is
automatically closed on exit from with-open-stream, no matter whether the exit is normal or
abnormal. The stream has dynamic extent; its extent ends when the form is exited.

The consequences are undefined if an attempt is made to assign the the variable var with the
forms.

Examples:

(vith-open-stream (e (rake-string-input-stream “1 2 3 4”))
(+ (read 8) (read 8) (read 8))) + 6

Side Effects:
The stream is closed (upon exit).

See Also:
close

Streams 21-33
.

ANSI X3.226-1994 Programming Language-Common Lisp

listen Function

syntax:
listen &optional input-stream + generalized-boolean

Arguments and Values:
input-stream-an input sham designator. The default is standard input.

generalized-boolean-a generalized boolean.

Description:
Returns true if there is a character immediately available from input-stream; otherwise, returns
false. On a non-interactive input-stream, listen returns he except when at end of fileI. If an end
of file is encountered, listen returns false. listen is intended to be used when input-stream obtains
characters from an interactive device such as a keyboard.

Examples:

(progn (unread-char (read-char)) (list (listen) (read-char)))
0.
- (T S\l)

(progn (clear-input 1 (listen) 1
+ BIL ;Unless you're a very fast typist!

Affected By:
standard-input

See Also:
interactive-stream-p, read-char-no-hang

clear-input Function

Syntax:
clear-input &optional input-stream ---* nil

Arguments and Values:
input-stream-an input siream designator. The default is standard input.

Description:
Clears any available input from input-stream.

If clear-input does not make sense for input-stream, then clear-input does nothing.

Examples:

;: The exact I/O behavior of this example might vary from implementation
:: to implementation depending on the kind of interactive buffering that
; ; occurs. (The call to SLEEP here is intended to help even out the
;; differences in implementations vhich do not do line-at-a-time buffering.)

21-34 Streams
.

Programming Language-Common Lisp ANSI X3.226-1994

(defun read-sleepily &optional (clear-p nil) (zzz 0))
(list (pro&n (print '>) (read)>

;; lote that input typed vithin the first 222 seconds
;; vi11 be discarded.
(progn (print '>I

(if zzz (sleep zzz))
(print '>>I
(if clear-p (clear-input))
(read))))

(read-sleepily)
D 7 10
D>-
D 77 20
+ (10 20)

(read-sleepily t)
D 7 lo -
D7
D 77 20
* (10 20)

(read-sleepily t 10)
D > 10
D7z ; Some implementations von't echo typeahead here.
D 7> 30
--+ (1030)

Side Effects:
The input-stream is modified.

Affected By:
standard-input

Exceptional Situations:
Should signal an error of type type-error if input-stream is not a siream designator.

See Also:
clear-output

finish-output, force-output, clear-output Function

syntax:
finish-output &optional output-stream -+ nil

force-output &optional output-stream -* nil

clear-output &optional output-stream + nil

Arguments and Values:
output-stream-an outpui stream designator. The default is standard output.

Streams 21-35

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
Anish-output, force-output, and clear-output exercise control over the internal handling of
buffered stream output.

finish-output attempts to ensure that any buffered output sent to output-stream has reached its
destination, and then returns.

force-output initiates the emptying of any internal buffers but does not wait for completion or
acknowledgment to return.

clear-output attempts to abort any outstanding output operation in progress in order to allow as
little output as possible to continue to the destination.

If any of these operations does not make sense for output-stream, then it does nothing. The
precise actions of these functions are implementation-dependent.

Examples:

; ; Implementation A
(progn (print “am i seen?“) (clear-output))

--+ NIL

; ; Implementation B
(progn (print “am i Been?”) (clear-output))

D am i Seen?

+ NIL

Affected By:
standard-output

Exceptional Situations:
Should signal an error of type type-error if output-stream is not a stream designator.

See Also:
clear-input

y-or-n-p, yes-or-no-p Function

syntax:
y-or-n-p &optional control trest arguments + generalized-boolean

yes-or-no-p &optionaI control trest arguments -+ generalized-boolean

Arguments and Values:
control-a format control.

arguments-format arguments for control.

generalized-boolean-a generalized boolean.

Description:
These functions ask a question and parse a response from the user. They return true if the
answer is affirmative, or false if the answer is negative.

21-36 Stream8

Programming Language-Common Lisp ANSI X3.226-1994

y-or-n-p is for asking the user a question whose answer is either “yes” or “no.” It is intended that
the reply require the user to answer a yes-or-no question with a single character. yes-or-no-p is
also for asking the user a question whose answer is either ‘Yes” or “No.” It is intended that the
reply require the user to take more action than just a single keystroke, such as typing the full
word yes or no followed by a newline.

y-or-n-p types out a message (if supplied), reads an answer in some implementation-dependent
manner (intended to be short and simple, such as reading a single character such as Y or N).
yes-or-no-p types out a message (if supplied), attracts the user’s attention (for example, by
ringing the terminal’s bell), and reads an answer in some implementation-dependent manner
(intended to be multiple characters, such as YES or NO).

If format-control is supplied and not nil, then a fresh-line operation is performed; then a message
is printed as if format-control and arguments were given to format. In any case, yes-or-no-p and
y-or-n-p will provide a prompt such as “(Y or N)” or “(Yes or No)” if appropriate.

All input and output are performed using query I/O.

Examples:

(y-or-n-p "(t or nil) given by")
D (t or nil) given by (Y or N) 1
- true

(yes-or-no-p “a -S message” ‘frightening)
D a FRIGHTENING message (Yes or No) no
+ false

(y-or-n-p “Produce listing file?“)
D Produce listing file?
D Please respond vith Y or N. g
+ false

Side Effects:
Output to and input from query I/O will occur.

Affected By:
query-io.

See Also:
format

Notes:
yes-or-no-p and yes-or-no-p do not add question marks to the end of the prompt string, so any
desired question mark or other punctuation should be explicitly included in the text query.

make-synonym-stream Function

Syntax:
make-synonym-stream symbol -+ synonym-stream

Arguments and Values:
symbol-a symbol that names a dynamic variable.

synonym-stream-a synonym stream.

Streams . 21-37

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
Returns a synonym stream whose synonym stream symbol is symbol.

Examples:

(setq a-stream (rake-string-input-strea8 “a-8trea8”)
b-stream (Hake-string-input-streru ‘lb-strea”))

-+ *<String Input Strew
(setq s-strea (rake-synonp-strea ‘c-stream))

-+ #<STEO~-STBEAH for C-STREAW
(setq c-stream a-strem1

-+ itstring Input Stream>
(read s-strea) + A-STBBAH
(setq c-strem b-stream)

--) #<String Input Streru>
(read s-strean) + B-STREAM

Exceptional Situations:
Should signal type-error-if its argument is not a symbol.

See Also:
Section 21.1 (Stream Concepts)

synonym-stream-symbol Fwzction

Syntax:
synonym-stream-symbol synonym-stream + symbol

Arguments and Values:
synonym-stream-a synonym stream.

symbol-a symbol.

Description:
Returns the symbol whose symbol-value the synonym-stream is using.

See Also:
make-synonym-stream

21-38 _ Streams

Programming Language-Common Lisp ANSI X3.226-1994

broadcast-stream-streams Function

Syntax:
broadcast-stream-streams broadcast-stream + streams

Arguments and Values:
broadcast-stream-a broadcast stream.

streams-a list of streams.

Description:
Returns a list of output streams that constitute all the streams to which the broadcast-stream is
broadcasting.

make-broadcast-stream Function

Syntax:
m&e-broadcast-stream treat streams --* broadcast-stream

Arguments and Values:
stream-an output stream.

broadcast-stream-a broadcast stream.

Description:
Returns a broadcast stream.

Examples:

(setq a-stream (make-string-output-stream)
b-stream (make-string-output-stream)) -+ #<String Output Stream>

(format (make-broadcast-stream a-stream b-stream)
“this will go to both streams”) --) IIL

(get-output-stream-string a-stream) -+ “this will go to both streams”
(get-output-stream-string b-stream) + “this will go to both streams”

Exceptional Situations:
Should signal an error of type type-error if any stream is not an output stream.

See Also:
broadcast-stream-streams

Streams 21-39

ANSI X3.226- 1994 Programming Language-Common Lisp

make-two-way-stream Function

syntax:
make-two-way-stream input-stream output-stream -* two-way-stream

Arguments and Values:
input-stream-a stream.
output-stream-a stream.

two-way-stream-a two-way stream.

Description:
Returns a two-way stream that gets its input from input-stream and sends its output to output-
stream.

Examples:

(with-output-to-string (out)
(vith-input-f ram-string (in “input. . . I’)

(let ((too (make-two-way-stream in out)))
(f orrat two “output.. .“I
(setq vhat-is-read (read two) 1)) 1 -+ “output. . .I’

what-is-read -+ INPUT...

Exceptional Situations:
Should signal an error of type type-error if input-stream is not an input stream. Should signal an
error of type type-error if output-stream is not an output stream.

two-way-stream-input-stream, two-way-stream-
output-stream Function

Syntax:
twe-way-stream-input-stream two-way-stream -* input-stream

two-way-stream-output-stream two-way-stream -+ output-stream

Arguments and Values:
two-way-stream-a two-way stream.

input-stream-an input stream.

output-stream-an output stream.

Description:
two-way-stream-input-stream returns the stream from which two-way-stream receives input.

two-way-stream-output-stream returns the stream to which two-way-stream sends output.

21-40 Streams

Programming Language-Common Lisp ANSI X3.226-1994

echo-stream-input-stream, echo-stream-output-
stream Function

Syntax:
echo-stream-input-stream echo-stream + input-stream

echo-stream-output-stream echo-stream -+ output-stream

Arguments and Values:
echo-stream-an echo stream.

input-stream-an input stream.

output-stream-an output stream.

Description:
echo-stream-input-stream returns the input stream from which echcxtream receives input.

echo-stream-output-stream returns the output stream to which echo-stream sends output.

make-echo-stream Function

Syntax:
make-echo-stream input-stream output&ream -) echo-stream

Arguments and Values:
input-stream-an input stream.

output-stream-an output stream.

echo-stream-an echo stream.

Description:
Creates and returns an echo stream that takes input from input-stream and sends output to
output-stream.

Examples:

(let ((out (make-string-output-stream)))
(with-open-stream

(s (rake-echo-stream
bake-string-input-stream “this-is-read-and-echoed”)
out))

(read s)
(format s ” * this-is-direct-output”)
(get-output-stream-string out)))

+ “this-is-read-and-echoed l this-is-direct-output”

See Also:
echo-stream-input-stream, echo-stream-output-stream, make-two-way-stream

Streams 21-41

--

ANSI X3.226-1994 Programming Language-Common Lisp

concatenated-stream-streams Function

syntax:
concatenated-stream-streams concatenated-stream -b stfeams

Arguments and Values:
concatenated-stream - a concatenated stream.

streams-a list of input streams.

Description:
Returns a list of input streams that constitute the ordered set of streams the concatenated-stream
still has to read from, starting with the current one it is reading from. The list may be empty if
no more streams remain to be read.

The consequences are undefined if the list structure of the streams is ever modified.

make-concatenated-stream Function

Syntax:
make-concatenated-stream arest input-streams + concatenated-stream

Arguments and Values:
input-stream-an input stream.

concatenated-stream-a concatenated stream.

Description:
Returns a concatenated stream that has the indicated input-streams initially associated with it.

Examples:

(read (rake-concatenated-stream
(make-string-input-stream “1”)
(make-string-input-stream “2’0)) 3 12

Exceptional Situations:
Should signal type-error if any argument is not an input stream.

See Also:
concatenated-stream-streams

21-42 Streams

Programming Languag-Common Lisp ANSI X3.226- 1994

get-output-stream-string Function

Syntax:
get-output-stream-string string-output-stream -) string

Arguments and Values:
string-output-stream-a stream.

string-a string.

Description:
Returns a string containing, in order, all the characters that have been output to string-output-
stream. This operation clears any characters on string-output-stream, so the string contains only
those characters which have been output since the last call to get-output-stream-string or since
the creation of the string-output-stream, whichever occurred most recently.

Examples:

(setq a-stream (make-string-output-stream)
a-string “abcdef ghi jklm”) + “abcdef ghijklm”

(vrite-string a-string a-stream) -+ “abcdefghijklm”
(get-output-stream-string a-stream) + “abcdefghijklm”
(get-output-stream-string a-stream) + “”

Side Effects:
The string-output-stream is cleared.

Exceptional Situations:
The consequences are undefined if stream-output-string is closed.

The consequences are undefined if string-output-stream is a stream that was not produced by
make-string-output-stream. The consequences are undefined if string-output-stream was created
implicitly by with-output-to-string or format.

See Also:
make-string-output-stream

make-string-input-stream Function

Syntax:
make-string-input-stream string &optional start end + string-stream

Arguments and Values:
string-a string.

start, end-bounding index designators of string. The defaults for start and end are 0 and nil,
respectively.

string-stream-an input string stream.

Streams 21-43

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
Returns an input s2ting stream. This stream will supply, in order, the characters in the substring
of string bounded by start and end. After the last characier has been supplied, the string stream
will then be at end of file.

Examples:

(let ((string-stream (make-string-input-stream “1 one “1))
(list (read string-stream nil nil)

(read string-stream nil nil)
(read string-stream nil nil)))

- (1 ORE IIL)

(read (make-string-input-stream “prefixtargetsuffix” 6 12)) - TARGET

See Also:
with-input-from-string

make-string-output-stream Function

Syntax:
make-string-output-stream &key element-type -+ &ring-stream

Arguments and Values:
element-type-a type specifier. The default is character.

string-stream-an output string stream.

Description:
Returns an output string stream that accepts characters and makes available (via
get-output-stream-string) a string that contains the characters that were actually output.

The element-type names the type of the elements of the string; a string is constructed of the most
specialized type that can accommodate elements of that element-type.

Examples:

(let ((5 (make-string-output-stream)))
(vrite-string “testing.. . ” 8)
(prinl 1234 a)
(get-output-stream-string 8))

+ “testing.. . 1234”

None..

See Also:
get-output-stream-string, with-output-to-string

21-44 Streams

Programming Language-Common Lisp ANSI X3.226-1994

with-input-from-string Macro

Syntax:
with-input-from-string (var string Pkey index start end) {deckration)* {form)*

+ {result}*

Arguments and Values:
var-a variable name.

string-a form; evaluated to produce a string.

index-a place.

start, end-bounding index designators of string. The defaults for start and end are o and nil,
respectively.

declaration-a declare expression; not evaluated.

forms-an implicit progn.

result-the values returned by the forms.

Description:
Creates an input string stream, provides an opportunity to perform operations on the stream
(returning zero or more values), and then closes the string stream.

String is evaluated first, and var is bound to a character input string stream that supplies charac-
ters from the subsequence of the resulting string bounded by start and end. The body is executed
as an implicit progn.

The input string stream is automatically closed on exit from with-input-from-string, no matter
whether the exit is normal or abnormal. The input string stream to which the variable var is
bound has dynamic extent; its extent ends when the form is exited.

The index is a pointer within the string to be advanced. If with-input-corn-string is exited
normally, then index will have as its value the index into the string indicating the first character
not read which is (length string) if all characters were used. The place specified by index is not
updated as reading progresses, but only at the end of the operation.

start and index may both specify the same variable, which is a pointer within the string to be
advanced, perhaps repeatedly by some containing loop.

The consequences are undefined if an attempt is made to assign the variable var.

Examples:

(with-input-from-string (s “XXX1 2 3 4xxx”
: index ind
:start 3 :end 10)

(+ (read s) (read 8) (read s))) -+ 6
ind + 9
(Pith-input-from-string (s “Animal Crackers” :index j :start 6)

(read s)) 4 CRACKERS

The variable j is set to 15.

Streams 2145

ANSI X3.226-1994 Programming Language--Common Lisp

Side Effects:
The value of the place named by index, if any, is modified.

See Also:
make-string-input-stream, Section 3.6 (Traversal Rules and Side Effects)

with-output-to-string Macro

Syntax:
with-output-to-string (var &optional string-form &key element-type) {declaration}* {form}*

--* {result}*

Arguments and Values:
var-a variable name.

string-form-a form or nil; if non-nil, evaluated to produce string.

string-a string that has a fill pointer.

ekment-type-a type specifier; evaluated. The default is character.

declaration-a declare exppression; not evaluated.

forms-an implicit progn.

results-If a string-form is not supplied or nil, a string; otherwise, the values returned by the
forms.

Description:
with-output-to-string creates a character output stream, performs a series of operations that
may send results to this stream, and then closes the stream.

The element-type names the type of the elements of the stream; a stream is constructed of the
most specialized type that can accommodate elements of the given type.

The body is executed as an implicit progn with var bound to an output string stream. All output
to that string stream is saved in a string.

If string is supplied, element-type is ignored, and the output is incrementally appended to string
as if by use of vector-push-extend.

The output stream is automatically closed on exit from with-output-from-string, no matter
whether the exit is normal or abnormal. The output string stream to which the variable var is
bound has dynamic extent; its extent ends when the form is exited.

If no string is provided, then with-output-from-string produces a stream that accepts characters
and returns a string of the indicated element-type. If string is provided, with-output-to-string
returns the results of evaluating the last form.

The consequences are undefined if an attempt is made to assign the variable var.

21-46 Streams

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(setq fstr (rake-array ‘(0) :element-type ‘base-char
:fill-pointer 0 :adjustable t)) -+ ‘I”

(with-output-to-string (a fstr)
(format s “here’s some output”)
(input-stream-p 8)) + false

fstr + “here’s some output”

Side Effects:
The string is modified.

Exceptional Situations:
The consequences are undefined if destructive modifications are performed directly on the string
during the dynamic eden2 of the call.

See Also:
make-string-output-stream, vector-push-extend, Section 3.6 (Traversal Rules and Side Effects)

debug-io, *error-output*, *queryGo*, wtandard-
input*, *standard-output*, *trace-output* Variable

Value Type:
For *standard-input*: an input stream

For *error-output*, *standard-output*, and *trace-output*: an output stream.

For *debug-io*, *query-io*: a bidiredional dream.

Initial Value:
implementation-dependent, but it must be an open dream that is not a generalized synonym
stream to an I/O customizahon variables but that might be a generalized synonym stream to the
value of some I/O customization variable. The initial value might also be a generalized synonym
stream to either the symbol *terminal-io* or to the dream that is its value.

Description:
These variables are collectively called the standardized I/O cuslomizahon variables. They can
be bound or assigned in order to change the default destinations for input and/or output used by
various standardized operalors and facilities.

The value of *debug-io*, called debug I/O, is a stream to be used for interactive debugging
purposes.

The value of *error-output*, called error o&p&, is a dream to which warnings and non-
interactive error messages should be sent.

The value of *query-io*, called query I/O, is a bidireclional &earn to be used when asking
questions of the user. The question should be output to this dream, and the answer read from it.

The value of *standard-input*, called standard input, is a stream that is used by many operators
as a default source of input when no specific input stream is explicitly supplied.

The value of *standard-output*, called standard output, is a sham that is used by many
operators as a default destination for output when no specific output stream is explicitly supplied.

Streams 21-47

. -._ *,

ANSI X3.226-1994 Programming Language-Common Lisp

The value of *trace-output*, called trace output, is the stream on which traced functions (see
trace) and the time macro print their output.

Examples:

(with-output-to-string (*error-output*)
(warn "this string is sent to *error-output*"))

+ 'Warning: this string is sent to *error-output*
" ;The exact format of this string is implementation-dependent.

(with-input-from-string (*standard-input* "1001")
(+ 990 (read))) + 1991

(progn (setq out (vith-output-to-string (*standard-output*)
(print "print and format t send things to")
(format t "*standard-output* nov going to a string")))

:done)
-+ :DONE

out
+ "
\"print and format t send things to\ " *standard-output* nov going to a string”

(defun fact (n) (if (< n 2) 1 (* II (fact (- n 1)))))
-) FACT

(trace fact)
- (FACT)
;; Of course, the format of traced output is implementation-dependent.

(vith-output-to-string (*trace-output*)
(fact 3))

4 "
1 Enter FACT 3
I 2 Enter FACT 2
I 3 Enter FACT 1
I 3 Exit FACT 1
1 2 Exit FACT 2
1 Exit FACT 6"

See Also:
terminal-io, synonym-stream, time, trace, Chapter 9 (Conditions), Chapter 23 (Reader),
Chapter 22 (Printer)

Notes:
The intent of the constraints on the initial value of the I/O customization variables is to ensure
that it is always safe to bind or assign such a variable to the value of another I/O CusZomizalion
variable, without unduly restricting implementation flexibility.

It is common for an implementation to make the initial values of *debug-io* and *query-io* be
the same stream, and to make the initial values of *error-output* and *standard-output* be
the same stream.

The functions y-or-n-p and yes-or-no-p use query I/O for their input and output.

In the normal Lisp read-eval-print loop, input is read from standard input. Many input functions,

21-48 Streams

Programming Language-Common Lisp ANSI X3.226-1994

including read and read-char, take a sham argument that defaults to standard input.

In the normal Lisp read-eval-print loop, output is sent to standard oulpul. Many output func-
tions, including print and write-char, take a stream argument that defaults to standard output.

A program that wants, for example, to divert output to a file should do so by binding
standard-output; that way error messages sent to *error-output* can still get to the user
by going through *terminal-io* (if *error-output* is bound to *terminal-io*), which is usually
what is desired.

terminal-io Variable

Value Type:
a bidiredional stream.

Init ial Value:
implemen2ahon-dependent, but it must be an open stream that is not a generalized synonym
&earn to an I/O cuslomizahon van’ables but that might be a generalized synonym stream to the
value of some I/O cus2omizahon variable.

Description:
The value of *terminal-io*, called terminal I/O, is ordinarily a bidireclional stream-that connects
to the user’s console. Typically, writing to this stream would cause the output to appear on a
display screen, for example, and reading from the stream would accept input from a keyboard.
It is intended that standard input functions such as read and read-char, when used with this
stream, cause echoing of the input into the output side of the stream. The means by which this is
accomplished are implemeniation-dependent.

The effect of changing the value of *terminal-io*, either by binding or assignment, is
implemen2ation-defined.

Examples:

(progn (prinl ‘fool (prinl ‘bar *terminal-io*))
D FODBAR
- BAR

(with-output-to-string (*standard-output*)
(prinl ‘foe)
(prinl 'bar *terminal-io*))

D BAR
+ "FOO"

See Also:
debug-io, *error-output*, * query-io*, *standard-input*, *standard-output*,
trace-output

Streams 21-49

ANSI X3.226-1994 Programming Language-Common Lisp

stream-error Condition Type

Class Precedence List:
stream-error, error, serious-condition, condition, t

Description:
The type stream-error consists of error conditions that are related to receiving input from or
sending output to a stream. The “offending stream” is initialized by the :stream initialization
argument to make-condition, and is accessed by the funclion stream-error-stream.

See Also:
stream-error-stream

stream-error-stream Function

Syntax:
stream-error-stream condition + stream

Arguments and Values:
condition-a condition of type stream-error.

stream-a stream.

Description:
&turns the offending stream of a condition of type stream-error.

Examples:

(with-input-from-string (8 "(FOO")
(handler-case (read s)

(end-of-file Cc>
(format nil "-&End of file on 3." (stream-error-stream ~1))))

"End of file on #<String Stream>.”

See Also:
stream-error, Chapter 9 (Conditions)

21-50 Streams

Programming Language-Common Lisp ANSI X3.226-1994

end-of-file Condition Type

Class Precedence List:
end-of-file, stream-error, error, serious-condition, condition, t

Description:
The lype end-of-file consists of error conditions related to read operations that are done on
dreams that have no more data.

See Also:
stream-error-stream

Streams 21-51

.__ . - . . - ._ .--. .- . -w -

A N S I X 3 .2 2 6 - 1 9 9 4 P r o g r a m m i n g L a n g u a g e - C o m m o n L isp

2 1 - 5 2 S t reams

ANSI X3.226-1994

Programming Language--Common Lisp

22. Printer

ANSI X3.226-1994 Programming Language-Common Lisp

ii Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.1 The Lisp Printer

22.1.1 Overview of The Lisp Printer
Common Lisp provides a representation of most objects in the form of printed text called the
printed representation. Functions such as print take an object and send the characters of its
printed representation to a stream. The collection of routines that does this is known as the
(Common Lisp) printer.

Reading a printed representation typically produces an object that is equal to the originally
printed object.

22.1.1.1 Multiple Possible Textual Representations
Most objects have more than one possible textual representation. For example, the positive
integer with a magnitude of twenty-seven can be textually expressed in any of these ways:

27 27. to33 #xlB tbllOl1 #.(* 3 3 3) 81/3

A list containing the two symbols A and B can also be textually expressed in a variety of ways:

(A B) (a b) (a b) (\A IBl)
(I\Al

B
1

In general, from the point of view of the Lisp reader, wherever whitespace is permissible in a
textual representation, any number of spaces and newlines can appear in standard syntaz.

When a function such as print produces a printed representation, it must choose from among
many possible textual representations. In most cases, it chooses a program readable representa-
tion, but in certain cases it might use a more compact notation that is not program-readable.

A number of option variables, called printer control variables, are provided to permit control
of individual aspects of the printed representation of objects. Figure 22-l shows the standardized
printer control variables; there might also be implementation-defined printer control variables.

print-array
print-base
print-case
print-circle
print-escape

print-gensym
print-length
print-level
print-lines
print-miser-width

print-pprint-dispatch
print-pretty
print-radix
print-readably
print-right-margin

Figure 22-1. Standardized Printer Control Variables

In addition to the printer control variables, the following additional defined names relate to or
affect the behavior of the Lisp printer:

package *read-e&*
read-default-float-format *readtable*

Figure 22-2. Additional Influences on the Lisp printer.

readtable-case

Printer 22-l

ANSI X3.226-1994 Programming Language-Common Lisp

22.1.1.1.1 Printer Escaping

The variable *print-escape* controls whether the Lisp printer tries to produce notations such as
escape characters and package prefkes.

The variable *print-readably* can be used to override many of the individual aspects controlled
by the other printer con&o1 variables when program-readable output is especially important.

One of the many effects of making the value of *print-readably* be irue is that the Lisp printer
behaves as if *print-escape* were also true. For notational convenience, we say that if the value
of either *print-readably* or *print-escape* is true, then printer escaping is “enabled”; and
we say that if the values of both *print-readably* and *print-escape* are false, then printer
escaping is “disabled”.

22.1.2 Printer Dispatching
The Lisp printer makes its determination of how to print an object as follows:

If the value of *print-pretty* is true, printing is controlled by the current pprin2 dispatch table;
see Section 22.2.1.4 (Pretty Print Dispatch Tables).

Otherwise (if the value of *print-pretty* is false), the object’s print-object method is used; see
Section 22.1.3 (Default Print-Object Methods).

22.1.3 Default Print-Object Methods
This section describes the default behavior of print-object methods for the siandardized types.

22.1.3.1 Printing Numbers

22.1.3.1.1 Printing Integers

Integers are printed in the radix specified by the current outpul base in positional notation, most
significant digit first. If appropriate, a radix specifier can be printed; see *print-radix*. If an
integer is negative, a minus sign is printed and then the absolute value of the integer is printed.
The integer zero is represented by the single digit o and never has a sign. A decimal point might
be printed, depending on the value of *print-radix*.

For related information about the syntax of an integer, see Section 2.3.2.1.1 (Syntax of an In&
g4.

22.1.3.1.2 Printing Ratios

Ratios are printed as follows: the absolute value of the numerator is printed, as for an integer;
then a /; then the denominator. The numerator and denominator are both printed in the radix
specified by the curreni output base; they are obtained as if by numerator and denominator,
and so ratios are printed in reduced form (lowest terms). If appropriate, a radix specifier can be
printed; see *print-radix*. If the ratio is negative, a minus sign is printed before the numerator.

For related information about the syntax of a ratio, see Section 2.3.2.1.2 (Syntax of a Ratio).

22-2 Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.1.3.1.3 Printing Floats

If the magnitude of the float is either zero or between 10B3 (inclusive) and lo7 (exclusive), it is
printed as the integer part of the number, then a decimal point, followed by the fractional part of
the number; there is always at least one digit on each side of the decimal point. If the sign of the
number (as determined by float-sign) is negative, then a minus sign is printed before the number.
If the format of the number does not match that specified by *read-default-float-format*, then
the exponent marker for that format and the digit 0 are also printed. For example, the base of the
natural logarithms as a short jtoat might be printed as 2.7182830.

For non-zero magnitudes outside of the range low3 to 107, a float is printed in computerized
scientific notation. The representation of the number is scaled to be between 1 (inclusive) and
10 (exclusive) and then printed, with one digit before the decimal point and at least one digit
after the decimal point. Next the exponent marker for the format is printed, except that if the
format of the number matches that specified by *read-default-float-format*, then the exponent
marker E is used. Finally, the power of ten by which the fraction must be multiplied to equal the
original number is printed as a decimal integer. For example, Avogadro’s number as a short jtoat
is printed as 6.02823.

For related information about the syntax of a float, see Section 2.3.2.2 (Syntax of a Float).

22.1.3.1.4 Printing Complexes

A complex is printed as TIC, an open parenthesis, the printed representation of its real part, a
space, the printed representation of its imaginary part, and finally a close parenthesis.

For related information about the syntax of a complex, see Section 2.3.2.3 (Syntax of a Complex)
and Section 2.4.8.11 (Sharpsign C).

22.1.3.1.5 Note about Printing Numbers

The printed representation of a number must not contain escape characters; see Section 2.3.1.1.1
(Escape Characters and Potential Numbers).

22.1.3.2 Printing Characters

When printer escaping is disabled, a character prints as itself; it is sent directly to the output
stream. When printer escaping is enabled, then X\ syntax is used.

When the printer types out the name of a character, it uses the same table as the #\ reader
macro would use; therefore any character name that is typed out is acceptable as input (in that
implementation). If a non-graphic character has a standardized names, that name is preferred
over non-standard names for printing in t\ notation. For the graphic standard characters, the
character itself is always used for printing in #\ notation--even if the character also has a names.

For details about the #\ reader macro, see Section 2.4.8.1 (Sharpsign Backslash).

22.1.3.3 Printing Symbols

When printer escaping is disabled, only the characters of the symbol’s name are output (but the
case in which to print characters in the name is controlled by *print-case*; see Section 22.1.3.3.2
(Effect of Readtable Case on the Lisp Printer)).

The remainder of this section applies only when printer escaping is enabled.

When printing a symbol, the printer inserts enough single escape and/or multiple escape charac-
ters (backslashes and/or vertical-bars) so that if read were called with the same *readtable* and
with *read-base* bound to the current output base, it would return the same symbol (if it is not
apparently uninterned) or an unintemed symbol with the same print name (otherwise).

Printer 22-3

ANSI X3.226-1994 Programming Language-Common Lisp

For example, if the value of *print-base* were 16 when printing the symbol face, it would have
to be printed as \FACE or \Face or IFACEI, because the token face would be read as a hexadecimal
number (decimal value 64206) if the value of *read-base* were 16.

For additional restrictions concerning characters with nonstandard syntaz types in the current
readtable, see the variable *print-readably*

For information about how the Lisp reader parses symbols, see Section 2.3.4 (Symbols as Tokens)
and Section 2.4.8.5 (Sharpsign Colon).

nil might be printed as 0 when *print-pretty* is true and printer escaping is enabled.

22.1.3.3.1 Package Prefixes for Symbols

Package prefizes are printed if necessary. The rules for package prefizes are as follows. When
the symbol is printed, if it is in the KEYWORD package, then it is printed with a preceding colon;
otherwise, if it is accessible in the current package, it is printed without any package prefiz;
otherwise, it is printed with a package prejiz.

A symbol that is apparently uninterued is printed preceded by “#:” if *print-gensym* ia true and
printer escaping is enabled; if *print-gensym* is false or printer escaping is disabled, then the
symbol is printed without a prefix, as if it were in the current package.

Because the t: syntax does not intern the following symbol, it is necessary to use circular-list
syntax if *print-circle* is true and the same uninterned symbol appears several times in an
expression to be printed. For example, the result of

(let ((x hake-symbol "FOO"))) (list x x))

would be printed as (t:foo t:foo) if *print-circle* were false, but as (#l=#:foo #it) if
print-circle were true.

A summary of the preceding package prefix rules follows:

foo:bar

f oo : bar is printed when symbol bar is external in its home package f oo and is not access&
ble in the current package.

foo::bar

foo: :ber is printed when bar is internal in its home package foo and is not accessible in
the current package.

:bar

:bar is printed when the home package of bar is the KEYYORD package.

X:bar

X:bar is printed when bar is apparently uninterned, even in the pathological case that bar
has no home package but is nevertheless somehow accessible in the current package.

22.1.3.3.2 Effect of Readtable Case on the Lisp Printer

When printer escaping is disabled, or the characters under consideration are not already quoted
specifically by single escape or multiple escape syntax, the readtable case of the current readtable
affects the way the Lisp printer writes symbols in the following ways:

22-4 Printer

Programming Language-Common Lisp ANSI X3.226-1994

:upcase

When the readtable case is :upcase, uppercase characters are printed in the case specified
by *print-case*, and lowercase characters are printed in their own case.

:dovncase

When the readtable cuse is :dovncase, uppercase chamcters are printed in their own case,
and lowercase characters are printed in the case specified by *print-case*.

:preserve

When the readtable case is :preserve, all alphabetic chamcters are printed in their own
case.

:invert

When the readtable case is :invert, the case of all alphabetic characters in single case
symbol names is inverted. Mixed-case symbol names are printed as is.

The rules for escaping alphabetic characters in symbol names are affected by the readtable-case if
printer escaping is enabled. Alphabetic characters are escaped aa follows:

:upcase

When the readtable case is :upcase, all lowercase characters must be escaped.

:dovncase

When the readtable case is :dovncase, all uppercase characters must be escaped.

: preserve

When the readtable case is :preserve, no alphabetic characters need be escaped.

: invert

When the readtable case is :invert, no alphabetic characters need be escaped.

22.1.3.3.2.1 Examples of Effect of Readtable Case on the Lisp Printer

(defun test-readtable-case-printing (1
(let ((*readtable* (copy-readtable nil))

(*print-case* *print-case*))
(format t YLEADTABLE-CASE *PRIIfT-CASE* Symbol-name Output'

3 ---
3")

(dolist (readtable-case '(:upcase :douncase :preserve zinvert))
(setf (readtable-case *readtable*) readtable-case)
(dolist (print-case '(:upcase :douncase :capitalize))

(dolist (symbol '(IZEBRAl iZebra izebral))
(setq *print-case* print-case)
(format t ” 't:'A-15T:'A-29T'A-42T'A"

(string-upcase readtable-case)
(string-upcase print-case)
(symbol-name symbol)
(prinl-to-string symbol)))))))

The output from (test-readtable-case-printing) should be as follows:

Printer 22-5

ANSI X3.226-1994 Programming Language-Common Lisp

READTABLE-CASE l PRIUT-CASE* Symbol-name Output

: UPCASE
:lJPCASE
:DPCASE
:DPCASE
:UPCASE
:DPCASE
:DPCASE
:DPCASE
:UPCASE
:DOUNCASE
:DOUNCASE
:DOYNCASE
:DOUNCASE
:DOUNCASE
:DOUNCASE
: DOYNCASE
:DOYNCASE
:DOYNCASE
:PRESRRVE
:PRESERVE
:PRESERVE
:PRRSERVE
:PRESERVE
:PRESERVE
:PRRSERVE
:PRESERVE
:PRESERVE
:INVERT
:INVRRT
:INVERT
:INVRRT
:INVERT
:INVERT
:INVERT
:INVRRT
:INVERT

: DPCASE
:UPCASE
:DPCASE
:DOYNCASE
:DOYNCASE
:DOUNCASE
:CAPITALIZE
:CAPITALIZE
:CAPITALIZE
: UPCASE
: DPCASE
: IJF’CASE
:DOUNCASE
:DOYNCASE
:DOUNCASE
:CAPITALIZE
:CAPITALIZE
:CAPITALIZE
:UPCASE
:IJPCASE
:DPCASE
:DOUNCASE
:DOUNCASE
:DOYNCASE
:CAPITALIZE
:CAPITALIZE
:CAPITALIZE
:UPCASE
:tJPCASE
:UPCASE
:DOUNCASE
:DOUNCASE
:DOUNCASE
:CAPITALIZE
:CAPITALIZE
:CAPITALIZE

ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBM
Zebra
zebra

ZEBRA
IZebral
Izebral
zebra
lZebra
lzebra
Zebra
IZebra
(zebra
IzEeRll
IZebra
ZEBRA
IZRBRA I
IZebra ,I
zebra
I ZEBRA
IZebra
Zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
ZEBRA
Zebra
zebra
zebra
Zebra
ZEBRA
zebra
Zebra
ZEBRA
zebra
Zebra
ZEBRA

22.1.3.4 Printing Strings

The characters of the string are output in order. If printer escaping is enabled, a double-quote is
output before and after, and all double-quotes and single escapes are preceded by backslash. The
printing of strings is not affected by *print-array *. Only the active elements of the string are
printed.

For information on how the Lisp reader parses strings, see Section 2.4.5 (Double-Quote).

22.1.3.5 Printing Lists and Conses

Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm
is used to print a cons z:

1. A left-parenthesis is printed.

2. The car of z is printed.

22-6 Printer

Programming Language-Common Lisp ANSI X3.226-1994

3. If the cdr of z is itself a cons, it is made to be the current cons (i.e., z becomes that cons), a
space is printed, and step 2 is m-entered.

4. If the cdr of z is not null, a space, a dot, a space, and the cdr of x are printed.

5. A right-parenthesis is printed.

Actually, the above algorithm is only used when *print-pretty* is false. When *print-pretty* is
true (or when pprint is used), additional whitespacel may replace the use of a single space, and a
more elaborate algorithm with similar goals but more presentational flexibility is used; see Section
22.1.2 (Printer Dispatching).

Although the two expressions below are equivalent, and the reader accepts either one and pro
duces the same cons, the printer always prints such a cons in the second form.

(a . (b . ((c . (d . nil)) . (e . nil))))
(a b Cc d) e)

The printing of conses is affected by *print-level*, *print-length*, and *print-circle*.

Following are examples of printed representations of lists:

(a . b) ;A dotted pair of a and b
(a.b) ;A list of one element, the symbol named a. b
(a. b) ;A list of two elements a. and b
(a .b) ;A list of two elements a and .b
(a b . c) ;A dotted list of a and b with c at the end: two conses
. iot ;The symbol vhose name is .iot
(. b) ;Invalid -- an error is signaled if an attempt is made to read

;this syntax.
(a .) ;Invalid -- an error is signaled.
(a . . b) ;Invalid -- an error is signaled.
(a . . b) ;Invalid -- an error is signaled.
(a b c . ..) ;Invalid -- an error is signaled.
(a \. b) ;A list of three elements a, ., and b
(a I.1 b) :A list of three elements a, ., and b
(a \... b) ;A list of three elements a, and b
(a I... I b) ;A list of three elements a, and b

For information on how the Lisp reader parses lists and conses, see Section 2.4.1 (Left-
Parenthesis).

22.1.3.6 Printing Bit Vectors

A bit vector is printed as #t* followed by the bits of the bit vector in order. If *print-array* is
false, then the bit vector is printed in a format (using WC) that is concise but not readable. Only
the active elements of the bit vector are printed.

For information on Lisp reader parsing of bit vectors, see Section 2.4.8.4 (Sharpsign Asterisk).

Printer 22-7

._ .- ---

ANSI X3.226-1994 Programming Language-Common Lisp

22.1.3.7 Printing Other Vectors

If *print-array* is true and *print-readably* is false, any vector other than a siting or bii
vector is printed using general-vector syntax; this means that information about specialized vec-
tor representations does not appear. The printed representation of a zero-length vector is ~0.
The printed representation of a non-zero-length vector begins with t(. Following that, the first
element of the vector is printed. If there are any other elements, they are printed in turn, with
each such additional element preceded by a space if *print-pretty* is false, or whitespacei if
print-pretty is true. A right-parenthesis after the last element terminates the printed represen-
tation of the vector. The printing of vectors is affected by *print-level* and *print-length*. If
the vector has a fill pointer, then only those elements below the fill pointer are printed.

If both *print-array* and *print-readably* are false, the vector is not printed as described
above, but in a format (using W) that is concise but not readable.

If *print-readably* is true, the vector prints in an implementation-defined manner; see the
votioble *print-readably*.

For information on how the Lisp reader parses these “other vectors,” see Section 2.4.8.3 (Sharp-
sign Left-Parenthesis).

22.1.3.8 Printing Other Arrays

If *print-array* is true and *print-readably* is false, any army other than a uecior is printed
using #IIA format. Let IL be the rank of the array. Then t is printed, then n as a decimal integer,
then A, then II open parentheses. Next the elements are scanned in row-major order, using
write on each element, and separating elements from each other with whitespacel. The array’s
dimensions are numbered 0 to n-l from left to right, and are enumerated with the rightmost index
changing fastest. Every time the index for dimension j is incremented, the following actions are
taken:

l If j c n-l, then a close parenthesis is printed.

l If incrementing the index for dimension j caused it to equal dimension j, that index is
reset to zero and the index for dimension j-l is incremented (thereby performing these
three steps recursively), unless j=O, in which case the entire algorithm is terminated.
If incrementing the index for dimension j did not cause it to equal dimension j, then a
space is printed.

l If j < n-l, then an open parenthesis is printed.

This causes the contents to be printed in a format suitable for :initidl-contenta to make-array.
The lists effectively printed by this procedure are subject to truncation by *print-level* and
print-length.

If the orrsy is of a specialized type, containing bits or characters, then the innermost lists gen-
erated by the algorithm given above can instead be printed using bit-vector or string syntax,
provided that these innermost lists would not be subject to truncation by *print-length*.

If both *print-array* and *print-readably* are false, then the urrsy is printed in a format
(using tc) that is concise but not readable.

If *print-readably* is true, the array prints in an implementation-defined manner; see the uari-
able *print-readably*. In particular, this may be important for arrays having some dimension
0.

For information on how the Lisp reader parses these “other arrays,” see Section 2.4.8.12 (Sharp
sign A).

22-8 Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.1.3.9 Examples of Printing Arrays

(let ((a (rake-array ‘(3 3)))
(*print-pretty* t)
(*print-array* t))

(dotines (i 3) (dotimes (j 3) (setf (aref a i j) (format nil “<‘D,‘D>” i j>>>)
(print a)
(print (Bake-array 9 :displaced-to a)))

D #2A((“<0,0>” “<o,l>” “<0.2>“)
D (“‘<loo>” “<l,l>” Vl,,““)
D (“<2,0>” “<2*1>” “<2,2>“))
D #(“<O,O>” “<o,l>” “<0,2>” “<l,o>” “<l,i>” “<1,2>” “<2,0>” “<2,1>” “<2,2>“)
+ #<ARRAY 9 indirect 36363476>

22.1.3.10 Printing Random States

A specific syntax for printing objects of type random-state is not specified. However, every
implementation must arrange to print a random state object in such a way that, within the same
implementation, read can construct from the printed representation a copy of the random state
object as if the copy had been made by make-random-state.

If the type random state is effectively implemented by using the machinery for defstruct, the
usual structure syntax can then be used for printing random state objects; one might look some-
thing like

#S(RANDOn-STATE :DATA #(14 49 98436589 786345 8734658324 . . .))

where the components are implementation-dependent.

22.1.3.11 Printing Pathnames
When printer escaping is enabled, the syntax #P”. . . I’ is how a pathname is printed by write and
the other functions herein described. The ‘I . . .‘I is the namestring representation of the pathname.

When printer escaping is disabled, write writes a pathname P by writing (nanestring P) instead.

For information on how the Lisp reader parses pathnames, see Section 2.4.8.14 (Sharpsign P).

22.1.3.12 Printing Structures
By default, a structure of type S is printed using #S syntax. This behavior can be customized by
specifying a :print-function or :print-object option to the defstruct form that defines S, or by
writing a print-object method that is specialized for objects of type S.

Different structures might print out in different ways; the default notation for structures is:

#S(structurtname {slot-key s/of-value)*)

where xs indicates structure syntax, structure-name is a structure name, each slot-key is an
initialization argument name for a slot in the structure, and each corresponding slot-value is a
representation of the object in that slot.

For information on how the Lisp reader parses structures, 8ee Section 2.4.8.13 (Sharpsign S).

Printer 22-9

ANSI X3.226-1994 Programming Language-Common Lisp

22.1.3.13 Printing Other Objects

Other objects are printed in an implementation-dependent manner. It is not required that an
implementation print those objects readably.

For example, hash tables, readtables, packages, steams, and functions might not print readably.

A common notation to use in this circumstance is t< . . .>. Since #< is not readable by the Lisp
reader, the precise format of the text which follows is not important, but a common format to use
is that provided by the print-unreadable-object macro.

For information on how the Lisp reader treats this notation, see Section 2.4.8.20 (Sharpsign
Less-Than-Sign). For information on how to notate objects that cannot be printed readably, see
Section 2.4.8.6 (Sharpsign Dot).

22.1.4 Examples of Printer Behavior

(let ((*print-escape* t)) (fresh-line) (write *\a))
D *\a
+ #\a

(let ((*print-escape* nil) (*print-readably* nil))
(fresh-line)
(write #\a))

Da

-+ It\a
(progn (fresh-line) (prinl #\a))

D #\a
+ #\a

(progn (fresh-line) (print #\a))
D

D #\a
-b #\a

(progn (fresh-line) (prim *\a))
Da

-+ t\a

(dolist (val '(t nil))
(let ((*print-escape* val) (*print-readably* val))

(print '#\a)
(prinl #\a) (write-char t\Space)
(prim #\a) (write-char t\Space)
(write #\a)))

D #\a *\a a #\a
D #\a #\a a a
+ UIL

(progn (fresh-line) (write '(let ((a 1) (b 2)) (+ a b))))
D (LET ((A 1) (B 2)) (+ A B))
- (LET ((A 1) (B 2)) (+ A B))

(progn (fresh-line) (pprint '(let ((a 1) (b 2)) (+ a b))))
D (LET ((A 1)
D (B 2))
D (+ A B))
- (LET ((A 1) (B 2)) (+ A B))

22-10 Printer

Programming Language-Common Lisp ANSI X3.226-1994

(progn (fresh-line)
(mite ‘(let ((a 1) (b 2)) (+ a b)) :pretty t))

0 (ET ((A i)
D a 2))
D (+ A B))
- (LET ((A 1) (B 2)) (+ A B))

(with-output-to-string (6)
(write 'write :stream 8)
(prinl 'prinl 8))

-, "URITEPRIIl"

Printer 22-11

ANSI X3.226-1994 Programming Language-Common Lisp

22.2 The Lisp Pretty Printer

22.2.1 Pretty Printer Concepts
The facilities provided by the pretty printer permit programs to redefine the way in which code
is displayed, and allow the full power of pndty printing to be applied to complex combinations of
data structures.

Whether any given style of output is in fact “pretty” is inherently a somewhat subjective issue.
However, since the effect of the pretty printer can be customized by conforming programs, the
necessary flexibility is provided for individual programs to achieve an arbitrary degree of aesthetic
control.

By providing direct access to the mechanisms within the pretty printer that make dynamic
decisions about layout, the macros and functions pprint-logical-block, pprint-newline, and
pprint-indent make it possible to specify pretty printing layout rules as a part of any function
that produces output. They also make it very easy for the detection of circularity and sharing,
and abbreviation based on length and nesting depth to be supported by the function.

The pretty printer is driven entirely by dispatch based on the value of *print-pprint-dispatch*.
The function set-pprint-dispatch makes it possible for conforming programs to associate new
pretty printing functions with a type.

22.2.1.1 Dynamic Control of the Arrangement of Output

The actions of the pretty printer when a piece of output is too large to fit in the space available
can be precisely controlled. Three concepts underlie the way these operations work-logical
blocks, conditional newlines, and sections. Before proceeding further, it is important to
define these terms.

The first line of Figure 22-3 shows a schematic piece of output. Each of the characters in the
output is represented by “-“. The positions of conditional newlines are indicated by digits. The
beginnings and ends of logical blocks are indicated by “<” and ‘5” respectively.

The output as a whole is a logical block and the outermost section. This section is indicated
by the O'S on the second line of Figure 1. Logical blocks nested within the output are speci-
fied by the macro pprint-logical-bloc Conditional newline positions are specified by calls to
pprint-newline. Each conditional newline defines two sections (one before it and one after it) and
is associated with a third (the section immediately containing it).

The section after a conditional newline consists of: all the output up to, but not including, (a)
the next conditional newline immediately contained in the same logical block; or if (a) is not
applicable, (b) the next newline that is at a lesser level of nesting in logical blocks; or if (b) is not
applicable, (c) the end of the output.

The section before a conditional newline consists of: all the output back to, but not including,
(a) the previous conditional newline that is immediately contained in the same logical block; or if
(a) is not applicable, (b) the beginning of the immediately containing logical block. The last four
lines in Figure 1 indicate the sections before and after the four conditional newlines.

The section immediately containing a conditional newline is the shortest section that contains the
conditional newline in question. In Figure 22-3, the first conditional newline is immediately con-
tained in the section marked with O's, the second and third conditional newlines are immediately
contained in the section before the fourth conditional newline, and the fourth conditional newline
is immediately contained in the section after the first conditional newline.

22-12 Printer

Programming Language-Common Lisp ANSI X3.226-1994

~-1---<--<--2---3->-4-->->
000000000000000000000000000
11 111111111111111111111111

22 222
333 3333

44444444444444 44444

Figure 22-3. Example of Logical Blocks, Conditional Newlines, and Sections

Whenever possible, the pretty printer displays the entire contents of a section on a single line.
However, if the section is too long to fit in the space available, line breaks are inserted at condi-
tional newline positions within the section.

22.2.1.2 Format Directive Interface

The primary interface to operations for dynamically determining the arrangement of output is
provided through the functions and macros of the pretty printer. Figure 22-4 shows the defined
names related to pretty printing.

print-lines
print-miser-width
print-pprint-diipatch
print-right-margin
copy-pprint-dispatch
format
formatter

pprint-dispatch
pprint-exit-if&t-exhausted
pprint-fill
pprint-indent
pprint-linear
pprint-logical-block
sprint-newline

pprint-pop
pprint-tab
pprint-tabular
set-pprint-dispatch
write

Figure 224. Defined names related to pretty printing.

Figure 22-5 identifies a set of format directives which serve as an alternate interface to the same
pretty printing operations in a more textually compact form.

-1 ‘C...‘:>
‘:T II..., I

Figure 22-5. Format directives related to Pretty Printing

22.2.1.3 Compiling Format Strings

A format string is essentially a program in a special-purpose language that performs printing,
and that is interpreted by the function format. The formatter macro provides the efficiency of
using a compiled function to do that same printing but without losing the textual compactness of
format strings.

A format control is either a format string or a function that was returned by the the formatter
macro.

Printer 22-13

ANSI X3.226-1994 Programming Language-Common Lisp

22.2.1.4 Pretty Print Dispatch Tables

A pprint dispatch table is a mapping from keys to pairs of values. Each key is a type specifier.
The values associated with a key are a “function” (specifically, a fin&on designator or nil) and a
“numerical priority” (specifically, a nol). Basic insertion and retrieval is done based on the keys
with the equality of keys being tested by equal.

When *print-pretty* is true, the current pprint dispatch table (in *print-pprint-dispatch*)
controls how objects are printed. The information in this table takes precedence over all other
mechanisms for specifying how to print objects. In particular, it has priority over user-defined
print-object methods because the cumnt pprint dispatch table is consulted first.

The function is chosen from the cumnt pprint dispatch table by finding the highest priority
function that is sssociated with a type specifier that matches the object; if there is more than one
such function, it is implementation-dependent which is used.

However, if there is no information in the table about how to pretty print a particular kind
of object, a function is invoked which uses print-object to print the object. The value of
print-pretty is still true when thii function is called, and individual methods for print-object
might still elect to produce output in a special format conditional on the value of *print-pretty*.

22.2.1.5 Pretty Printer Margins
A primary goal of pretty printing is to keep the output between a pair of margins. The column
where the output begins is taken as the left margin. If the current column cannot be determined
at the time output begins, the left margin is assumed to be zero. The right margin is controlled
by *print-right-margin*.

22.2.2 Examples of using the Pretty Printer
As an example of the interaction of logical blocks, conditional newlines, and indentation, consider
the function simple-pprint-defun below. This function prints out lists whose cars are defun in
the standard way assuming that the list has exactly length 4.

(defun simple-pprint-defun (*standard-output* list)
(pprint-logical-block (*standard-output* list :prefix "('I :suffix ")")

(mite (first list))
(vrite-char #\Space)
(pprint-newline :miser)
(pprint-indent :current 0)
(write (second list))
(vrite-char X\Space)
(pprint-neuline :fill)
(write (third list))
(pprint-indent :block 1)
(write-char #\Space)
(pprint-nevline :linear)
(write (fourth list))))

Suppose that one evaluates the following:

(simple-pprint-defun *standard-output* '(defun prod (x y) (8 x y)))

If the line width available is greater than or equal to 26, then all of the output appears on
one line. If the line width available is reduced to 25, a line break is inserted at the linear-
style conditional newline before the ezpression (* x y), producing the output shown. The
(pprint-indent :block 1) causes (* x y) to be printed at a relative indentation of 1 in the
logical block.

22-14 Printer

Programming Language-Common Lisp ANSI X3.226-1994

(DEPUX PROD (X Y)
(* x Y))

If the line width available is 15, a line break is also inserted at the fill style conditional newline
before the argument list. The call on (pprint-indent :current O) causes the argument list to line
up under the function name.

(DEPUII PROD
(X Y)

(* x Y))

If *print-miser-width* were greater than or equal to 14, the example output above would have
been as follows, because all indentation changes are ignored in miser mode and line breaks are
inserted at miser-style conditional newlines.

(DEPUH
PROD
(X Y)
(* x Y))

As an example of a per-line prefix, consider that evaluating the following produces the output
shown with a line width of 20 and *print-miser-width* of nil.

(pprint-logical-block (*standard-output* nil :per-line-pref ix ‘I; ; ; *I)
(simple-pprint-defun *standard-output* ‘(defun prod (x y) (* x y))))

;;; (DEF’UBJ PROD
;;; (X Y)
;;; (* x Y))

As a more complex (and realistic) example, consider the function pprint-let below. This speci-
fies how to print a let joma in the traditional style. It is more complex than the example above,
because it has to deal with nested structure. Also, unlike the example above it contains com-
plete code to readably print any possible list that begins with the symbol let. The outermost
pprint-logical-block form handles the printing of the input list as a whole and specifies that
parentheses should be printed in the output. The second pprint-logical-block form handles the
list of binding pairs. Each pair in the list is itself printed by the innermost pprint-logical-block.
(A loop jonn is used instead of merely decomposing the pair into two objects so that readable
output will be produced no matter whether the list corresponding to the pair has one element,
two elements, or (being malformed) has more than two elements.) A space and a fill-style con-
ditional newline are placed after each pair except the last. The loop at the end of the topmost
pprint-logical-block form prints out the forms in the body of the let jomr separated by spaces
and linear-style conditional newlines.

Printer 22-15

ANSI X3.226-1994 Progra,mming Language-Common Lisp

(defuu pprint-let (*standard-output* list)
(pprint-logical-block (nil list :prefix 'I(" :suffix "I")

(write (ppriut-pop))
(pprint-exit-if-list-exhausted)
(write-char *\Space)
(ppriut-logical-block (nil (pprint-pop) :prefix "(" :suffix "I")

(ppriut-exit-if-list-exhausted)
(loop (pprint-logical-block (nil (pprint-pop) :prefix "(11 :SUffiX "1")

(ppriut-exit-if-list-exhausted)
(loop (write (pprint-pop))

(ppriut-exit-if-list-exhausted)
(write-char *\Space)
(ppriut-neoline :liuear)))

(pprint-exit-if-list-exhausted)
(urite-char #\Space)
(pprint-newline :fillI))

(ppriut-indent :block 1)
(loop (pprint-exit-if-list-exhausted)

(write-char #\Space)
(pprint-newline :linear)
(write (pprint-pop) 1) 11

Suppose that one evaluates the following with *print-level* being 4, and *print-circle* being
tme.

(pprint-let *standard-output*
'#l=(let (x (*print-length* (f (g 3)))

(z . 2) (k (car J)))
(setq x (sqrt z)) *lt)I

If the line length is greater than or equal to 77, the output produced appears on one line. How-
ever, if the line length is 76, line breaks are inserted at the linear-style conditional newlines
separating the forms in the body and the output below is produced. Note that, the degenerate
binding pair x is printed readably even though it fails to be a list; a depth abbreviation marker
is printed in place of (g 3); the binding pair (z . 2) is printed readably even though it is not a
proper list; and appropriate circularity markers are printed.

~i=am (x (*PR~RT-~RRGTR* (F *)I (2 . 2) (x (cm T)))
cxrc~ x (SPRT z))
#l#)

If the line length is reduced to 35, a line break is inserted at one of the fill-style conditional
newlines separating the binding pairs.

Itl=(LRT (X (*PRIRT-PRRTTT* (F #))
(Z . 2) (K (CAR Y)))

(SRTQ X (SORT Z))
#l#)

Suppose that the line length is further reduced to 22 and *print-length* is set to 3. In thii
situation, line breaks are inserted after both the first and second binding pairs. In addition, the
second binding pair is itself broken across two lines. Clause (b) of the description of fill-style
conditional newlines (see the function pprint-newline) prevents the binding pair (z . 2) from
being printed at the end of the third line. Note that the length abbreviation hides the circularity
from view and therefore the printing of circularity markers disappears.

22-16 Printer

Programming Language-Common Lisp ANSI X3.226-1994

(LET (X
(*PRIkT-LEMmi*

(F SC))
(Z . 2) . ..)

(SETQ X (SQRT Z))
. . . 1

The next function prints a vector using “t(. . .)” notation.

(defun pprint-vector (*standard-output* V)

(ppriut-logical-block (nil nil :prefix "S(" :s.uffix "1")
(let ((end (length v)) (i 0))

(vhen (plusp end)
(loop (pprint-pop)

(write (aref v i))
(if (= (incf i) end) (return nil))
(vrite-char *\Space)
(pprint-neoline :fill))))))

Evaluating the following with a line length of 15 produces the output shown.

(pprint-vector *standard-output* '#(I2 34 567 8 9012 34 567 89 0 1 23))

t(12 34 567 8
9012 34 567
89 0 1 23)

As examples of the convenience of specifying pretty printing with format strings, consider that
the functions simple-pprint-defun and pprint-let used as examples above can be compactly
defined as follows. (The function pprint-vector cannot be defined using format because the data
structure it traverses is not a list.)

(defun simple-pprint-defuu (*standard-output* list)
(format T "':<'U 'Q-':1-U ':,'V'lI ','Y':>" list))

(defun pprint-let (*standard-output* list)
(format T "':<'U"A':<'Q~':<'O~'Y'"'_')':>~~~:-')':>~lI~~~~*~~~U~~~:>" list))

In the following example, the first form restores *print-pprint-dispatch* to the equivalent of its
initial value. The next two forms then set up a special way to pretty print ratios. Note that the
more specific type specifier has to be associated with a higher priority.

(setq *print-pprint-dispatchh* (copy-ppriut-dispatch nil))

(set-pprint-dispatch ‘ratio
*‘(lambda (s obj)

(format 8 "#.(/ 'U 'U)"
(numerator obj) (denominator obj))))

(set-pprint-dispatch ‘(and ratio (satisfies rinusp))
#‘(lambda (s obj)

(format 8 I’#. (- (/ ‘If 7)) ‘I
(- (numerator obj)) (denominator obj)))

5)

(pprint '(l/3 -2/3))
(a.(/ 13) #.(- (/ 2 3)))

Printer 22-17

ANSI X3.226-1994 Programming LanguageCommon Lisp

The following two forms illustrate the definition of pretty printing functions for types of code.
The first form illustrates how to specify the traditional method for printing quoted objects using
single-quote. Note the care taken to ensure that data lists that happen to begin with quote will
be printed readably. The second form specifies that lists beginning with the symbol my-let should
print the same way that lists beginning with let print when the initial pprint dispatch iable is in
effect.

(set-pprint-dispatch '(cons (member quote)) 0
*'(lambda (a list)

(if (and (consp (cdr list)) (null (cddr list)))
(funcall (formatter "*-U") 8 (cadr list))
(pprint-fill 8 list))))

(set-pprint-dispatch '(cons (member my-let))
(pprint-dispatch * (let) nil) 1

The next example specifies a default method for printing lists that do not correspond to function
calls. Note that the functions pprint-linear, pprint-fill, and pprint-tabular are all defined with
optional colon-p and at-sign-p arguments so that they can be used as pprint dispatch functions
as well as ‘/. . ./ functions.

(set-pprint-dispatch '(cons (not (and symbol (satisfies fboundp))))
t'pprint-fill -5)

;; Assume a line length of 9
(pprint '(0 b c d e f g h i j k))
(Obcd
efgh
i j k)

This final example shows how to define a pretty printing function for a user defined data struc-
ture.

(defstruct family mom kids)

(set-pprint-dispatch 'family
#y(la8bda (8 f>

(funcall (formatter "'QCt<';'U and '21'~-/pprint-fill/';>':>")
8 (family-mom f) (family-kids f))))

The pretty printing function for the structure family specifies how to adjust the layout of the out-
put so that it can fit aesthetically into a variety of line widths. In addition, it obeys the printer
control variables *print-level*, *print-length*, *print-lines*, *print-circle* and *print-escape*,
and can tolerate several different kinds of malformity in the data structure. The output below
shows what is printed out with a right margin of 25, *print-pretty* being true, *print-escape*
being false, and a malformed kids list.

(vrite (list 'principal-family
(make-family :~om "Lucy"

:kide *('Wark" "Bobt' . "Dan")))
:right-margin 25 :pretty T :escape nil :riser-vidthnil)

(PRIHCIPAL-FAMILY
#<Lucy and

Xark Bob . Dan>)

22-18 Printer

Programming Language-Common Lisp ANSI X3.226-I994

Note that a pretty printing function for a structure is different from the structure’s print-object
method. While print-object methods are permanently associated with a structure, pretty printing
functions are stored in pprint dispofch tables and can be rapidly changed to reflect different
printing needs. If there is no pretty printing function for a structure in the current pprint dispatch
table, its print-object method is used instead.

22.2.3 Notes about the Pretty Printer’s Background
For a background reference to the abstract concepts detailed in this section, see XP: A Common
Lisp Pretty Printing System. The details of that paper are not binding on this document, but
may be helpful in establishing a conceptual basis for understanding this material.

Printer 22-19

ANSI X3.226-1994 Programming Language-Common Lisp

22.3 Formatted Output
format is useful for producing nicely formatted text, producing good-looking messages, and so on.
format can genera&and ret& a &ring or output to destination.

The contra/-string argument to format is actually a format codrol. That is, it can be either a
format string or a function, for example a funciion returned by the formatter macro.

If it is a function, the junction is called with the appropriate output stream as its first argument
and the data arguments to format as its remaining arguments. The function should perform
whatever output is necessary and return the unused tail of the arguments (if any).

The compilation process performed by forrhatter produces a funciion that would do with its
arguments as the format interpreter would do with those arguments.

The remainder of this section describes what happens if the control-string is a format string.

Control-string is composed of simple text (characters) and embedded directives.

format writes the simple text as is; each embedded directive specifies further text output that
is to appear at the corresponding point within the simple text. Most directives use one or more
elements of args to create their output.

A directive consists of a Me, optional prefix parameters separated by commas, optional colon
and at-sign modifiers, and a single character indicating what kind of directive this is. There is
no required ordering between the at-sign and colon modifier. The case of the directive character
is ignored. Prefix parameters are notated as signed (sign is optional) decimal numbers, or as
a single-quote followed by a character. For example, -5, *Od can be used to print an integer in
decimal radix in five columns with leading zeros, or -5, **d to get leading asterisks.

In place of a prefix parameter to a directive, v (or v) can be used. In this case, format takes
an argument from args as a parameter to the directive. The argument should be an integer or
character. If the arg used by a v parameter is nil, the effect is as if the parameter had been
omitted. t can be used in place of a prefix parameter; it represents the number of args remaining
to be processed. When used within a recursive format, in the context of ‘? or ‘<, the it prefix
parameter represents the number of format arguments remaining within the recursive call.

Examples of formal strings:

M’S”
fl-3,-4:Qs"

,t - ,+4v

;This is an S directive with no parameters or modifiers.
;This is an S directive with two parameters, 3 and -4,
; and both the colon and at-sign flags.
;Here the first prefix parameter is omitted and takes
; on its default value, while the second parameter is 4.

Figure 22-6. Examples of format control strings

format sends the output to destination. If destination is nil, format creates and returns a string
containing the output from control-string. If destination is non-nil, it must be a siring with a
fill pointer, a stream, or the symbol t. If destination is a string with a fill pointer, the output is
added to the end of the string. If destination is a stream, the output is sent to that stream. If
destination is t, the output is sent to standard output.

In the description of the directives that follows, the term arg in general refers to the next item
of the set of args to be processed. The word or phrase at the beginning of each description is a
mnemonic for the directive. format directives do not bind any of the printer control variables
(*print-...*) except as specified in the following descriptions. Implementations may specify
the binding of new, implementation-specific printer control variables for each format directive,
but they may neither bind any standard printer control variables not specified in description

22-20 Printer

Programming Language-Common Lisp ANSI X3.226-1994

of a format directive nor fail to bind any standard printer control variables as specified in the
description.

22.3.1 FORMAT Basic Output

22.3.1.1 Tilde C: Character
The next arg should be a character; it is printed according to the modifier flags.

‘c prints the characier as if by using write-char if it is a simple characler. Characters
that are not simple are not necessarily printed as if by write-char, but are displayed in an
implementation-defined, abbreviated format. For example,

(format nil "'C" #\A) -* “A”
(format nil "'C" #\Space) + m)(

‘:c is the same as ‘C for printing characters, but other characters are “spelled out.” The intent is
that this is a “pretty” format for printing characters. For simple characters that are not printing,
what is spelled out is the name of the chomcter (see char-name). For choruders that are not
simple and not printing, what is spelled out is implemeniation-defined. For example,

(format nil "-:C" #\A) + "A"
(format nil "-:C" t\Space) + "Space"

;; This next example assumes an implementation-defined Tontrol" attribute.
(format nil II-: C" #\Control-Space)

4 "Control-Space"
z ,I c-space"

':QC prints what ‘:c would, and then if the character requires unusual shift keys on the keyboard
to type it, this fact is mentioned. For example,

(format nil "-:OVg t\Control-Partial) -+ "Control-8 (Top-F)”

This is the format used for telling the user about a key he is expected to type, in prompts, for
instance. The precise output may depend not only on the implementation, but on the particular
I/O devices in use.

'OC prints the character in a way that the Lisp reader can understand, using #\ syntax.

'OC binds *print-escape* to t.

22.3.1.2 Tilde Percent: Newline
This outputs a #\Neuline character, thereby terminating the current output line and beginning a
new one. ‘nX outputs n newlines. No arg is used.

22.3.1.3 Tilde Ampersand: Fresh-Line

Unless it can be determined that the output stream is already at the beginning of a line, this
outputs a newline. ‘nt calls fresh-line and then outputs n-l newlines. ‘Ot does nothing.

22.3.1.4 Tilde Vertical-Bar: Page

This outputs a page separator character, if possible. -RI does this n times.

Printer 22-21

ANSI X3.226-1994 Programming Language-Common Lisp

22.3.1.5 Tilde Tilde: Tilde

This outputs a tilde. ‘n’ outputs n tildes.

22.3.2 FORMAT Radix Control

22.3.2.1 Tilde R: Radix

-nft prints erg in radix n. The modifier flags and any remaining parameters are used as for the ‘D
directive. ‘D is the same as '1OR. The full form is ‘radiz, mincol ,padchar, commachar, comma-inten

If no prefix parameters are given to -IL, then a different interpretation is given. The argument
should be an integer. For example, if arg is 4:

0 ‘R prints arg as a cardinal English number: four.

0 - : R prints arg as an ordinal English number: fourth

l 'QR prints erg as a Roman numeral: IV.

l -:OR prints arg as an old Roman numeral: 1111.

For example:

(format nil *I-,,' ,4:B" 13) + "1101"
(format nil "-,,' ,4:B" 17) -+ "1 0001"
(format nil "'19,0,' ,4:B" 3333) 4 "0000 1101 0000 0101"
(format nil "-3,,,' ,2:R" 17) -+ "1 22"
(format nil "-,,'1,2:D" *xFFFF) -+ "6155135"

If and only if the first parameter, n, is supplied, 'R hinds *print-escape* to fake, *print-radix*
to false, *print-base* to n, and *print-readably* to fake.

If and only if no parameters are supplied, 'R binds *print-base* to 10.

22.3.2.2 Tilde D: Decimal

An arg, which should be an integer, is printed in decimal radix. ‘D will never put a decimal point
after the number.

-mincolD uses a column width of mincol; spaces are inserted on the left if the number requires
fewer than mincol columns for its digits and sign, If the number doesn’t fit in mincol columns,
additional columns are used as needed.

-mincol,padcharD uses padchar 89 the pad character instead of space.

If arg is not an integer, it is printed in -A format and decimal base.

The o modifier causes the number’s sign to be printed always; the default is to print it only if
the number is negative. The : modifier causes commas to be printed between groups of digits;
commachar may be used to change the character used as the comma. comma-interval must be an
integer and defaults to 3. When the : modifier is given to any of these directives, the commachar
is printed between groups of comma-interval digits.

Thus the most general form of ‘D is *mincol .padchar , commachar, comma-intervalD.

-D binds *print-escape* to fake, *print-radix* to false, *print-base* to 10, and
print-readably to false.

22-22 Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.3.2.3 Tilde B: Binary

This is just like 'D but prints in binary radii (radix 2) instead of decimal. The full form is
therefore -mincol, padchar, commachar, comma-iniervab.

'B binds *print-escape* to false, *print-radix* to false, *print-base* to 2, and
print-readably to false.

22.3.2.4 Tilde 0: Octal

This is just like 'D but prints in octal radix (radix 8) instead of decimal. The full form is therefore
-mincol ,padchar , commachar, comma-intervah.

-0 binds *print-escape* to false, *print-radix* to false, *print-base* to 8, and
print-readably to false.

22.3.2.5 Tilde X: Hexadecimal

This is just like 'D but prints in hexadecimal radix (radix 16) instead of decimal. The full form is
therefore -mincol, padchar, commachar, comma-intervalx.

‘X binds *print-escape* to false, *print-radix* to false, *print-base* to 16, and
print-readably to false.

22.3.3 FORMAT Floating-Point Printers

22.3.3.1 Tilde F: Fixed-Format Floating-Point

The next arg is printed as a fZoal.

The full form is -w ,d ,k, overfZowchar,padcharF. The parameter w is the width of the field to be
printed; d is the number of digits to print after the decimal point; k is a scale factor that defaults
to zero.

Exactly w characters will be output. First, leading copies of the character padchar (which de-
faults to a space) are printed, if necessary, to pad the field on the left. If the arg is negative, then
a minus sign is printed; if the arg is not negative, then a plus sign is printed if and only if the Q
modifier was supplied. Then a sequence of digits, containing a single embedded decimal point,
is printed; this represents the magnitude of the value of arg times lo’, rounded to d fractional
digits. When rounding up and rounding down would produce printed values equidistant from the
scaled value of arg, then the implementation is free to use either one. For example, printing the
argument 6.375 using the format '4,2F may correctly produce either 6.37 or 6.38. Leading zeros
are not permitted, except that a single zero digit is output before the decimal point if the printed
value is leas than one, and this single zero digit is not output at all if w=d+l.

If it is impossible to print the value in the required format in a field of width w, then one of two
actions is taken. If the parameter overflowchar is supplied, then w copies of that parameter are
printed instead of the scaled value of arg. If the overflowchar parameter is omitted, then the
scaled value is printed using more than w characters, as many more as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect, a value is chosen for
w in such a way that no leading pad characters need to be printed and exactly d characters will
follow the decimal point. For example, the directive - ,2F will print exactly two digits after the
decimal point and as many as necessary before the decimal point.

If the parameter d is omitted, then there is no constraint on the number of digits to appear
after the decimal point. A value is chosen for d in such a way that as many digits as possible

Printer 22-23

ANSI X3.226- 1994 Programming Language-Common Lisp

may be printed subject to the width constraint imposed by the parameter w and the constraint
that no trailing zero digits may appear in the fraction, except that if the fraction to be printed
is zero, then a single zero digit should appear after the decimal point if permitted by the width
constraint.

If both w and d are omitted, then the effect is to print the value using ordinary free-format
output; prinl uses this format for any number whose magnitude is either zero or between 10e3
(inclusive) and 10’ (exclusive).

If w is omitted, then if the magnitude of arg is so large (or, if d is also omitted, so small) that
more than 100 digits would have to be printed, then an implgmentation is free, at its discre-
tion, to print the number using exponential notation instead, as if by the directive ‘E (with all
parameters to ‘E defaulted, not taking their values from the ‘F directive).

If arg is a rational number, then it is coerced to be a single float and then printed. Alternatively,
an implementation is permitted to process a rational number by any other method that has
essentially the same behavior but avoids loss of precision or overflow because of the coercion. If
w and d are not supplied and the number has no exact decimal representation, for example l/3,
some precision cutoff must be chosen by the implementation since only a finite number of digits
may be printed.

If erg is a complex number or some non-numeric object, then it is printed using the format
directive *wD, thereby printing it in decimal radix and a minimum field width of w.

‘F binds *print-escape* to false and *print-readably* to false.

22.3.3.2 Tilde E: Exponential Floating-Point

The next arg is printed as a float in exponential notation.

The full form is - w , d , e , k , overflowchar ,padchar , exponentchurl. The parameter w is the width
of the field to be printed; d is the number of digits to print after the decimal point; e is the
number of digits to use when printing the exponent; k is a scale factor that defaults to one (not
zero).

Exactly w characters will be output. First, leading copies of the character padchar (which de-
faults to a space) are printed, if necessary, to pad the field on the left. If the erg is negative, then
a minus sign is printed; if the arg is not negative, then a plus sign is printed if and only if the
Q modifier was supplied. Then a sequence of digits containing a single embedded decimal point
is printed. The form of this sequence of digits depends on the scale factor k. If k is zero, then
d digits are printed after the decimal point, and a single zero digit appears before the decimal
point if the total field width will permit it. If k is positive, then it must be strictly less than d+2;
k significant digits are printed before the decimal point, and d-k+1 digits are printed after the
decimal point. If k is negative, then it must be strictly greater than -d; a single zero digit ap
pears before the decimal point if the total field width will permit it, and after the decimal point
are printed first -k zeros and then d+k significant digits. The printed fraction must be properly
rounded. When rounding up and rounding down would produce printed values equidistant from
the scaled value of urg, then the implementation is free to use either one. For example, printing
the argument 637.5 using the format ‘8,2E may correctly produce either 6.3712+2 or 6.38E+2.

Following the digit sequence, the exponent is printed. First the character parameter ezponentchar
is printed; if this parameter is omitted, then the exponent marker that prinl would use is printed,
as determined from the type of the float and the current value of *read-default-float-format*.
Next, either a plus sign or a minus sign is printed, followed by e digits representing the power of
ten by which the printed fraction must be multiplied to properly represent the rounded value of
arg .

If it is impossible to print the value in the required format in a field of width w, possibly because
k is too large or too small or because the exponent cannot be printed in e character positions,

22-24 Printer

Programming LanguageCommon Lisp ANSI X3.226- 1994

then one of two actions is taken. If the parameter overj?owchor is supplied, then w copies of
that parameter are printed instead of the scaled value of arg. If the oueflowchar parameter is
omitted, then the scaled value is printed using more than w characters, as many more as may
be needed; if the problem is that d is too small for the supplied k or that e is too small, then a
larger value is used for d or e as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect a value is chosen for w
in such a way that no leading pad characters need to be printed.

If the parameter d is omitted, then there is no constraint on the number of digits to appear. A
value is chosen for d in such a way that as many digits as possible may be printed subject to
the width constraint imposed by the parameter w, the constraint of the scale factor k, and the
constraint that no trailing zero digits may appear in the fraction, except that if the fraction to be
printed is zero then a single zero digit should appear after the decimal point.

If the parameter e is omitted, then the exponent is printed using the smallest number of digits
necessary to represent its value.

If all of w, d, and e are omitted, then the effect is to print the value using ordinary free-format
exponential-notation output; prinl uses a similar format for any non-zero number whose magni-
tude is less than low3 or greater than or equal to 107. The only difference is that the ‘E directive
always prints a plus or minus sign in front of the exponent, while prinl omits the plus sign if the
exponent is non-negative.

If arg is a raiional number, then it is coerced to be a single j?oot and then printed. Alternatively,
an implementation is permitted to process a rational number by any other method that has
essentially the same behavior but avoids loss of precision or overflow because of the coercion. If w
and d are unsupplied and the number has no exact decimal representation, for example l/3, some
precision cutoff must be chosen by the implementation since only a finite number of digits may be
printed.

If arg is a complez number or some non-numeric object, then it is printed using the format
directive ‘wD, thereby printing it in decimal radii and a minimum field width of w.

‘E binds *print-escape* to false and *print-readably* to false.

22.3.3.3 Tilde G: General Floating-Point
The next arg is printed as a float in either fixed-format or exponential notation as appropriate.

The full form is - w , d, e , k, overflowchar ,padchar , exponentchafi. The format in which to print
arg depends on the magnitude (absolute value) of the arg. Let n be an integer such that 10””
< largl < 10”. Let ee equal e+2, or 4 if e is omitted. Let ww equal w-ee, or nil if w is omitted.
If d is omitted, first let q be the number of digits needed to print arg with no loss of information
and without leading or trailing zeros; then let d equal (max q (min n 7)). Let dd equal d-n.

If 0 5 dd s d, then aTg is printed as if by the format directives

-ww , dd, , overjiowchar ,padcharF’eeOT

Note that the scale factor k is not passed to the ‘F directive. For all other values of dd, arg is
printed as if by the format directive

- w , d, e , k , overflowchar, padchar, exponentchurl

In either case, an Q modifier is supplied to the ‘F or ‘E directive if and only if one was supplied to
the ‘G directive.

‘G binds *print-escape* to false and *print-readably* to false.

Printer 22-25

ANSI X3.226-1994 Programming Language-Common Lisp

22.3.3.4 Tilde Dollarsign: Monetary Floating-Point

The next arg is printed as a j?oai in fixed-format notation.

The full form is -d .n. w.padchar$. The parameter d is the number of digits to print after the
decimal point (default value 2); II is the minimum number of digits to print before the decimal
point (default value 1); w is the minimum total width of the field to be printed (default value 0).

First padding and the sign are output. If the arg is negative, then a minus sign is printed; if the
arg is not negative, then a plus sign is printed if and only if the o modifier was supplied. If the
: modifier is used, the sign appears before any padding, and otherwise after the padding. If w is
supplied and the number of other characters to be output is less than w, then copies of padchar
(which defaults to a space) are output to make the total field width equal w. Then n digits are
printed for the integer part of arg, with leading zeros if necessary; then a decimal point; then d
digits of fraction, properly rounded.

If the magnitude of arg is so large that more than m digits would have to be printed, where m
is the larger of w and 100, then an implementation is free, at its discretion, to print the number
using exponential notation instead, as if by the directive -w , q, , , ,padchar~, where w and padchar
are present or omitted according to whether they were present or omitted in the ‘$ directive, and
where q=d+n-1, where d and n are the (possibly default) values given to the ‘$ directive.

If arg is a rational number, then it is coerced to be a single fZoat and then printed. Alternatively,
an implementation is permitted to process a rational number by any other method that has
essentially the same behavior but avoids loss of precision or overflow because of the coercion.

If arg is a complez number or some non-numeric object, then it is printed using the format
directive ‘WD, thereby printing it in decimal radix and a minimum field width of w.

‘$ binds *print-escape* to false and *print-readably* to false.

22.3.4 FORMAT Printer Operations

22.3.4.1 Tilde A: Aesthetic

An arg, any object, is printed without escape characters (as by print). If arg is a string, its
characters will be output verbatim. If arg is nil it will be printed as nil; the colon modifier (‘:A)
will cause an arg of nil to be printed as 0, but if arg is a composite structure, such as a list or
vector, any contained occurrences of nil will still be printed as nil.

-mincolA inserts spaces on the right, if necessary, to make the width at least mincol columns. The
o modifier causes the spaces to be inserted on the left rather than the right.

-mincol, colinc, minpad ,padcharA is the full form of -A, which allows control of the padding. The
string is padded on the right (or on the left if the o modifier is used) with at least minpad copies
of padchar; padding characters are then inserted colinc characters at a time until the total width
is at least mincol. The defaults are o for mincol and minpad, I for colinc, and the space character
for padchar.

-A binds *print-escape* to false, and *print-readably* to false.

22.3.4.2 Tilde S: Standard

This is just like -A, but arg is printed with escape characters (as by prinl rather than priuc).
The output is therefore suitable for input to read. ‘S accepts all the arguments and modifiers
that -A does.

‘S binds *print-escape* to t.

22-26 Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.3.4.3 Tilde W: Write

An argument, any object, is printed obeying every printer control variable (as by write). In
addition, -Y interacts correctly with depth abbreviation, by not resetting the depth counter to
zero. -Y does not accept parameters. If given the colon modifier, ‘Y binds *print-pretty* to true.
If given the at-sign modifier, ‘Y binds *print-level* and *print-length* to nil.

‘Y provides automatic support for the detection of circularity and sharing. If the value of
print-circle is not nil and ‘Y is applied to an argument that is a circular (or shared) refer-
ence, an appropriate Itns marker is inserted in the output instead of printing the argument.

22.3.5 FORMAT Pretty Printer Operations
The following constructs provide access to the pretty printer:

22.3.5.1 Tilde Underscore: Conditional Newline
Without any modifiers, -_ is the same as (pprint-nevline :linear). ‘Q- is the same as
(pprint-nevline :miser). -:- is the same as (pprint-nevline :fill). ‘:a- is the same as
(pprint-nevline :mandatory).

22.3.5.2 Tilde Less-Than-Sign: Logical Block
‘<...‘:>

If - : > is used to terminate a ‘<. . . ->, the directive is equivalent to a call to pprint-logical-block
The argument corresponding to the ‘<. . . - :> directive is treated in the same way as the list
argument to pprint-logical-block, thereby providing automatic support for non-list arguments
and the detection of circularity, sharing, and depth abbreviation. The portion of the control-string
nested within the -<. . .- :> specifies the :prefix (or :per-line-prefix), :suffix, and body of the
pprint-logical-block

The control-string portion enclosed by ‘<. . . -:> can be divided into segments
-<prefix’ ; body’ : suffix- : > by -; directives. If the first section is terminated by -0;) it specifies
a per-line prefix rather than a simple prefix. The prefix and suffix cannot contain format di-
rectives. An error is signaled if either the prefix or suffix fails to be a constant string or if the
enclosed portion is divided into more than three segments.

If the enclosed portion is divided into only two segments, the suffix defaults to the null string. If
the enclosed portion consists of only a single segment, both the prefix and the suffix default to the
null string. If the colon modifier is used (i.e., - : < . . . -:a), the prefix and suffix default to “(” and
“1” (respectively) instead of the null string.

The body segment can be any arbitrary fomat string. This fomat string is applied to the
elements of the list corresponding to the ‘<. . . -: > directive as a whole. Elements are extracted
from this list using pprint-pop, thereby providing automatic support for malformed lists, and the
detection of circularity, sharing, and length abbreviation. Within the body segment, -A acts like
pprint-exit-if-list-exhausted.

-<... -:> supports a feature not supported by pprint-logical-block. If ‘:a> is used to terminate
the directive (i.e., 'c.. . ‘:a>), then a fill-style conditional newline is automatically inserted after
each group of blanks immediately contained in the body (except for blanks after a (Newline)
directive). This makes it easy to achieve the equivalent of paragraph filling.

If the at-sign modifier is used with ‘<. . . - :>, the entire remaining argument list is passed to the
directive as its argument. All of the remaining arguments are always consumed by -Q<. . . - :>,
even if they are not all used by the format string nested in the directive. Other than the differ-
ence in its argument, ‘0~. . . ‘:> is exactly the same as ‘<. . . -: > except that circularity detection

Printer 22-27

ANSI X3.226-1994 Programming Language-Common Lisp

is not applied if ‘Q<. . . -:> is encountered at top level in a format string. This ensures that circu-
larity detection is applied only to data lists, not to format argument lists.

88 . sn#” is printed if circularity or sharing has to be indicated for its argument as a whole.

To a considerable extent, the basic form of the directive ‘<. . . ‘> is incompatible with the dynamic
control of the arrangement of output by -Y, --, ‘<. . . - :>, -I, and ’ :T. As a result, an error is
signaled if any of these directives is nested within ‘<. . . ‘>. Beyond this, an error is also signaled if
the -<...-:;...->formof’<... ‘> is used in the same format string with -Y, --, ‘<. . .‘:>, -I, or
-:T.

See also Section 22.3.6.2 (Tilde Less-Than-Sign: Justification).

22.3.5.3 Tilde I: Indent

‘nI is the same as (pprint-indent :block n).

'n:~ is the same as (pprint-indent :current n). In both cases, n defaults to zero, if it is omitted.

22.3.5.4 Tilde Slash: Call Function
‘/name/

User defined functions can be called from within a format string by using the directive -/name/.
The colon modifier, the at-sign modifier, and arbitrarily many parameters can be specified with
the ‘/name/ directive. name can be any arbitrary string that does not contain a “/n. All of the
characters in name are treated as if they were upper case. If name contains a single colon (:) or
double colon (: :), then everything up to but not including the first gs:re or 81::01 is taken to be a
string that names a package. Everything after the first I’:@’ or ‘I: :” (if any) is taken to be a string
that names a symbol. The function corresponding to a ‘/name/ directive is obtained by looking up
the symbol that has the indicated name in the indicated package. If name does not contain a n:O’
or ‘1: :‘I, then the whole name string is looked up in the COMMOl-LISP-USER package.

When a ‘/name/ directive is encountered, the indicated function is called with four or more argu-
ments. The first four arguments are: the output stream, the format argument corresponding to
the directive, a generalized boolean that is true if the colon modifier was used, and a genemlized
boolean that is true if the at-sign modifier was used. The remaining arguments consist of any
parameters specified with the directive. The function should print the argument appropriately.
Any values returned by the function are ignored.

The three functions pprint-linear, pprint-fill, and pprint-tabular are specifkally de-
signed so that they can be called by ‘/ . . ./ (i.e., ‘/pprint-linear/, ‘/pprint-fill/, and
‘/pprint-tabular/). In particular they take colon and at-sign arguments.

22.3.6 FORMAT Layout Control

22.3.6.1 Tilde T: Tabulate

This spaces over to a given column. -colnum, colincT will output sufficient spaces to move the
cursor to column colnum. If the cursor is already at or beyond column colnum, it will output
spaces to move it to column colnum+k*colinc for the smallest positive integer k possible, unless
colinc is zero, in which case no spaces are output if the cursor is already at or beyond column
colnum. coinum and colinc default to 1.

if for some reason the current absolute column position cannot be determined by direct inquiry,
format may be able to deduce the current column position by noting that certain directives
(such as ‘X, or -t, or ‘A with the argument being a string containing a newline) cause the column

22-28 Printer

Programming Language-Common Lisp ANSI X3.226-1994

position to be reset to zero, and counting the number of characters emitted since that point. If
that fails, format may attempt a similar deduction on the riskier assumption that the destination
was at column zero when format was invoked. If even this heuristic fails or is implementationally
inconvenient, at worst the ‘T operation will simply output two spaces.

'QT performs relative tabulation. -colrel, colinc@T outputs colrel spaces and then outputs the
smallest non-negative number of additional spaces necessary to move the cursor to a column that
is a multiple of colinc. For example, the directive ‘3,8@T outputs three spaces and then moves
the cursor to a “standard multiple-of-eight tab stop” if not at one already. If the current output
column cannot be determined, however, then colinc is ignored, and exactly colrel spaces are
output.

If the colon modifier is used with the ‘T directive, the tabbing computation is done relative to
the horizontal position where the section immediately containing the directive begins, rather than
with respect to a horizontal position of zero. The numerical parameters are both interpreted as
being in units of ems and both default to 1. ‘n,m:T is the same as (pprint-tab :section n m).
-n,m:OT is the same as (pprint-tab :section-relative n m).

22.3.6.2 Tilde Less-Than-Sign: Justification
-mincol, colinc, minpad ,padchartstr’>

This justifies the text produced by processing str within a field at least mincol columns wide. str
may be divided up into segments with -;, in which case the spacing is evenly divided between the
text segments.

With no modifiers, the leftmost text segment is left justified in the field, and the rightmost text
segment is right justified. If there is only one text element, as a special case, it is right justified.
The : modifier causes spacing to be introduced before the first text segment; the Q modifier
causes spacing to be added after the last. The minpad parameter (default 0) is the minimum
number of padding characters to be output between each segment. The padding character is
supplied by padchar, which defaults to the space character. If the total width needed to satisfy
these constraints is greater than mincol, then the width used is mincol+k*colinc for the smallest
possible non-negative integer value k. colinc defaults to 1, and mincol defaults to 0.

Note that str may include format directives. All the clauses in str are processed in order; it is the
resulting pieces of text that are justified.

The -A directive may be used to terminate processing of the clauses prematurely, in which case
only the completely processed clauses are justified.

If the first clause of a ‘< is terminated with - : ; instead of - ; , then it is used in a special way. All
of the clauses are processed (subject to -A, of course), but the first one is not used in performing
the spacing and padding. When the padded result has been determined, then if it will fit on the
current line of output, it is output, and the text for the first clause is discarded. If, however, the
padded text will@ot fit on the current line, then the text segment for the first clause is output
before the padded text. The first clause ought to contain a newline (such as a ‘X directive). The
first clause is always processed, and so any arguments it refers to will be used; the decision is
whether to use the resulting segment of text, not whether to process the first clause. If the -: ;
has a prefix parameter n, then the padded text must fit on the current line with n character
positions to spare to avoid outputting the first clause’s text. For example, the control string

II’./;; -c-<-x;; -1:; -s’>-A,-).-p

can be used to print a list of items separated by commas without breaking items over line bound-
aries, beginning each line with ; ; . The prefix parameter 1 in ‘1: ; accounts for the width of the
comma that will follow the justified item if it is not the last element in the list, or the period if it
is If - : ; has a second prefix parameter, then it is used as the width of the line, thus overriding

Printer 22-29

-. -. ..- .-._..-:.. ---l’;:.A-

ANSI X3.226-1994 Programming Language-Common Lisp

the natural line width of the output stream . To make the preceding example use a line width of
50, one would write

q;; '{'c-x;; -1,so:; 'S'>'",') .'X"

If the second argument is not supplied, then format uses the line width of the destination output
stream . If this cannot be determ ined (for example, when producing a string result), then format
uses 72 as the line length.

See also Section 22.3.5.2 (Tilde Less-Than-Sign: Logical Block).

22.3.6.3 Tilde Greater-Than-Sign: End of Justification

‘> term inates a ‘<. The consequences of using it elsewhere are undefined.

22.3.7 FORMAT Control-Flow Operations

22.3.7.1 Tilde Asterisk: Go-To

The next arg is ignored. ‘n* ignores the next n arguments.

- :* backs up in the list of arguments so that the argument last processed will be processed again.
-n:* backs up n arguments.

When within a ‘(construct (see below), the ignoring (in either direction) is relative to the list of
arguments being processed by the iteration.

‘n@* goes to the nth erg, where 0 means the first one; n defaults to 0, so ‘Q* goes back to the
first arg. Directives after a ‘n@* will take arguments in sequence beginning with the one gone to.
When within a ‘i construct, the “goto” is relative to the list of arguments being processed by the
iteration.

22.3.7.2 Tilde Left-Bracket: Conditional Expression

This is a set of control strings, called clauses, one of which is chosen and used. The clauses are
separated by -; and the construct is term inated by ‘I. For example,

"'CSiacleae';Ilanx';Persian'l Cat"

The argth clause is selected, where the first clause is number 0. If a prellx parameter is given (as
‘TIC), then the parameter is used instead of an argument. If arg is out of range then no clause is
selected and no error is signaled. After the selected altern@ive has been processed, the control
string continues after the ‘1.

‘CstrO’;strl’;...‘;stm ’:; default-l has a default case. If the last -; used to separate clauses is
-: ; instead, then the last clause is an else clause that is performed if no other clause is selected.
For example:

“‘CSiaPlese’;Manx’;Persian’: ;Alley’J Cat”

-: Calternatiwe’;consequent’l selects the alternative control string if arg is false, and selects the
consequent control string otherwise.

‘~Cconsequent’l tests the argument. If it is true, then the argument is not used up by the ‘I
command but remains as the next one to be processed, and the one clause consequent is pro-
cessed. If the arg is false, then the argument is used up, and the clause is not processed. The

22-30 Printer

Programming Language-Common Lisp ANSI X3.226-1994

clause therefore should normally use exactly one argument, and may expect it to be non-nil. For
example:

(setq *print-level* nil *print-length* 5)
(format nil

“‘Of print level = ‘D-1 ‘a[print length = 'D-1 "
print-level *print-length*)

+ ” print length = 5"

Note also that

(format stream I’. . . ‘Q [str’] . . . ‘I . . .)
G (format stream ‘I.. .-: [‘;‘:*str’] . . .@I . . .)

The combination of ‘[and # is useful, for example, for dealing with English conventions for
printing lists:

(setq foe "Items:-lr[none-; -S'; 'S and 'S'
-:;-O<-#[-; and-] 'S-",-1'1.")

(format nil fool -+ "Items: none."
(format nil foo ‘foe) + "Items: FOO."
(format nil foo 'foe 'bar) -+ "Items: FOCI and BAR."
(format nil foo 'foe 'bar 'baa) -+ "Items: FOO, BAR, and BAZ."
(format nil foo 'foo 'bar 'baz 'quux) + "Items: FOO, BAR, BAZ, and QUUX."

22.3.7.3 Tilde Right-Bracket: End of Conditional Expression

-1 terminates a - 1. The consequences of using it elsewhere are undefined.

22.3.7.4 Tilde Left-Brace: Iteration

This is an iteration construct. The argument should be a list, which is used as a set of arguments
as if for a recursive call to format. The string str is used repeatedly as the control string. Each
iteration can absorb as many elements of the list as it likes as arguments; if sir uses up two
arguments by itself, then two elements of the list will get used up each time around the loop.
If before any iteration step the list is empty, then the iteration is terminated. Also, if a prefix
parameter n is given, then there will be at most n repetitions of processing of str. Finally, the -A
directive can be used to terminate the iteration prematurely.

For example:

(format nil "The vinners are:-< -S-)."
'(fred harry jill))

-+ "The vinners are: FRED HARRY JILL."
(format nil "Pairs:-{ C'S, -S>-3."

‘(a 1 b 2 c 3))
-+ "Pairs: <A,l> <B,2> <C,3>."

‘:Istr-3 is similar, but the argument should be a list of sublists. At each repetition step, one
sublist is used as the set of arguments for processing str; on the next repetition, a new sublist is
used, whether or not all of the last sublist had been processed. For example:

(format nil "Pairs:':{ C'S,'S>').@'
'((a 1) (b 2) (c 3)))

-+ "Pairs: <A,l> <B,2> <C,3>."

‘Nstr’3 is similar to ‘istr’3, but instead of using one argument that is a list, all the remaining
arguments are used as the list of arguments for the iteration. Example:

Printer 22-31

ANSI X3.226-1994 Programming Language-Common Lisp

(fomat nil “Pairs:‘@< <‘S,‘S>‘).” ‘a 1 ‘b 2 ‘C 3)
+ “Pairs: <A,l> <B,2> <C.3>.”

If the iteration is terminated before all the remaining arguments are consumed, then any ar-
guments not processed by the iteration remain to be processed by any directives following the
iteration construct.

‘:oc&‘) combines the features of ‘:fstr’) and ‘~Istr’3. All the remaining arguments are used,
and each one must he a l&i. On each iteration, the next argument is used as a list of arguments
to str. Example:

(fomat nil "Pairs*':OC <‘S,‘S>‘).” .
'(a 1) '(b 2) '(c 3))

-+ "Pairs: <A,l> <B,2> <C,3>."

Terminating the repetition construct with ‘:3 instead of ‘3 forces str to be processed at least
once, even if the initial list of arguments is null. However, this will not override an explicit prefix
parameter of zero.

If str is empty, then an argument is used as str. It must be a format control and precede any
arguments processed by the iteration. As an example, the following are equivalent:

(apply *‘fornat stream string arguments)
S (f o-at stream ““lf :3” string arguments)

This will use string as a formatting string. The ‘1C says it will be processed at most once,
and the - :3 says it will be processed at least once. Therefore it is processed exactly once, using
arguments as the arguments. This case may be handled more clearly by the ‘? directive, but this
general feature of ‘i is more powerful than ‘?.

22.3.7.5 Tilde Right-Brace: End of Iteration

‘3 terminates a ‘<. The consequences of using it elsewhere are undefined.

22.3.7.6 Tilde Question-Mark: Recursive Processing

The next arg must be a format control, and the one after it a list; both are consumed by the
‘7 directive. The two are processed as a control-string, with the elements of the list as the ar-
guments. Once the recursive processing has been finished, the processing of the control string
containing the ‘? directive is resumed. Example:

(format nil "-? 'D" "<-A 'D>" '("Foe" 5) 7) --) "<Foe 5> 7"
(format nil I'-? 'D" "<'A -D>" '("Foe" 5 14) 7) + VFoo 5) 7"

Note that in the second example three arguments are supplied to the format siring “<*A ‘DY’, but
only two are processed and the third is therefore ignored.

With the o modifier, only one arg is directly consumed. The arg must be a string; it is processed
as part of the control string as if it had appeared in place of the 'o? construct, and any direc-
tives in the recursively processed control string may consume arguments of the control string
containing the 'O? directive. Example:

(format nil "'O? ‘D” "<'A ‘DY’ “Foe” 5 7) - ‘%Foo 5) 7”
(format nil "'O? 'I)" "<-A -D>" "Foe" 5 14 7) + "<Foe 5> 14"

22-32 Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.3.8 FORMAT Miscellaneous Operations

22.3.8.1 Tilde Left-Paren: Case Conversion
‘(SW)
The contained control string sir is processed, and what it produces is subject to case conversion.

With no flags, every uppercase character is converted to the corresponding lowercase character.

- : (capitalizes all words, as if by string-capitalize.

-a(capitalizes just the first word and forces the rest to lower case.

‘:a(converts every lowercase character to the corresponding uppercase character.

In this example ‘a(is used to cause the first word produced by 'OR to be capitalized:

(format nil "'OR '('OR-)" 14 14)
+ "XIV xiv"

(defun f (n) (format nil "'0(-R') error-:P detected.M n)) + F
(f 0) - "Zero errors detected."
(f 1) + "One error detected."
(f 23) + "Tventy-three errors detected."

When case conversions appear nested, the outer conversion dominates, as illustrated in the
following example:

(format nil "'O(hou is ':(BOB SHITH')?')")
- "Hov is bob smith?"
2 "Hov is Bob Smith?"

22.3.8.2 Tilde Right-Paren: End of Case Conversion

‘1 terminates a ‘C The consequences of using it elsewhere are undefined.

22.3.8.3 Tilde P: Plural
9 If arg is not eql to the integer 1, a lowercase s is printed; if arg is eql to 1, nothing is printed. If

arg is a floating-point 1 .o, the s is printed.

- :P does the same thing, after doing a - : * to back up one argument; that is, it prints a lowercase
s if the previous argument was not 1.

'OP prints y if the argument is 1, or ies if it is not. ':OP does the same thing, but backs up first.

(format nil "'D tr':OP/'D vin':P" 7 1) + "7 tries/l vin"
(format nil "-D tr':OP/'D vin':P" 1 0) + "1 try/O vins"
(format nil "'D tr':OP/'D vin':P" 1 3) + "1 try/3 vins"

22.3.9 FORMAT Miscellaneous Pseudo-Operations

22.3.9.1 Tilde Semicolon: Clause Separator

This separates clauses in ‘C and ‘< constructs. The consequences of using it elsewhere are undo-
fined.

Printer 22-33

ANSI X3.226-1994 Programming Language-Common Lisp

22.3.9.2 Tilde Circumflex: Escape Upward
‘h

This is an escape construct. If there are no more arguments remaining to be processed, then the
immediately enclosing ‘f or ‘< construct is terminated. If there is no such enclosing construct,
then the entire formatting operation is terminated. In the ‘< case, the formatting is performed,
but no more segments are processed before doing the justification. -A may appear anywhere in a
‘< construct.

(setq donestr ‘SDone.‘A ‘D oarning’:P.‘” ‘D error’*P “1 . .
-+ “Done. -A ‘D vming- :P. -* ‘D error’ :P .I’

(format nil donestr) + “Done. ”
(format nil donestr 3) -+ “Done. 3 varnings.”
(forrat nil donestr 1 5) + "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero. (Hence -6 is
equivalent to VA’.) If two parameters are given, termination occurs if they are equal. If three
parameters are given, termination occurs if the first is less than or equal to the second and the
second is less than or equal to the third. Of course, this is useless if all the prefix parameters are
constants; at least one of them should be a # or a v parameter.

If -A is used within a ‘:{ construct, then it terminates the current iteration step because in the
standard case it tests for remaining arguments of the current step only; the next iteration step
commences immediately. -:A is used to terminate the iteration process. -:h may be used only
if the command it would terminate is -:f or -:a<. The entire iteration process is terminated if
and only if the sublist that is supplying the arguments for the current iteration step is the last
sublist in the case of ‘:(, or the last format argument in the case of -:0X. -:” is not equivalent to
-a:“; the latter terminates the entire iteration if and only if no arguments remain for the current
iteration step. For example:

(format nil “-:(-e?-:A.. .-)” ‘((“a”) ("b"))) -+ "a.. .b"

If -h appears within a control string being processed under the control of a ‘? directive, but
not within any ‘C or ‘< construct within that string, then the string being processed will be
terminated, thereby ending processing of the ‘? directive. Processing then continues within the
string containing the ‘? directive at the point following that directive.

If -h appears within a ‘I: or ‘(construct, then all the commands up to the -A are properly se-
lected or case-converted, the ‘1 or ‘(processing is terminated, and the outward search continues
for a ‘C or -< construct to be terminated. For example:

(setq tellstr “‘O(‘@C’R’]‘̂ ‘A!-)“)
+ “-@(-@[-R-]-A -A!-)11

(format nil tellstr 23) -+ "Twenty-three!"
(format nil tellstr nil "losers") -) 'I Losers!"
(format nil tellstr 23 "losers") + "Tventy-three losers!"

Following are examples of the use of -A within a -< construct.

(format nil "'15<'S';'A'S';^A'S'>" 'foe)
-+ " FOO”

(format nil "'15<'S';'A'S';'A'S'>" 'foe 'bar)
+ "FOO BAR”

(format nil "'15<'S';'A-S';'A'S'>" 'foe 'bar 'bu)
* "FOO BAR BAZ"

22-34 Printer

Programming Language-Common Lisp ANSI X3.226-1994

22.3.9.3 Tilde Newline: Ignored Newline
Tilde immediately followed by a newline ignores the newline and any following non-newline
whitespacel characters. With a :, the newline is ignored, but any following whitespacel is left
in place. With an a, the newline is left in place, but any following whitespacer is ignored. For
example:

(defun type-clash-error (fn nargs argnum right-type vrong-type)
(format *error-output*

"X'S requires its ':[':R';'*'l'
argument to be of type -S,'Xbut it was called -
with an argument of type 'S.-x"
fn (eql nargs 1) argxum right-type wrong-type))

(type-clash-error 'aref nil 2 'integer 'vector) prints:
ARRF requires its second argument to be of type INTEGER.
but it was called vith an argument of type VECTOR.
NIL

(type-clash-error 'car 1 1 'list 'short-float) prints:
CAR requires its argument to be of type LIST,
but it vas called vith au argument of type SHORT-FLOAT.
NIL

Note that in this example newlines appear in the output only as specified by the ‘t and ‘X
directives; the actual newline characters in the control string are suppressed because each is
preceded by a tilde.

22.3.10 Additional Information about FORMAT Operations

22.3.10.1 Nesting of FORMAT Operations

The case-conversion, conditional, iteration, and justification constructs can contain other format-
ting constructs by bracketing them. These constructs must nest properly with respect to each
other. For example, it is not legitimate to put the start of a case-conversion construct in each arm
of a conditional and the end of the case-conversion construct outside the conditional:

(format nil "':[abc':O(def-;ghi-
:a(jkl-]mno-1" x) ;Invalid!

This notation is invalid because the - C. . . - ; . . . ‘I and - (. . . -1 constructs are not properly nested.

The processing indirection caused by the ‘? directive is also a kind of nesting for the purposes of
this rule of proper nesting. It is not permitted to start a bracketing construct within a string pro-
cessed under control of a -7 directive and end the construct at some point after the ‘? construct
in the string containing that construct, or vice versa. For example, this situation is invalid:

(format nil "-O?ghi') " "abc'O(def") -Invalid! t

This notation is invalid because the ‘? and ‘(. . .-) constructs are not properly nested.

22.3.10.2 Missing and Additional FORMAT Arguments

The consequences are undefined if no arg remains for a directive requiring an argument. However,
it is permissible for one or more args to remain unprocessed by a directive; such args are ignored.

Printer 22-35

ANSI X3.226-1994 Programming Language-Common Lisp

22.3.10.3 Additional FORMAT Parameters

The consequences are undefined if a format directive is given more parameters than it is described
here as accepting.

22.3.10.4 Undefined FORMAT Modifier Combinations
The consequences are undefined if colon or o&sign modifiers are given to a directive in a combina-
tion not specifically described here as being meaningful.

22.3.11 Examples of FORMAT .
(format nil “foe”) * “foe”
(setq x 5) -* 5
(format nil The answer is ‘D.” x1 + “The ansuer is 5.”
(format nil The answer is ‘3D.” x) 4 The answer ia 5.”
(format nil The ausver is ‘3,‘OD.” x0 * “The snsuer is 005.”
(format nil The answer is -:D.” (expt 47 x))

+ ‘The answer is 229,345.007.”
(setq y “elephant”) --+ “elephant”
(format nil “Look at the -A!” y) -+ “Look at the elephant!”
(setq n 3) -+ 3
(format nil “‘D item’:P found.” n) -* “3 items found.”
(format nil “‘R dog’:[s are-; is’1 here.” n (= n 1))

+ “three dogs are here.”
(format nil “‘R dog’:*‘[s are’; is’:;8 are-1 here.” n)

+ “three dogs are here.”
(format nil “Here ‘lare’;is’:;are-I ‘:*‘R pupp’:OP.” n)

+ “Here are three puppies.”

(defun foo (x)
(format nil “‘6,2F)‘6,2,l,‘*F1’6,2,,‘?F1’6F1’,2FJ’F”

xxxxxx)) +FOO
(foe 3.14159) + w 3.14) 31.421 3.14~3.1416~3.14l3.14159”
(foe -3.14159) + u -3.141-31.421 -3.141-3.1421-3.141-3.14159”
(foe 100.0) * “100.001******1100.001 100.01100.001100.0”
(foe 1234.0) 4 “1234.00l******~??????~1234.0~1234.00~1234.0”
(foe 0.006) + u 0.011 0.061 0.011 0.006l0.0110.006”

(defun foo (x1
(format nil

"-9.2.1.. '*El-10,3,2,2,'?,,'$El-
-9,3,2,-2,'%9EI-9,2E"

x x x xl)
(foe 3.14159) + 1(3.14E+OI 31.42$-Oll+.OO3E+O3l 3.14E+O”
(foe -3.14159) + fl -3.14E+Ol-3l.42%-01I-.003E+03I -3.14E+O"
(foe 1100.0) - o l.lOE+31 11.00$+02~+.001E+06I l.lOE+3”
(foe 1100.0L0) + u l.lOL+31 11.00$+02l+.001L+061 l.lOL+3”
(foe l.lE13) - “*********I 11.00$+121+.001E+161 l.lOE+13"
(foe l.lLl20) 3 “*********I??????????I%%x%%%%%%ll.loL+12o”
(foe l.lL1200) - “*********I??????????l%%%%%%%%%11.10L+1200”

22-36 Printer

Programming Language-Common Lisp

As an example of the effects of varying the scale factor, the code

(dotimes (k 13)
(format t “‘XScale factor ‘2D: l’l3,6,2,vE~“

(- k 5) (- k 5) 3.14159))

produces the following output:

Scale factor -5: I O.O00003E+O6i
Scale factor -4: I 0.000031E+051
Scale factor -3: I O.O00314E+O4l
Scale factor -2: I O.O03142E+O31
ScaIe factor -1: I 0.031416E+021
Scale factor 0: I 0.314159E+01l
Scale factor 1: I 3.141590E+00l
Scale factor 2: I 31.4159OE-011
Scale factor 3: I 314.1590E-021
Scale factor 4: I 3141.59OE-031
Scale factor 5: 1 31415.90E-041
Scdle factor 6: I 314159.08-051
Scale factor 7: I 314159O.E-061

(defun foo (x)
(fornat nil “‘9,2.l,,‘*Gl’9.3.2,3,‘?.,‘SGl’9,3,2,0,’%G~’9,2G”

x x x xl)
(foe 0.0314159) -+ ” 3.14E-21314.2%~0410.314E-011 3.14E-2”
(foe 0.314159) 3 ” 0.31 IO.314 10.314 I 0.31 ”
(f 00 3.14159) + ” 3.1 I 3.14 I 3.14 I 3.1 ”
(f 00 31.4159) * ” 31. I 31.4 I 31.4 I 31. ”
(foe 314.159) + ” 3.14E+2) 314. I 314. 1 3.14E+2”
(foe 3141.59) + ” 3.14E+3l314.2$+0110.314E+041 3.14E+3”
(foe 3141.59LO) + ” 3.14L+3l314.2$+01~0.314L+04~ 3.14L+3”
(foe 3.14312) + “*********1314.0$+10(0.314E+131 3.14E+l2”
(foe 3.14Ll20) ---) “*********I?????????IX%%%%%%~%13.14L+l20”
(foe 3.14Ll200) + “*********~?????????Ix;~~~~~~~~~3.14L+l200”

(fornat nil “‘lO<foo’;bar->“) + “foe bar”
(format nil “‘lO:<foo’;bar’>“) + ” foo bar”
(format nil “‘lO<f oobar’>“) --, ” f oobar”
(format nil “‘lO:<foobar’>“) w ” f oobar”
(fornat nil “‘lO:Q<foo’*bar’>“) -, ” foo bar ”
(fornat nil ” -1OWf oobak) + “foobar ”
(f ornat nil “‘IO : Q<f oobar’Y’) + ” foobar ”

(FOIST NIL “Written to ‘A.” XP”foo.bin”)
- “kitten to foo.bin.”

ANSI X3.226-1994

Printer 22-37

ANSI X3.226-1994 Programming Language-Common Lisp

22.3.12 Notes about FORMAT
Formatted output is performed not only by format, but by certain other functions that accept a
fomzaf control the way format does. For example, error-signaling functions such as terror accept
format controls.

Note that the meaning of nil and t as destinations to format are different than those of nil and t
as stream designators.

The -A should appear only at the beginning of a ‘< clause, because it aborts the entire clause in
which it appears (as well as all following clauses).

22-30 Printer

Programming Language -Common Lisp ANSI X3.226-1994

copy-pprint-dispat ch Function

Syntax:
copy-pprint-dispatch &optional tab/e -+ new-table

Arguments and Values:
tab/e-a pprint dispafch table, or nil.

new-table-a fresh pprint dispatch table.

Description:
Creates and returns a copy of the specified tab/e, or of the value of *print-pprint-dispatch* if no
tab/e is specified, or of the initial value of *print-pprint-dispatch* if nil is specified.

Except ional Situations:
Should signal an error of type type-error if table is not a pprint dispatch table.

formatter Macro

Syntax:
formatter control-string * function

Arguments and Values:
control-string-a formal string; not evaluated.

function-a function.

Description:
Returns a junction which has behavior equivalent to:

#'(lambda (*standard-output* &rest arguments)
(apply #'format t control-string arguments)
arguments-tail)

where arguments-tailis either the tail of arguments which has as its car the argument that would
be processed next if there were more format directives in the control-string, or else nil if no more
arguments follow the most recently processed argument.

Examples:

(funcall (formatter "-&-A-A") *standard-output* 'a 'b 'c)
D AB
- (Cl

(format t (formatter “‘t-A-A”> 'a 'b 'c)
D AB
+ NIL

Printer 22-39

.----.-

ANSI X3.226-1994 Programming Language-Common Lisp

Exceptional Situations:
Might signal an error (at macro expansion time or at run time) if the argument is not a valid
format string.

See Also:
format

pprint-dispat ch Function

Syntax:
pprint-dispatch object &optional table --+ function, found-p

Arguments and Values:
object-an object.

table-a pprint dispatch table, or nil. The default is the valve of *print-pprint-dispatch*.

funcfion-a function designator.

found-p-a generalized boolean.

Description:
Retrieves the highest priority function in table that is associated with a type specifier that
matches object. The function is chosen by finding all of the type specifiers in table that match
the object and selecting the highest priority function associated with any of these type speci-
fiers. If there is more than one highest priority function, an arbitrary choice is made. If no type
specifiers match the object, a function is returned that prints object using print-object.

The secondary value, found-p, is true if a matching type specifier was found in table, or false
otherwise.

If table is nil, retrieval is done in the initial pprint dispatch table.

Affected By:
The state of the table.

Exceptional Situations:
Should signal an error of type type-error if table is neither a pprint-dispatch-table nor nil.

Not es:

(let ((*print-pretty* t))
(mite object :strear s))

E (funcall (pprint-dispatch object) s object)

22-40 Printer

Programming Language-Common Lisp ANSI X3.226-1994

pprint-exit-if-list-exhausted Local Macro

Syntax:
pprint-exit-if-list-exhausted (no orgumeds) -+ nil

Description:
Tests whether or not the list passed to the lexically current logical block has been exhausted; see
Section 22.2.1.1 (Dynamic Control of the Arrangement of Output). If this list has been reduced
to nil, pprint-exit-if-list-exhausted terminates the execution of the lezically current logical block
except for the printing of the s&x. Otherwise pprint-exit-if-list-exhausted returns nil.

Whether or not pprint-exit-if-list-exhausted is fbound in the global environment is
implementation-dependent; however, the restrictions on redefinition and shadowing of
pprint-exit-if-list-exhausted are the same as for symbols in the COHHOI-LISP package
which are fiound in the global environment. The consequences of attempting to use
pprint-exit-if-list-exhausted outside of pprint-logical-block are undefined.

Exceptional Situations:
An error is signaled (at macro expansion time or at run time) if pprint-exit-if-list-exhausted is
used anywhere other than lexically within a call on pprint-logical-block. Also, the consequences
of executing pprint-if-list-exhausted outside of the dynamic extent of the pprint-logical-block
which lexically contains it are undefined.

See Also:
pprint-logical-block, pprint-pop.

pprint-fill, pprint-linear, pprint-tabular Function

Syntax:
pprint-fill stream object &optional colon-p at-sign-p -+ nil

pprint-linear stream object &optional colon-p at-sign-p -+ nil

pprint-tabular stream object &optional co/on-p at-sign-p tab&e -+ nil

Arguments and Values:
stream-an output stream designator.

object-an object.

colon-p-a generalized boolean. The default is true.

at-sign-p-a generalized boolean. The default is implementation-dependent.

tabsize-a non-negative integer. The default is 16.

Description:
The functions pprint-flll, pprint-linear, and pprint-tabular specify particular ways of pretfy
printing a list to stream. Each function prints parentheses around the output if and only
if colon-p is true. Each function ignores its at-sign-p argument. (Both arguments are in-
cluded even though only one is needed so that these functions can be used via ‘/. . ./ and as

Printer 22-41

ANSI X3.226-1994 Programming Language-Common Lisp

set-ppriat-dispatch functions, as well as directly.) Each function handles abbreviation and the
detection of circularity and sharing correctly, and uses write to print object when it is a non-list.

If object is a lid and if the value of *print-pretty* is false, each of these functions prints object
using a minimum of wAitespace, as described in Section 22.1.3.5 (Printing Lists and Conses).
Otherwise (if object is a list and if the value of *print-pretty* is true):

l The fundion pprint-linear prints a list kither all on one line, or with each element on a
separate line.

l The fundion pprint-ftll prints a list with as many elemenh as possible on each line.

l The jhction pprint-tabular is the same as pprint-fUl except that it prints the elements
so that they line up in columns. The tabsize specifies the column spacing in ems, which is
the total spacing from the leading edge of one column to the leading edge of the next.

Examples:
Evaluating the following with a line length of 25 produces the output shown.

(progn (print “Roads ‘I)
(pprint-tabular *standard-output* ‘(elm main maple center) nil nil 8))

Roads ELM HAII
HAPLE CEHTER

Side Effects:
Performs output to the indicated &earn.

Affected By:
The cursor position on the indicated stream, if it can be determined.

Notes:
The fundion pprint-tabular could be defined as follows:

(defun pprint-tabular (8 list &optional (colon-p t) at-sign-p (tabsize nil))
(declare (ignore at-sign-p))
(vhen (null tabsize) (setq tabsize 16))
(pprint-logical-block (5 list :prefix (if colon-p I’(” ““)

:suff ix (if colon-p “)” ““1)
(pprint-exit-if-list-exhausted)
(loop (vrite (pprint-pop) :strear 8)

(pprint-exit-if-list-exhausted)
(vrite-char X\Space s)
(pprint-tab :section-relative 0 tabsize s)
(pprint-nevline :fill 8))))

Note that it would have been inconvenient to specify this function using format, because of the
need to pass its tab&c argument through to a ‘:T format directive nested within an iteration
over a list.

22-42 Printer

Programming Language-Common Lisp ANSI X3.226-1994

pprint-indent Function

Syntax:
pprint-indent relative-to n &optional stream -+ nil

Arguments and Values:
relative-to--either : block or : current.

n--a real.

stream-an output stream designator. The default is standard outpui.

Description:
pprint-indent specifies the indentation to use in a logical block on stream. If stream is a pretty
printing stream and the value of *print-pretty* is true, pprint-indent sets the indentation in the
innermost dynamically enclosing logical block; otherwise, pprint-indent has no effect.

N specifies the indentation in ems. If relative-to is :block, the indentation is set to the horizontal
position of the first character in the dynamically current logical block plus n ems. If relative-to is
:current, the indentation is set to the current output position plus n ems. (For robustness in the
face of variable-width fonts, it is advisable to use :cu.rrent with an n of zero whenever possible.)

N can be negative; however, the total indentation cannot be moved left of the beginning of the
line or left of the end of the rightmost per-line prefix-an attempt to move beyond one of these
limits is treated the same as an attempt to move to that limit. Changes in indentation caused by
pprint-indent do not take effect until after the next line break. In addition, in miser mode all calls
to pprint-indent are ignored, forcing the lines corresponding to the logical block to line up under
the first character in the block.

Exceptional Situations:
An error is signaled if relativoto is any object other than :block or :current.

See Also:
Section 22.3.5.3 (Tilde I: Indent)

pprint-logical-block Macro

Syntax:
pprint-logical-block (stream-symbol object &key prefix per-he-prefix suffix)

{declaration}* {form}*

--) nil

Arguments and Values:
stream-symbol-a stream variable designator.

object-an object; evaluated.

:pref ix-a string; evaluated. Complicated defaulting behavior; see below.

:per-line-pref ix-a string; evaluated. Complicated defaulting behavior; see below.

Printer 22-43

ANSI X3.226-1994 Programhg Language-Common Lisp

:stifix-a string; evaluated. The default is the null string.

declaration-a declare ezpression; not evaluated.

forms-an implicit progn.

Description:
Causes printing to be grouped into a logical block.

The logical block is printed to the stream that is the value of the variable denoted by stream-
symbol. During the execution of the forms, that variable is bound to a pretty printing sham
that supports decisions about the arrangement of output and then forwards the output to the
destination stream. All the standard printing functions (e.g., write, print, and terpri) can be
used to print output to the pretty printing stream. All and only the output sent to this pretty
printing stream is treated as being in the logical block.

The prefix specifies a prefix to be printed before the beginning of the logical block. The per-line-
prefix specifies a prefix that is printed before the block and at the beginning of each new line
in the block. The :prefix and :pre-line-prefix arguments are mutually exclusive. If neither
:prefix nor :per-line-prefix is specified, a prefix of the null string is assumed.

The suffix specifies a s&ix that is printed just after the logical block.

The object is normally a lisi that the body forms ate responsible for printing. If object is not a
list, it is printed using write. (This makes it easier to write printing functions that are robust
in the face of malformed arguments.) If *print-circle* is non-nil and object is a circular (or
shared) reference to a cons, then an appropriate “#tin marker is printed. (This makes it easy
to write printing functions that provide full support for circularity and sharing abbreviation.)
If *print-level* is not nil and the logical block is at a dynamic nesting depth of greater than
print-level in logical blocks, “r” is printed. (This makes easy to write printing functions that
provide full support for depth abbreviation.)

If either of the three conditions above occurs, the indicated output is printed on stream-symbol
and the body forms are skipped along with the printing of the :prefix and :suffix. (If the body
forms are not to be responsible for printing a list, then the first two tests above can be turned off
by supplying nil for the object argument.)

In addition to the object argument of pprint-logical-b104 the arguments of the standard
printing functions (such as write, print, prinl, and pprint, as well as the arguments of the
standard formal diredives such as -A, -s, (and ‘w) are all checked (when necessary) for circularity
and sharing. However, such checking is not applied to the arguments of the functions write-line,
write-string, and write-char or to the literal text output by format. A consequence of this is
that you must use one of the latter functions if you want to print some literal text in the output
that is not supposed to be checked for circularity or sharing.

The body forms of a pprint-logical-block form must not perform any side-effects on the sur-
rounding environment; for example, no variables must be assigned which have not been bound
within its scope.

The pprint-logical-block macro may be used regardless of the value of *print-pretty*.

Affected By:
print-circle, *print-level*.

Exceptional Situations:
An error of type type-error is signaled if any of the :suffix, :prefix, or :per-line-prefix is
supplied but does not evaluate to a string,

An error is signaled if :prefix and :pre-line-prefix are both used,

22-44 Printer

Prograxnming Language-Common Lisp ANSI X3.226-1994

pprint-logical-block and the pretty printing stream it creates have dynamic eztent. The conse-
quences are undefined if, outside of this extent, output is attempted to the pretty printing stream
it creates.

It is also unspecified what happens if, within this extent, any output is sent directly to the
underlying destination stream.

See Also:
pprint-pop, pprint-exit-if-list-exhausted, Section 22.3.5.2 (Tilde Less-Than-Sign: Logical Block)

Not es:
One reason for using the pprint-logical-block macro when the value of *print-pretty* is
nil would be to allow it to perform checking for dotted lists, as well as (in conjunction with
pprint-pop) checking for *print-level* or *print-length* being exceeded.

Detection of circularity and sharing is supported by the pretty printer by in essence performing
requested output twice. On the first pass, circularities and sharing are detected and the actual
outputting of characters is suppressed. On the second pass, the appropriate ‘%I-” and “#a#”
markers are inserted and characters are output. This is why the restriction on side-effects is
necessary. Obeying this restriction is facilitated by using pprint-pop, instead of an ordinary pop
when traversing a list being printed by the body forms of the pprint-logical-block form.)

pprint-newline Function

Syntax:
pprint-newline kind &optional stream + nil

Arguments and Values:
kind-one of :linear, :fill, :miser, or :randatory.

stream-a stream designator. The default is standard output.

Description:
If stream is a pretty printing stream and the value of *print-pretty* is true, a line break is in-
serted in the output when the appropriate condition below is satisfied; otherwise, pprint-newline
has no effect.

Kind specifies the style of conditional newline. This parameter is treated as follows:

: linear

This specifies a “linear-style” conditional newline. A line break is inserted if and only if the
immediately containing section cannot be printed on one line. The effect of this is that line
breaks are either inserted at every linear-style conditional newline in a logical block or at
none of them.

: miser

This specifies a “miser-style” conditional newline. A line break is inserted if and only if the
immediately containing section cannot be printed on one line and miser style is in effect in
the immediately containing logical block. The effect of this is that miser-style conditional
newlines act like linear-style conditional newlines, but only when miser style is in effect. Miser
style is in effect for a logical block if and only if the starting position of the logical block is
less than or equal to *print-miser-width* ems from the right margin.

Printer 22-45

ANSI X3.226-1994 Programming Language-Common Lisp

:fill

This specifies a “fill-style” conditional newline. A line break is inserted if and only if either
(a) the following section cannot be printed on the end of the current line, (b) the preceding
section was not printed on a single line, or (c) the immediately containing section cannot be
printed on one line and miser style is in effect in the immediately containing logical block. If
a logical block is broken up into a number of subsections by fill-style conditional newlines,
the basic effect is that the logical block is printed with as many subsections as possible on
each line, However, if miser style is in effect, fill-style conditional newlines act like linear-style
conditional newlines.

:randatoIy

This specifies a “mandatory-style” conditional newline. A line break is always inserted. This
implies that none of the containing sections can be printed on a single line and will therefore
trigger the insertion of line breaks at linear-style conditional newlines in these sections.

When a line break is inserted by any type of conditional newline, any blanks that immediately
precede the conditional newline are omitted from the output and indentation is introduced at the
beginning of the next line. By default, the indentation causes the following line to begin in the
same horizontal position as the first character in the immediately containing logical block. (The
indentation can be changed via pprint-indent.) .

There are a variety of ways unconditional newlines can be introduced into the output (i.e., via
terpri or by printing a string containing a newline character). As with mandatory conditional
newlines, this prevents any of the containing sections from being printed on one line. In general,
when an unconditional newiine is encountered, it is printed out without suppression of the
preceding blanks and without any indentation following it. However, if a per-line prefix has been
specified (see pprint-logicaLblock), this prefix will always be printed no matter how a newline
originates.

Examples:
See Section 22.2.2 (Examples of using the Pretty Printer).

Side Effects:
Output to stream.

Affected By:
print-pretty, *print-miser *. The presence of containing logical blocks. The placement of
newlines and conditional newlines:

Exceptional Situations:
An error of type type-error is signaled if kind is not one of : linear, :f ill, miser, or :randatory.

See Also:
Section 22.3.5.1 (Tilde Underscore: Conditional Newline), Section 22.2.2 (Examples of using the
Pretty Printer)

pprint-pop Local Macro

Syntax:
pprint-pop (no arguments) - object

22-46 Printer

Programming Language-Common Lisp ANSI X3.226-1994

Arguments and Values:
object-an element of the list being printed in the lezically current logical block, or nil.

Description:
Pops one element from the list being printed in the lexically current logical block, obeying
print-length and *print-circle* as described below.

Each time pprint-pop is called, it pops the next value off the list passed to the lezically current
logical block and returns it. However, before doing this, it performs three tests:

l If the remaining ‘list’ is not a list, “. ” is printed followed by the remaining ‘list.’ (This
makes it easier to write printing functions that are robust in the face of malformed argu-
ments.)

l If *print-length* is non-nil, and pprint-pop has already been called *print-length* times
within the immediately containing logical block, “. . .” is printed. (This makes it easy to write
printing functions that properly handle *print-length*.)

l If *print-circle* is non-nil, and the remaining list is a circular (or shared) reference, then
“ . ” is printed followed by an appropriate “#n#’ marker. (This catches instances of cdr
circularity and sharing in lists.)

If either of the three conditions above occurs, the indicated output is printed on the pretty
printing stream created by the immediately containing pprint-logical-block and the execution
of the immediately containing pprint-logical-block is terminated except for the printing of the
sufi.

If pprint-logical-block is given a ‘list’ argument of nil-because it is not processing a list-
pprint-pop can still be used to obtain support for *print-length *. In this situation, the first and
third tests above are disabled and pprint-pop always returns nil. See Section 22.2.2 (Examples of
using the Pretty Printer)-specifically, the pprint-vector example.

Whether or not pprint-pop is fbound in the global environment is implementation-dependent;
however, the restrictions on redefinition and shadowing of pprint-pop are the same as for symbols
in the COHHON-LISP package which are fbound in the global environment. The consequences of
attempting to use pprint-pop outside of pprint-logical-block are undefined.

Side Effects:
Might cause output to the pretty ptinting stream associated with the lexically current logical
block.

Affected By:
print-length, *print-circle*.

Exceptional Situations:
An error is signaled (either at macro expansion time or at run time) if a usage of pprint-pop
occurs where there is no lexically containing pprint-logical-block form.

The consequences are undefined if pprint-pop is executed outside of the dynamic extent of this
pprint-logical-block.

See Also:
pprint-exit-if-list-exhausted, pprint-logical-block

Notes:
It is frequently a good idea to call pprint-exit-if-list-exhausted before calling pprlnt-pop.

Printer 22-47

ANSI X3.226-1994 Programming Language-Common Lisp

pprint-tab Function

Syntax:
pprint-tab kind colnum colinc &optional stream + nil

Arguments and Values:
kind-one of : line, : section, : line-relative, or : section-relative.

co/mm-a non-negative integer.

colinc-a non-negative integer.

stream-an output &earn designator.

Description:
Specifies tabbing to stream as performed by the standard ‘T format directive. If stream is a
pretty printing stream and the value of *print-pretty* is irue, tabbing is performed; otherwise,
pprint-tab has no effect.

The arguments colnum and colinc correspond to the two parameters to ‘T and are in terms
of ems. The kind argument specifies the style of tabbing. It must be one of :line (tab as by
‘T), :section (tab as by ‘:T, but measuring horizontal positions relative to the start of the
dynamically enclosing section), :line-relative (tab as by ‘QT), or :section-relative (tab as
by ‘:OT, but measuring horizontal positions relative to the start of the dynamically enclosing
section).

Exceptional Situations:
An error is signaled if kind is not one of :line, : sect ion, : line-relative, or : section-relative.

See Also:
pprint-logical-block

print-object Standard Generic Function

Syntax:
print-object object stream -+ object

Method Signatures:
print-object (object standard-object) stream

print-object (object structure-object) stream

Arguments and Values:
object-an object.

stream-a stream.

22-48 Printer

Programming Language-Common Lisp ANSI X3.226-1994

Description:
The generic function print-object writes the printed representation of object to stream. The
function print-object is called by the Lisp printer; it should not be called by the user.

Each implementation is required to provide a method on the class standard-object and on the
class structure-object. In addition, each implementation must provide methods on enough other
classes so as to ensure that there is always an applicable method. Implementations are free to add
methods for other classes. Users may write methods for print-object for their own classes if they
do not wish to inherit an implementation-dependent method.

The method on the cluss structure-object prints the object in the default xs notation; see
Section 22.1.3.12 (Printing Structures).

Methods on print-object are responsible for implementing their part of the semantics of the
printer control varinbles, as follows:

print-readably

All methods for print-object must obey *print-readably *. This includes both user-defined
methods and implementation-defined methods. Readable printing of structures and standard
objects is controlled by their print-object method, not by their make-load-form method.
Similarity for these objects is application dependent and hence is defined to be whatever these
methods do; see Section 3.2.4.2 (Similarity of Literal Objects).

print-escape

Each method must implement *print-escape*.

print-pretty

The method may wish to perform specialized line breaking or other output conditional on the
value of *print-pretty*. For further information, see (for example) the macro pprint-fU. See
also Section 22.2.1.4 (Pretty Print Dispatch Tables) and Section 22.2.2 (Examples of using
the Pretty Printer).

print-length

Methods that produce output of indefinite length must obey *print-length*. For further
information, see (for example) the macros pprint-logical-block and pprint-pop. See also
Section 22.2.1.4 (Pretty Print Dispatch Tables) and Section 22.2.2 (Examples of using the
Pretty Printer).

print-level

The printer takes care of *print-level* automatically, provided that each method handles
exactly one level of structure and calls write (or an equivalent function) recursively if there
are more structural levels. The printer’s decision of whether an object has components (and
therefore should not be printed when the printing depth is not less than *print-level*) is
implementation-dependent. In some implementations its print-object method is not called; in
others the method is called, and the determination that the object has components is based
on what it tries to write to the stream.

print-circle

When the value of *print-circle* is true, a user-defined print-object method can print objects
to the supplied stream using write, prinl, print, or format and expect circularities to be
detected and printed using the #n# syntax. If a user-defined print-object method prints to a
stream other than the one that was supplied, then circularity detection starts over for that
strenm. See *print-circle*.

Printer 22-49

ANSI X3.226-1994 Programming Language-Common Lisp

print-base, *print-radix*, *print-case*, *print-gensym*, and *print-array*

These printer control uariabIes apply to specific types of objects and are handled by the
methods for those objects.

If these rules are not obeyed, the results are undefined.

In general, the printer and the print-object methods should not rebind the print control variables
as they operate recursively through the structure, but this is implementation-dependent.

In some implementations the stream argument passed to a print-object method is not the original
stream, but is an intermediate stream that implements part of the printer. methods should
therefore not depend on the identity of this stream.

See Also:
pprint-fill, pprint-logical-block, pprint-pop, write, *print-readably*, *print-escape*,
print-pretty, *print-length*, Section 22.1.3 (Default Print-Object Methods), Section 22.1.3.12
(Printing Structures), Section 22.2.1.4 (Pretty Print Dispatch Tables), Section 22.2.2 (Examples
of using the Pretty Printer)

print-unreadable-object Macro

Syntax:
print-unreadable-object (object stream tkey type identity) (form}* + nil

Arguments and Values:
object-an object; evaluated.

stream-a stream designator; evaluated.

type-a generalized boolean; evaluated.

identity-a generalized boolean; evaluated.

forms-an implicit progn.

Description:
Outputs a printed representation of object on stream, beginning with ‘W and ending with
‘5”. Everything output to stream by the body forms is enclosed in the the angle brackets. If
type is true, the output from forms is preceded by a brief description of the object’s type and a
space character. If identity is true, the output from forms is followed by a space character and a
representation of the object’s identity, typically a storage address.

If either type or identity is not supplied, its value is f&e. It is valid to omit the body forms. If
type and identity are both true and there are no body forms, only one space character separates
the type and the identity.

Examples:
;; Note that in this example, the precise form of the output ;; is implementation-dependent.

(defmethod print-object ((obj airplane) strem)
(print-unreadable-object <obj stream :type t :identity t)

(print (tail-number obj) stream)))

22-50 Printer

Programming Language-Common Lisp ANSI X3.226-1994

(prinl-to-string my-airplane)
-+ "#<Airplane NY0773 3600012313W'
2 "X<FAA:AIRFUNE NV0773 17)"

Exceptional Situations:
If *print-readably* is true, print-unreadable-object signals an error of type print-not-readable
without printing anything.

set-pprint-dispatch Function

Syntax:
set-pprint-dispatch type-specifier function toptional priority tab/e -+ nil

Arguments and Values:
type-specifier-a type specifier.

function-a function, a function name, or nil.

priority-a real. The default is 0.

tab/e-a pprint dispatch table. The default is the value of *print-pprint-dispatch*.

Description:
Installs an entry into the pprint dispatch table which is table.

Type-specifier is the key of the entry. The first action of set-pprint-dispatch is to remove any
preexisting entry associated with type-specifier. This guarantees that there will never be two
entries associated with the same type specifier in a given pprint dispatch table. Equality of type
specifiers is tested by equal.

Two values are associated with each type specifier in a pprini dispatch table: a function and a pri-
ority. The function must accept two arguments: the &ream to which output is sent and the object
to be printed. The function should pretty print the object to the stream. The function can assume
that object satisfies the type given by type-specifier. The function must obey *print-readably*.
Any values returned by the function are ignored.

Priority is a priority to resolve conflicts when an object matches more than one entry.

It is permissible for function to be nil. In this situation, there will be no typtspecifier entry in
tab/e after set-pprint-dispatch returns.

Exceptional Situations:
An error is signaled if priority is not a real.

Notes:
Since pprinl dispatch tables are often used to control the pretty printing of Lisp code, it is com-
mon for the type-specifier to be an expression of the form

(cons car-type cdr-type)

This signifies that the corresponding object must be a cons cell whose car matches the type
specifier car-type and whose cdr matches the type specijier cdr-type. The cdr-type can be omitted
in which case it defaults to t.

Printer 22-51

ANSI X3.226-1994 Programming Language-Common Lisp

write, prinl, print, pprint, print

Syntax:
write object tkey array base case circle escape gensym

length level lines miser-width pprint-dispatch
pretty radix readably right-margin stream

-+ object

prinl qbject &optional output-stream + object

prim object toptional output-stream - object

print object toptiond output-stream - object

pprint object roptiond output-stream + (no values)

Arguments and Values:
object-an object.

output-stream-an output stream designator. The default is standard output.

array-a generalized boolean.

base-a radix.

case-a symbol of type (member :upcase :domncase :capitalize).

circle-a generalized boolean.

escape-a generalized boolean.

gensym-a generalized boolean.

length-a non-negative integer, or nil.

level-a non-negative integer, or nil.

lines-a non-negative integer, or nil.

miser-width-a non-negative integer, or nil.

pprint-dispatch-a pprint dispatch table.

pretty-a generalized boolean.

radix-a generalized boolean.

readably-a generalized boolean.

right-margin-a non-negative integer, or nil.

stream-an output stream designator. The default is standard output.

Description:
write, prinl, print, print, and pprint write the printed representation of object to output-stream.

write is the general entry point to the Lisp printer. For each explicitly supplied keyword pamm-
eter named in Figure 22-7, the corresponding printer control variable is dynamically bound to

22-52 Printer

Programming Language-Common Lisp ANSI X3.226-1994

its value while printing goes on; for each keyword parameter in Figure 22-7 that is not explicitly
supplied, the value of the corresponding printer control variable is the same as it was at the time
write was invoked. Once the appropriate bindings are established, the object is output by the Lisp
printer.

Parameter Corresponding Dynamic Variable
array *print-array*
base *print-base*
case *print-case*
circle *print-circle*
escape *print-escape*
gensym *print-gensym*
length *print-length*
/We/ *print-level*
line.5 *print-lines*
miser-width *print-miser-width*
pprint-dispatch *print-pprint-dispatch*
pretty *print-pretty*
radix *print-radix*
readably *print-readably*
right-margin *print-right-margin*

Figure 22-7. Argument correspondences for the WRITE function.

prinl, print, print, and pprint implicitly bind certain print parameters to particular values.
The remaining parameter values are taken from *print-array*, *print-base*, *print-case*,
print-circle, *print-escape*, *print-gensym*, *print-length*, *print-level*, *print-lines*,
print-miser-width, *print-pprint-dispatch*, *print-pretty*, *print-radix*, and
print-right-margin.

prinl produces output suitable for input to read. It binds *print-escape* to true.

print is just like prinl except that the output has no escape characters. It binds *print-escape*
to false and *print-readably* to false. The general rule is that output from print is intended to
look good to people, while output from prinl is intended to be acceptable to read.

print is just like prinl except that the printed representation of object is preceded by a newline
and followed by a space.

pprint is just like print except that the trailing space is omitted and object is printed with the
print-pretty flag non-nil to produce pretty output.

Output-stream specifies the stream to which output is to be sent.

Affected By:
standard-output, *terminal-io*, *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, *print-level*, *print-length*, *print-case*, *print-gensym*, *print-array*,
read-default-float-format.

See Also:
readtable-case, Section 22.3.4 (FORMAT Printer Operations)

Notes:
The functions prinl and print do not bind *print-readably*.

(prinl object output-stream)
S (vrite object :stream output-stream :escape t)

Printer 22-53

ANSI X3.226-1994 Programming Language-Common Lisp

(prim object output-atrear)
S (write object stream output-atreaa :eacape nil :readably nil)

(print object output-stream)
f (progn (terpri output-stream)

(vrite object :stream output-stream
:escape t)

(vrite-char S\space output-stream))

(pprint object output-stream)
E (write object :stream output-stream :escape t :pretty t)

write-to-string, prinl-to-string, print-to-string
Function

Syntax:
write-testring object tkey array base case circle escape gensym

-+ string

length level lines miser-width pprint-dispatch
pretty radix readably right-margin

prinl-to-string object + string

prim-to-string object -+ string

Arguments and Values:
object-an object.

array-a generalized boolean.

base-a radix.

case-a symbol of type (member :upcase :dovncase :capitalize).

circle-a generalized boolean.

escape-a generalized boolean.

gensym-a generalized boolean.

length-a non-negative integer, or nil.

level-a non-negative integer, or nil.

lines-a non-negative integer, or nil.

miser-width-a non-negative integer, or nil.

pprint-dispatch-a pprint dispatch table.

pretty-a generalized boolean.

radix-a generalized boolean.

22-54 Printer

r
Programming Language-Common Lisp ANSI X3.226-1994

readably-a generalized boolean.

right-margin-a non-negative integer, or nil.

string-a string.

Description:
write-to-string, prinl-twstring, and print-testring are used to create a string consisting of
the printed representation of object. Object is effectively printed as if by write, prinl, or print,
respectively, and the characters that would be output are made into a string.

write-to-string is the general output function. It has the ability to specify all the parameters
applicable to the printing of object.

prinl-to-string acts like write-to-string with :escape t, that is, escape characters are written
where appropriate.

print-to-string acts like write-to-string with :escape nil :readably nil. Thus no escape charac-
ters are written.

All other keywords that would be specified to write-to-string are default values when
prinl-to-string or print-testring is invoked.

The meanings and defaults for the keyword arguments to write-to-string are the same as those
for write.

Examples:

(prinl-to-string “abc”) -+ “\“abc\“”
(print-to-string “abc”) + “abc”

Affected By:
print-escape, *print-radix*, *print-base*, *print-circle*, *print-pretty*, *print-level*,
print-length, *print-case*, *print-gensym*, *print-array*, *read-default-float-format*.

See Also:
write

Notes:

(write-to-string object {key argument}*)
E (with-output-to-string (Itl=#:string-streem)

(write object :streaa ltllt {key argument)*))

(print-to-string object)
E (with-output-to-string (string-stream)

(print object string-stream))

(prinl-to-string object)
E (with-output-to-string (string-stream)

(prinl object string-stream))

Printer 22-55

ANSI X3.226-1994 Programming Language-Common Lisp

print-array Variable

Value Type:
a generalized boolean.

Initial Value:
implementation-dependent.

Description:
Controls the format in which arrays are printed. If it is fake, the contents of arrays other than
strings are never printed. Instead, arrays are printed in a concise form using tc that gives enough
information for the user to be able to identify the array, but does not include the entire away
contents. If it is true, non-string arrays are printed using *c(. . .), s*, or m syntax.

Affected By: .
The implementation.

See Also:
Section 2.4.8.3 (Sharpsign Left-Parenthesis), Section 2.4.8.20 (Sharpsign Less-Than-Sign)

sprint-base*, *print-radix* Variable

Value Type:
print-base-a radix. *print-radix*-a generalized boolean.

Initial Value:
The initial value of *print-base* is IO. The initial valve of *print-radix* is false.

Description:
print-base and *print-radix* control the printing of rationals. The value of *print-base* is
called the current output base.

The value of *print-base* is the radix in which the printer will print rationals. For radices above
10, letters of the alphabet are used to represent digits above 9.

If the value of *print-radix* is true, the printer will print a radix specifier to indicate the radix
in which it is printing a rational number. The radix specifier is always printed using lowercase
letters. If *print-base* is 2, 8, or 16, then the radix specifier used is tb, #o, or tx, respectively.
For integers, base ten is indicated by a trailing decimal point instead of a leading radix specifier;
for ratios, #lor is used.

Examples:

(let ((*print-base* 24.) (*print-radix* t))
(print 23.1)

D X24rN
+ 23

(setq *print-base* 10) * 10
(setq *print-radix* nil) + NIL

22-56 Printer

Programming Language-Common Lisp ANSI X3.226-1994

(dotimee (i 35)
(let ((*print-base* (+ i 2))) ;print the decimal number 40

(vrite 40) ; in each base from 2 to 36
(if (zerop (rod i 10)) (terpri) (foIlat t ” “))))

D 101000
D 1111 220 130 104 55 50 44 40 37 34
D 31 2C 2A 28 26 24 22 20 iJ 11
D 1H 1G 1F 1E 1D 1C 1B 1A 19 18
D 17 16 15 14
* NIL

(dolist (pb ’ (2 3 8 10 16))
(let ((*print-radix* t)

(*print-baae* pb))
(format t “‘t-S -s-p 10 l/10)))

D ItblOlO tbl/lOlO
D #3rlol #3rl/lol
D to12 #01/12
D 10. #lOrl/lO
D #XA #Xl/A

+ HIL

;pri.nt the integer 10 and
;the ratio l/l0 in baaea 2,

;3, 8, 10, 16

Affected By:
Might, be bound by format, and write, write-to-string.

See Also:
format, write, write-to-string

print-case Variable

Value Type:
One of the symbols :upcaae, :douncase, or :capitalize.

Initial Value:
The symbol :upcase.

Description:
The value of *print-case* controls the case (upper, lower, or mixed) in which to print any
uppercase characters in the names of symbols when vertical-bar syntax is not used.

print-case has an effect at all times when the value of *print-escape* is false. *print-case*
also has an effect when the value of *print-escape* is true unless inside an escape context (i.e.,
unless between vertical-bars or after a slosh).

Examples:

(defun test-print-case 0
(dolist (*print-case* ‘(:upcase :downcase :capitalize))

(format t “‘t’S ‘S-X” ‘this-and-that ‘IAnd-something-elSEI)))
+ TEST-PC

Printer 22-57

ANSI X3.226-1994 Programming Language-Common Lisp

;; Although the choice of which characters to escape is specified by
;; *PRIlIT-CASE*, the choice of boo to escape those characters
;: (i.e., whether single escapes or multiple escapes are used)
;; is implementation-dependent. The examples here shov too of the
;; many valid oays in which escaping might appear.

(test-print-case) ;Implementation A
D THIS-AND-THAT IAnd-something-elSEI
D this-and-that a\n\d-\s\o\m\e\t\h\i\n\g-\e\lse
D This-And-That A\n\d-\s\o\m\e\t\h\i\n\g-\e\lse
* UIL

(test-print-case) ;Implementation B
D THIS-AND-THAT IAnd-something-elSEI
D this-and-that alnd-something-ellse
D This-And-That Ailnd-something-ellsa
-+ NIL

See Also:
write

Notes:
read normally converts lowercase characters appearing in symbols to corresponding uppercase
characters, so that internally print names normally contain only uppercase characters.

If *print-escape* is true, lowercase characters in the name of a symbol are always printed in low-
ercase, and are preceded by a single escape character or enclosed by multiple escape characters;
uppercase characters in the name of a symbol are printed in upper case, in lower case, or in mixed
case so as to capitalize words, according to the value of *print-case*. The convention for what
constitutes a “word” is the same as for string-capitalize.

print-circle Variable

Value Type:
a generalized boolean.

Initial Value:
false.

Description:
Controls the attempt to detect circularity and sharing in an object being printed.

If false, the printing process merely proceeds by recursive descent without attempting to detect
circularity and sharing.

If true, the printer will endeavor to detect cycles and sharing in the structure to be printed, and
to use *n= and ana syntax to indicate the circularities or shared components

If true, a user-defined print-object method can print objects to the supplied stream using write,
prinl, print, or format and expect circularities and sharing to be detected and printed using the
#n.# syntax. If a user-defined print-object method prints to a stream other than the one that was
supplied, then circularity detection starts over for that stream.

Note that implementations should not, use #no notation when the Lisp reader would automatically
assure sharing without it (e.g., as happens with interned symbols).

22-58 Printer

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(let ((a (list 1 2 3)))
(setf (cdddr a) a)
(let ((*print-circle* t))

(write a)
:done))

b #I’=(1 2 3 . #I#)
* :DONE

See Also:
write

Notes:
An attempt to print a circular structure with *print-circle* set to nil may lead to looping
behavior and failure to terminate.

print-escape Variable

Value Type:
a generalized boolean.

Initial Value:
true.

Description:
If false, escape characters and package prejizes are not output when an expression is printed.

If true, an attempt is made to print an expression in such a way that it can be read again to
produce an equal ezprcssion. (This is only a guideline; not a requirement. See *print-readably*.)

For more specific details of how the value of *print-escape * affects the printing of certain types,
see Section 22.1.3 (Default Print-Object Methods).

Examples:

(let ((*print-escape* t)) (write *\a))
b #\a
-) #\a

(let ((*print-escape* nil)) (write #\a))
ba
-+ #\a

Affected By:
print, prinl , format

See Also:
write, readtable-case

Notes:
print effectively binds *print-escape* to false. prinl effectively binds *print-escape* to true.

Printer 22-59

ANSI X3.226-1994 Programming Language-Common Lisp

print-gensym Variable

Value Type:
a generalized boolean.

Initial Value:
true.

Description:
Controls whether the prefix “lt: n is printed before apparently uninterned symbols. The prefix is
printed before such symbols if and only if the value of *print-gensym* is he.

Examples:

(let ((*print-gensp* nil))
(print (gensyr)))

b G6040
--* #:G6040

See Also:
write, *print-escape*

print-level, *print-length* Variable

Value Type:
a non-negative integer, or nil.

Initial Value:
nil.

Description:
print-level controls how many levels deep a nested object will print. If it is false, then no
control is exercised. Otherwise, it is an integer indicating the maximum level to be printed. An
object to be printed is at level 0; its components (as of a Zisl or vector) are at level 1; and so on.
If an object to be recursively printed has components and is at a level equal to or greater than the
value of *print-level*, then the object is printed as ‘W’.

print-length controls how many elements at a given level are printed. If it is false, there is no
limit to the number of components printed. Otherwise, it is an integer indicating the maximum
number of elements of an object to be printed. If exceeded, the printer will print “. . .” in place
of the other elemenis. In the case of a dolled list, if the lid contains exactly as many elements aa
the value of *print-length*, the terminating aiom is printed rather than printing “. . .”

print-level and *print-length* affect the printing of an any object printed with a list-like
syntax. They do not affect the printing of symbols, &ings, and bil vectors.

22-60 Printer

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(setq a '(I (2 (3 (4 (5 (6))))))) + (I (2 (3 (4 (5 (6))))))
(dotimes (i 8)

(let ((*print-level* i))
(format t "-t-D -- 'S'X" i a)))

D 1 -- (1 x)
D 2 -- (I (2 #))
D 3 -- (1 (2 (3 t)))
D 4 -- (1 (2 (3 (4 dt))))
D 5 -- (1 (2 (3 (4 (5 x)))))
D 6 -- (I (2 (3 (4 (5 (6))))))
D 7 -- (1 (2 (3 (4 (5 (6))))))
+ NIL

(setq a ‘(I 2 3 4 5 6)) 4 (I 2 3 4 5 6)
(dotimes (i 7)

(let ((*print-length* i))
(format t "'O'D -- 'S-x" i a)))

D 0 -- (...I
D 1 -- (I . ..I
D 2 -- (1 2 . ..)
D 3 -- (1 2 3 . ..I
D 4 -- (1 2 3 4 . ..)
D 6 -- (1 2 3 4 5 6)
D 6 -- (I 2 3 4 5 6)
-) NIL

(dolist (level-length '((0 1) (I I) (I 2) (I 3) (I 4)
(2 I) (2 2) (2 3) (3 2) (3 3) (3 4)))

(let ((*print-level* (first level-length))
(*print-length* (second level-length)))

(format t "'t-D 'D -- 'S'r"
print-level *print-length*
'(if (member x y) (+ (car x1 3) '(foe . #(a b c d "Baz"))))))

D 0 1 -- It

D 1 1 -- (IF . ..)
D 12 -- (IF X . ..)
D 1 3 -- (IF t I . ..)
D 14 -- (IF # 1! X1
D 2 1 -- (IF . ..)
022-- (IF WHBEB X . ..) . ..)
D 23-- (IF (HEHBER X Y; (+ # 3) . ..)
D 32-- (IF 0lEHBER X . ..I . ..>
033-- (IF (MEMBER X Y) (+ (CAR X) 3) . ..)
D 34-- (IF (MEMBER x Y) (+ (CAR X) 3) '(FOO . #(A B c D . ..))>
- NIL

See Also:
write

Printer 22-61

ANSI X3.226-1994 Programming LanguageCommon Lisp

print-lines

Value Type:
a non-negative integer, or nil.

Initial Value:
nil.

Description:
When the value of *print-lines* is other than nil, it is a limit on the number of output lines
produced when something is pretty printed. If an attempt is made to go beyond that many lines,
u . . * is printed at the end of the last line followed by all of the suffixes (closing delimiters) that
are pending to be printed.

Examples:

(let ((*print-right-nargin; 25) (*print-lines* 3))
(pprint ‘(progn (setq a 1 b 2 c 3 d 4))) 1

D (PILOG% (SETQ A 1
D B2

I(
c3 ..))

no values)

Notes:
The “..” notation is intentionally different than the “. . .” notation used for level abbreviation, so
that the two different situations can be visually distinguished.

This notation is used to increase the likelihood that the Lisp reader will signal an error if an
attempt is later made to read the abbreviated output. Note however that if the truncation occurs
in a string, as in Y&is string has been trunc.. II, the problem situation cannot be detected later
and no such error will be signaled.

print-miser-width Variable

Value Type:
a non-negative infeger, or nil.

Initial Value:
implementation-dependent

Description:
If it is not nil, the pretty printer switches to a compact style of output (called miser style)
whenever the width available for printing a substructure is less than or equal to this many ems.

22-62 Printer

Programming Language-Common Lisp ANSI X3.226-1994

print-pprint-dispatch Variable

Value Type:
a ppn’nt dispatch table.

Initial Value:
implementation-dependent, but the initial entries all use a special class of priorities that have the
property that they are less than every priority that can be specified using set-pprint-dispatch, so
that the initial contents of any entry can be overridden.

Description:
The pprint dispatch table which currently controls the pretty printer.

See Also:
print-pretty, Section 22.2.1.4 (Pretty Print Dispatch Tables)

Notes:
The intent is that the initial value of this variable should cause ‘traditional’ pretty printing of
code. In general, however, you can put a value in *print-pprint-dispatch* that makes pretty-
printed output look exactly like non-pretty-printed output. Setting *print-pretty* to true just
causes the functions contained in the current pprint dispatch table to have priority over normal
print-object methods; it has no magic way of enforcing that those functions actually produce
pretty output. For details, see Section 22.2.1.4 (Pretty Print Dispatch Tables).

print-pretty Variable

Value Type:
a generalized boolean.

Initial Value:
implementation-dependent.

Description:
Controls whether the Lisp printer calls the pretty printer.

If it is false, the pretty printer is not used and a minimum of whitespace is output when printing
an expression.

If it is true, the pretty printer is used, and the Lisp printer will endeavor to insert extra whites-
pace1 where appropriate to make ezpressions more readable.

print-pretty has an effect even when the value of *print-escape* is false.

Examples:

(setq *print-pretty* 'nil) + NIL
(progn (mite '(let ((a 1) (b 2) (c 3)) (+ a b ~1)) nil)

D (LET ((A 1) (B 2) (C 3)) (+ A B C))
+ NIL

Printer 22-63

-.---_ I _. _ - -..

‘

ANSI X3.226-1994 Programming Language-Common Lisp

(let ((*print-pretty* t))
(progn (vrite ‘(let ((a I) (b 2) (c 311 (+ a b cl)) nil))

P (LET ((A I)
P (B 21
P (C 3))
P (+ A B C))
+ HIL
; ; Dote that the first tvo expressions printed by this next form
; ; differ from the second two only in whether escape characters are printed.
;; In all four cases, extra ohitespace is inserted by the pretty printer.

(flet ((test (x1
(let ((*print-pretty* t))

(print x1
(format t “‘X’S ” x)
(terpri) (print x) (print ‘I “1
(forrat t “‘% ‘A ‘1 x1)))

(test ‘#‘(lambda 0 (list “a*’ $ ‘c #‘d))))
D #‘(LAHBDA 0
D (LIST “a” lr ‘C $C’D))
D S’fLAHBDA 0

(LIST “a” # ‘C #‘D) 1
: #‘(LAHBDA 0
D (LIST a b ‘C t’D))
D X’tLAHEDA 0
D (LIST a b ‘C X’D))
4 NIL

See Also:
write

print-readably Variable

Value Type:
a generalized boolean.

Initial Value:
false.

Description:
If *print-readably* is true, some special rules for printing objects go into effect. Specifically,
printing any object 01 produces a printed representation that, when seen by the Lisp reader while
the standard readtable is in effect, will produce an object 02 that is similar to 01. The printed
representation produced might or might not be the same as the printed representation produced
when *print-readably* is false. If printing an object readably is not possible, an error of type
print-not-readable is signaled rather than using a syntax (e.g., the 4~” syntax) that would not
be readable by the same implementation. If the value of some other printer control variable is
such that these requirements would be violated, the value of that other variable is ignored.

Specifically, if *print-readably* is true, printing proceeds sa if *print-escape*, *print-array*,
and *print-gensym* were also true, and as if *print-length*, *print-level*, and *print-lines*
were false.

22-64 Printer

Programming Language-Common Lisp ANSI X3.226-1994

If *print-readably* is false, the normal rules for printing and the normal interpretations of other
printer control variables are in effect.

Individual methods for print-object, including user-defined methods, are responsible for imple-
menting these requirements.

If *read-evil* is f&e and *print-readably* is true, any such method that would output a
reference to the “jt.” reader macro will either output something else or will signal an error (as
described above).

Examples:

(let ((x (list "a" ‘\a (gensym) ‘((a (b (c))1 d a f g)))
(*print-escape* nil)
(*print-gensyl* nil)
(*print-level* 3)
(*print-length* 3))

(write x1
(let ((*print-readably* t) 1

(terpri)
(write x)
:done))

D (a a G4581 ((A 8) D E . ..)I
D ("a'* Ial #:G4581 ((A (B (C)j) D E F G))
+ :DOBE

;; This is setup code is shared betueen the examples
;; of three hypothetical implementations vhich folloo.

(setq table (make-hash-table)) + MUSH-TABLE EQL O/120 32005763>
(aetf (gethashtable 1) ‘one) + OWE
(setf (gethashtable 2) ‘tvo) + TWO

; ; Implementation A
(let ((*print-readably* t)) (print table))
Error: Can’t print #<HASH-TABLE EQL O/120 32005763> readably.

; ; Implementation B
;; No standardized XS notation for hash tables is defined,
:; but there might be an implementation-defined notation.

(let ((*print-readably* t) 1 (print table))
D #S(HASH-TABLE :TEST EQL :SIZE 120 :CONTENTS (1 ONE 2 TYO))
+ #<HASH-TABLE EQL O/120 32005763)

; ; Implementation C
;; Note that X. notation can only be used if *BEAD-EVIL* is true.
;; If *READ-EVAL* vere false, this same implementation might have to
;; signal an error unless it had yet another printing strategy to fall
;; back on.

(let ((*print-readably* t)) (print table))
D #.(LET ((HASH-TABLE (HAKE-HASH-TABLE)))
D (sETF (GETHASH i BASH-TABLE) ONE)
D (SETF umHk3H 2 HASH-TABLE) mo)
D HASH-TABLE)
* #<HASH-TABLE EQL O/120 32005763>

See Also:
write, print-unreadable-object

Printer 22-65

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
The rules for “similariiy” imply that #A or t(syntax cannot be used for anvlys of element type
other than t. An implementation will have to use another syntax or signal an error of type
print-not-readable.

print-right-margin Variable

Value Type:
a non-negative integer, or nil.

Initial Value:
nil.

Description:
If it ia non-nil, it specifies the right margin (as integer number of ems) to use when the pretty
prinfer is making layout decisions.

If it is nil, the right margin is taken to be the maximum line length such that output can be
displayed without wraparound or truncation. If this cannot be determined, an implementafion-
dependent value is used.

Notes:
This measure is in units of ems in order to be compatible with implementation-defined variable-
width fonts while still not requiring the language to provide support for fonts.

print-not-readable Condition Type

Class Precedence List:
print-not-readable, error, serious-condition, condition, t

Description:
The type print-not-readable consists of error conditions that occur during output while
print-readably is true, as a result of attempting to write a printed representation with the
Lisp printer that would not be correctly read back with the Lisp reader. The object which could
not be printed is initialized by the :object initialization argument to make-condition, and is
accessed by the function print-not-readable-object.

See Also:
print-not-readable-object

22-66 Printer

Programming Language-Common Lisp ANSI X3.226-1994

print-not-readable-object Function

Syntax:
print-not-readable-object condition + object

Arguments and Values:
condition-a condition of type print-not-readable.

object-an object.

Description:
Returns the object that could not be printed readably in the situation represented by condition.

See Also:
print-not-readable, Chapter 9 (Conditions)

format Function

Syntax:
format destination control-string &rest args -+ result

Arguments and Values:
destination-nil, t, a stream, or a string with a fill pointer.

control-string-a fomat control.

args-format arguments for control-string.

result-if destination is non-nil, then nil; otherwise, a string.

Description:
format produces formatted output by outputting the characters of control-string and observing
that a tilde introduces a directive. The character after the tilde, possibly preceded by prefix
parameters and modifiers, specifies what kind of formatting is desired. Most directives use one or
more elements of args to create their output.

If destination is a string, a stream, or t, then the result is nil. Otherwise, the result is a string
containing the ‘output.’

format is useful for producing nicely formatted text, producing good-looking messages, and so on.
format can generate and return a string or output to destination.

For details on how the control-string is interpreted, see Section 22.3 (Formatted Output).

Affected By:
standard-output, *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, *print-level*, *print-length*, *print-case*, *print-gensym*, *print-array*.

Exceptional Situations:
If destination is a string with a jill pointer, the consequences are undefined if destructive modifica-
tions are performed directly on the string during the dynamic extent of the call.

Printer 22-67

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
write, Section 13.1.10 (Documentation of Implementation-Defined Scripts)

22-68 Printer

ANSI X3.226-1994

Programming Language-Common Lisp

23. Reader

ANSI X3.226-1994 Programming Language-Common Lisp

ii Reader

Programming Language-Common Lisp ANSI X3.226-1994

23.1 Reader Concepts

23.1.1 Dynamic Control of the Lisp Reader
Various aspects of the Lisp reader can be controlled dynamically. See Section 2.1.1 (Readtables)
and Section 2.1.2 (Variables that affect the Lisp Reader).

23.1.2 Effect of Readtable Case on the Lisp Reader
The readtable case of the current readtable affects the Lisp reader in the following ways:

:upcase

When the readtable case is :upcase, unescaped constituent characters are converted to
uppercase, as specified in Section 2.2 (Reader Algorithm).

:downcase

When the readtable case is :dovncase, unescaped constituent characters are converted to
lowercase.

: preserve

When the readtable case is :preserve, the case of all characters remains unchanged.

: invert

When the readtable case is :invert, then if ail of the unescaped letters in the extended
token are of the same case, those (unescaped) letters are converted to the opposite case.

23.1.2.1 Examples of Effect of Readtable Case on the Lisp Reader

(defuu test-readtable-case-reading ()
(let ((*readtable* (copy-readtable nil)))

(f oruat t "READTABLE-CASE Input Symbol-naue’
n

‘X” 1

(dolist (readtable-case ‘(:upcase :dovncase :preserve :invert))
(setf (readtable-case *readtable*) readtable-case)
(dolist (input ’ (‘%IBBA” “Zebra” “zebra”))

(format t "-0:-A-16T'A-24T'A"
(string-upcase readtable-case)
input
(symbol-name (read-from-string input)))))))

The output from (test-readtable-case-reading) should be as follows:

READTABLE-CASE Input Symbol-name
--------^----------------------------

:DPCASE ZEBBA ZEBRA
:UPCASE Zebra ZEBRA
:UPCASE zebra ZEBRA
:DOUBCASE ZEBRA zebra
:DOYBCASE Zebra zebra
:DOVNCASE zebra zebra
:PRESERVE ZEBRA ZEBRA

Reader 23-l

ANSI X3.226-1994 Programming Language-Common Lisp

:PRESERVE
:PRESERVE
:INVERT
:INVERT
:I?NEBT

Zebra Zebra
zebra zebra
ZEBBA zebra
Zebra Zebra
zebra ZEBRA

23.1.3 Argument Conventions of Some Reader Functions

23.1.3.1 The EOF-ERROR-P argument

Eof-error-p in input function calls controls what happens if input is from a file (or any other
input source that has a definite end) and the end of the file is reached. If eoficrror-p is true
(the default), an error of type end-of-file is signaled at end of file. If it is false, then no error is
signaled, and instead the function returns e&value.

Functions such as read that read the representation of an object rather than a single charac-
ter always signals an error, regardless of eoficrror-p, if the file ends in the middle of an object
representation. For example, if a file does not contain enough right parentheses to balance the
left parentheses in it, read signals an error. If a file ends in a symbol or a number immediately
followed by end-of-file, read reads the symbol or number successfully and when called again will
act according to cof-error-p. Similarly, the function read-line successfully reads the last line of a
file even if that line is terminated by end-of-file rather than the newline character. Ignorable text,
such as lines containing only whitespace or comments, are not considered to begin an object; if
read begins to read an ezpression but sees only such ignorable text, it does not consider the file
to end in the middle of an object. Thus an eoficrror-p argument controls what happens when the
file ends between objects.

23.1.3.2 The RECURSIVE-P argument

If recursivcp is supplied and not nil, it specifies that this function call is not an outermost call to
read but an embedded call, typically from a reader macro function. It is important to distinguish
such recursive calls for three reasons.

1. An outermost call establishes the context within which the #n= and Xn# syntax is scoped.
Consider, for example, the expression

(cons '*3=(p q r) '(x y . #3#))

If the single-quote reader macro were defined in this way:

(set-macro-character #* ;incorrect
#'(lambda (stream char)

(declare (ignore char))
(list 'quote (read stream))))

then each call to the single-quote reader macro function would establish independent
contexts for the scope of read information, including the scope of identifications between
markers like “x3=” and “#3x”. However, for this expression, the scope was clearly in-
tended to be determined by the outer set of parentheses, so such a definition would be
incorrect. The correct way to define the single-quote reader macro uses recursive-p:

(set-racro-character X\' ; correct
It'(lambda (stream char)

(declare (ignore char))
(list 'quote (read stream t nil t))))

-’

23-2 Peader

Programming Language--Common Lisp ANSI X3.226-1994

2. A recursive call does not alter whether the reading process is to preserve whites-
pace2 or not (as determined by whether the outermost call was to read or
read-preserving-whitespace). Suppose again that single-quote were to be defined as
shown above in the incorrect definition. Then a call to read-preserving-whitespace
that read the expression)foo(Space) would fail to preserve the space character fol-
lowing the symbol foo because the single-quote reader macro junction calls read, not
read-preserving-whitespace, to read the following expression (in this case foo). The cor-
rect definition, which passes the value true for recursive-p to read, allows the outermost
call to determine whether whitespaces is preserved.

3. When end-of-file is encountered and the eoficrror-p argument is not nil, the kind of error
that is signaled may depend on the value of recursivtp. If recursive-p is true, then the
end-of-file is deemed to have occurred within the middle of a printed representation; if
recursive-p is false, then the end-of-file may be deemed to have occurred between objects
rather than within the middle of one.

Reader 23-3

ANSI X3.226-1994 Programming Language-Common Lisp

readtable System Class

Class Precedence List:
readtable, t

Description:
A readtable maps characters into syntaz types for the Lisp wader; see Chapter 2 (Syntax). A
readtable also contains associations between macm chamcters and their reader macro junctions,
and records information about the case conversion rules to be used by the Lisp reader when
parsing symbols.

Each simple character must be representable in the readtable. It is implementation-defined
whether non-simple characters can have syntax descriptions in the readtable.

See Also:
Section 2.1.1 (Readtables), Section 22.1.3.13 (Printing Other Objects)

copy-readtable Function

Syntax:
copy-readtable &optional from-readtable ttweadtable -+ readtable

Arguments and Values:
from-readtable-a readtable designator. The default is the current readtable.

to-readtable-a readtable or nil. The default is nil.

readtable-the to-readtable if it is non-nil, or else a fresh readtable.

Description:
copy-readtable copies from-readtable.

If tereadtable is nil, a new readtable is created and returned. Otherwise the readtable specified by
to-readtable is modified and returned.

copy-readtable copies the setting of readtable-case.

Examples:

(setq zvar 123) + 123
(set-syntax-from-char X\z #\’ (setq table2 (copy-readtable))) + T
zvar * 123
(copy-readtable table2 *readtable*) -+ #<READTABLE 614000277>
zvar * VAR
(setq *readtable* (copy-readtable)) -+ #<READTABLE 46210223>
zvar + VAR
(setq +readtable* (copy-readtable nil)) + #<REIDTABLE 46302670>
zvar + 123

See Also:
readtable, *readtable*

23-4 Reader

Programming Language-Common Lisp ANSI X3.226-1994

Notes:

(setq *readtable* (copy-readtable nil))

restores the input syntax to standard Common Lisp syntax, even if the initial readtable has been
clobbered (assuming it is not so badly clobbered that you cannot type in the above expression).

On the other hand,

(setq *readtable* (copy-readtable))

replaces the current readtable with a copy of itself. This is useful if you want to save a copy of a
readtable for later use, protected from alteration in the meantime. It is also useful if you want to
locally bind the readtable to a copy of itself, as in:

(let ((*readtable* (copy-readtable))) . ..I

make-dispatch-macro-character Function

Syntax:
make-dispatch-macro-character char &optional non-terminating-p /eadtab/e 4 t

Arguments and Values:
char-a character.

non-terminating-p-a genemlized boolean. The default is false.

readtable-a readtable. The default is the current readtable.

Description:
make-dispatch-macr+character makes char be a dispatching macro character in readtable.

Initially, every character in the dispatch table associated with the char has an associated function
that signals an error of type reader-error.

If non-terminating-p is true, the dispatching macro character is made a non-terminating macro
character; if non-terminating-p is false, the dispatching macro character is made a terminating
macro character.

Examples:

(get-macro-character t\O + UIL. false
(make-dispatch-macro-character #\<I 4 T
(not (get-macro-character S\C)) -9 false

The readtable is altered.

See Also:
readtable, set-dispatch-macro-character

Reader 23-5

ANSI X3.226-1994 Programming Language-Common Lisp

read, read-preserving-whitespace Function

Syntax:
read &optional input-stream cofkrror-p aofivalue recursivcp -+ object

read-preserving-whitespace &optional input-stream eof-error-p
eof-value recursivcp

-+ object

Arguments and Values:
input-stream-an input stream designator.

aoficrror-p-a generalized boolean. The default is true.

eofivalue-an object. The default is nil.

recursiva-p -a generalized boolean. The default is false.

object-an object (parsed by the Lisp reader) or the l ofivalue.

Description:
read parses the printed representation of an object from input-stream and builds such an object.

read-preserving-whitespace is like read but preserves any whitespace character that delimits
the printed representation of the object. read-preserving-whitespace is exactly like read when
the recursiva-p argument to read-preserving-whitespace is true.

When *read-suppress* is false, read throws away the delimiting chamcter required by certain
printed representations if it is a whitespacez character; but read preserves the character (using
unread-char) if it is syntactically meaningful, because it could be the start of the next expression.

If a file ends in a symbol or a number immediately followed by an end of fileI, read reads the
symbol or number successfully; when called again, it sees the end of file1 and only then acts
according to eofierror-p. If a file contains ignorable text at the end, such as blank lines and
comments, read does not consider it to end in the middle of an object.

If recursive-p is true, the call to read is expected to be made from within some function that itself
has been called from read or from a similar input function, rather than from the top level.

Both functions return the object read from input-stream. Eof-value is returned if auf-error-p is false
and end of file is reached before the beginning of an object.

Examples:

(read)
Da

-+ (QUOTE A)
(with-input-from-string (is ” “) (read is nil ‘the-end)) + THE-END
(defun skip-then-read-char (s c n)

(if (char= c #\i) (read s t nil t) (read-preserving-whitespace 8))
(read-char-no-hang 8)) * SKIP-THE&READ-CHAR

23-6 Reader

Programming Language-Common Lisp ANSI X3.226-1994

(let ((*readtable* (copy-readtable nil)))
(set-dispatch-macro-character *\# t\< #‘skip-then-read-char)
(set-dispatch-macro-character #\t #\I #‘skip-then-read-char)
(vith-input-from-string (is W123 x lt3123 y”)

(format t ‘91 ‘S” (read is) (read is) 1)) -+ *\x, t\Space, NIL

As an example, consider this reader macro definition:

(defun slash-reader (stream char)
(declare (ignore char))
‘(path . , (loop for dir = (read-preserving-vhitespace stream t nil t)

then (progn (read-char stream t nil t)
(read-preserving-vhitespace stream t nil t))

collect dir
vhile (eql (peek-char nil stream nil nil t) W\/))))

(set-macro-character #\/ #‘slash-reader)

Consider now calling read on this expression:

(zyedh /usr/games/zork /usr/games/boggle)

The / macro reads objects separated by more / characters; thus /usr/games/zork is intended to
read as (path usr games zork). The entire example expression should therefore be read as

(zyedh (path usr games zork) (path usr games boggle))

However, if read had been used instead of read-preserving-whitespace, then after the reading of
the symbol zork, the following space would be discarded; the next call to peek-char would see the
following /, and the loop would continue, producing this interpretation:

(zyedh (path usr games zork usr games boggle))

There are times when whitespacez should be discarded, If a command interpreter takes single-
character commands, but occasionally reads an object then if the whitespacez after a symbol is not
discarded it might be interpreted as a command some time later after the symbol had been read.

Affected By:
standard-input, *terminal-io*, *readtable*, *read-default-float-format*, *read-base*,
*read-suppressA‘, *package*, *read-eval*.

Exceptional Situations:
read signals an error of type end-of-file, regardless of eof-error-p, if the file ends in the mid-
dle of an object representation. For example, if a file does not contain enough right parenthe-
ses to balance the left parentheses in it, read signals an error. This is detected when read or
read-preserving-whitespace is called with recursive-p and eofierror-p non-nil, and end-of-file is
reached before the beginning of an object.

If eofierror-p is true, an error of type end-of-file is signaled at the end of file.

See Also:
peek-char, read-char, unread-char, read-from-string, read-delimited-list, parse-integer,
Chapter 2 (Syntax), Section 23.1 (Reader Concepts)

Reader 23-7

ANSI X3.226- 1994 Programming Language-Common Lisp

read-delimited-list Function

syntax:
read-delimited-list char &optional input-stream recursive-p -+ list

Arguments and Values:
char-a character.

input-stream-an input stream designator. The default is standard input.

recursive-p- a generalized boolean. The default is false.

list-a list of the objects read.

Description:
read-delimited-list reads objects from input-stream until the next character after an object’s
representation (ignoring whitespacez characters and comments) is char.

read-delimited-list looks ahead at each step for the next non-whitespace character and peeks
at it as if with peek-char. If it is char, then the character is consumed and the list of objects is
returned. If it is a constituent or escape character, then read is used to read an object, which is
added to the end of the list. If it ia a macro character, its reader macro function is called; if the
function returns a value, that value is added to the list. The peek-ahead process is then repeated.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function.

It is an error to reach end-of-file during the operation of read-delimited-list.

The consequences are undefined if char has a syntat type of whitespacez in the current readtable.

Examples:

(read-delimited-list It\]) 1 2 3 4 5 6]
-, (12 3 4 5 6)

Suppose you wanted xia b c . . . zl to read as a list of all pairs of the elements a, b, c, . . .) z, for
example.

*<p q z a) reads as ((p q) (p z) (p a) (q z) (q a) (z a) 1

This can be done by specifying a macro-character definition for #C that does two things: reads in
all the items up to the 1, and constructs the pairs. read-delimited-list performs the first task.

(defun IX{-reader1 (stream char arg)
(declare (ignore char arg))
(mapcon X’ (lambda (x)

(mapcar #‘(lambda (y) (list (car x1 y)) (cdr x1))
(read-delimited-list X\l stream t))) -+ Iti-reader1

(set-dispatch-macro-character X\X X\i #* I#<-readerl) -+ T
(set-8acro-character #\I (get-macro-character X\) nil))

Note that true is supplied for the recursive-p argument.

It is necessary here to give a definition to the character) as well to prevent it from being a
constituent. If the line

23-8 Reader

Programming Language-Common Lisp ANSI X3.226-1994

(set-macro-character S\) (get-macro-character #x\) nil))

shown above were not included, then the 1 in

would be considered a constituent character, part of the symbol named a>. This could be cor-
rected by putting a space before the 1, but it is better to call set-macr*character.

Giving) the same definition as the standard definition of the character 1 has the twin benefit of
making it terminate tokens for use with read-delimited-list and also making it invalid for use in
any other context. Attempting to read a stray 3 will signal an error.

Affected By:
standard-input, *readtable*, *terminal-io*.

See Also:
read, peek-char, read-char, unread-char.

Motes:
read-delimited-list is intended for use in implementing reader macros. Usually it is desirable
for char to be a terminating macro character so that it can be used to delimit tokens; how-
ever, read-delimited-list makes no attempt to alter the syntax specified for char by the current
readtable. The caller must make any necessary changes to the readtable syntax explicitly.

read-from-string Function

Syntax:
read-from-string string &optional eof-error-p eofivalue

tkey start end preserve-whitespacc

- object, position

Arguments and Values:
string-a string.

eofierror-p-a generalized boolean. The default is true.

eof-value-an object. The default is nil.

start, end-bounding i&e+ designators of string. The defaults for start and end are 0 and nil,
respectively.

preservcwhitespace-a generalized boolean. The default is false.

object-an object (parsed by the Lisp reader) or the eof-value.

position-an integer greater than or equal to zero, and less than or equal to one more than the
length of the string.

Description:
Parses the printed representation of an object from the subsequence of string bounded by start and
end, as if read had been called on an input stream containing those same characters.

If preserve-whitespace is true, the operation will preserve whitespace as read-preserving-whitespace
would do.

Reader 23-9

ANSI X3.226-1994 Programming Language-Common Lisp

If an object is successfully parsed, the primary value, object, is the object that was parsed. If
aof-error-p is false and if the end of the substring is reached, aof-value is returned.

The secondary value, position, is the index of the first character in the bounded string that was
not read. The position may depend upon the value of praserve-whitaspace. If the entire string was
read, the position returned is either the length of the string or one greater than the length of the
string.

Examples:

(read-from-string @I 1 3 5” t nil :start 2) + 3. 5
(read-from-string “(a b c) “1 -+ (A B C) , 7

Exceptional Situations:
If the end of the supplied substring occurs before an object can be read, an error is signaled if
t&error-p is true. An error is signaled if the end of the substring occurs in the middle of an
incomplete object.

See Also:
read, read-preserving-whitespace

Notes:
The reason that position is allowed to be beyond the length of the string is to permit (but not
require) the implementation to work by simulating the effect of a trailing delimiter at the end
of the bounded string. When prascrva-whitaspace is true, the position might count the simulated
delimiter.

readtable-case Acceasot

Syntax:
readtable-case readtable 4 mode

(setf (readtable-case readtable) mode)

Arguments and Values:
readtable-a readtable.

mode-a case sensitivity mode.

Description:
Accesses the readtable case of readtable, which affects the way in which the Lisp Reader reads
symbols and the way in which the Lisp Printer writes symbols.

Examples:
See Section 23.1.2.1 (Examples of Effect of Readtable Case on the Lisp Reader) and Section
22.1.3.3.2.1 (Examples of Effect of Readtable Case on the Lisp Printer).

Exceptional Situations:
Should signal an error of type type-error if readtable is not a readtable. Should signal an error of
type type-error if mode is not a case sensitivity mode.

23-10 Reader

Programming Language-Common Lisp ANSI X3.226-1994

See Also:
readtable, *print-escape*, Section 2.2 (Reader Algorithm), Section 23.1.2 (Effect of Readtable
Case on the Lisp Reader), Section 22.1.3.3.2 (Effect of Readtable Case on the Lisp Printer)

Notes:
copy-readtable copies the readtable case of the readtable.

readtablep Function

Syntax:
readtablep object + generalized-boolean

Arguments and Values:
object-an object.

generalized-boolean-a generalized boolean.

Description:
Returns true if object is of type readtable; otherwise, returns false.

Examples:

(readtablep *readtable*) -+ true
(readtablep (copy-readtable)) + true
(readtablep ‘*readtable*) -+ fake

Notes:

(readtablep object) E (typep object ‘readtable)

set-dispatch-macro-character, get-dispatch-macro-
character Function

Syntax:
get-dispatch-macro-character disp-char sub-char &optional readtable + function

set-dispatch-macro-character disp-char sub-char new-function &optional readtable + t

Arguments and Values:
disp-char-a character.

sub-char-a character.

readtable-a readtable designator. The default is the current readtable.

function-a function designator or nil.

new-function-a function designator.

Reader 23-11

ANSI X3.226-1994 Programming Language-Common Lisp

Description:
set-dispatch-macro-character causes new-function to be called when &-char followed hy sub-
char is read. If sub-char is a lowercase letter, it is converted to its uppercase equivalent. It is an
error if sub-char is one of the ten decimal digits.

set-dispatch-macro-character installs a new-function to be called when a particular di@cking
macro character pair is read. New-function is installed as the dispatch function to be called when
readtable is in use and when disp-char is followed by sub-char.

For more information about how the new-function is invoked, see Section 2.1.4.4 (Macro Charac-
ters).

get-dispatch-macro-character retrieves the dispatch function associated with disp-char and
sub-char in readtable.

get-dispatch-macro-character returns the macrecharacter function for sub-char under disp-
char, or ail if there is no function associated with sub-char. If sub-char is a decimal digit,
get-dispatch-macrecbaracter returns nil.

Examples:

(get-dispatch-macro-character #\lr *\I) + IIL
(set-dispatch-macro-character *\# #\I ;dispatch on Xc

#*(lambda(s c II)
(let ((list (read s nil (values) t))) ;list is object after Sni

(when (consp list) ;return nth element of list
(unless (and n (< 0 n (length list))) (setq n 0))
(setq list (nth II list)))

list))) -k T
#i(l 2 3 4) 4 1
#3{(0 1 2 3) + 3
#I123 - 123

If it is desired that #$foo : as if it were (dollars foe).

(defun IX%-reader! (stream subchar arg)
(declare (ignore subchar arg))
(list 'dollars (read stream t nil t))) -+ I#$-reader1

(set-dispatch-macro-character #\# t\$ t'l#$-reader11 --) T

See Also:
Section 2.1.4.4 (Macro Characters)

Side Effects:
The readtable is modified.

Affected By:
readtable.

Exceptional Situations:
For either function, an error is signaled if disp-char is not a dispdching macro character in
readtable.

See Also:
readtable

Notes:
It is necessary to use make-dispatch-macro-character to set up the dispatch character before

23-12 Reader

Programming Language-Common Lisp ANSI X3.226-1994

specifying its sub-characters.

set-macro-character, get-macro-character Function

Syntax:
get-macrc+character char &optional readtable -+ function, non-terminating-p

set-macro-character char new-function kept iondl non-terminating-p readtable + t

Arguments and Values:
char-a character.

non-terminating-p-a generalized boolean. The default is false.

readtable-a readtable designator. The default is the current readtable.

function-nil, or a designator for a function of two arguments.

new-function-a function designator.

Description:
get-macro-character returns as its primary value, function, the reader macro function associated
with char in readtable (if any), or else nil if char is not a macro character in readtable. The sec-
ondary value, non-terminating-p, is true if char is a non-terminating macro character; otherwise,
it is false.

set-macro-character causes char to be a macro character associated with the reader macro
function new-function (or the designator for new-function) in readtable. If non-terminating-p is
true, char becomes a non-terminating macro character; otherwise it becomes a terminating macro
character.

Examples:

(get-macro-character #\C) -+ NIL, false
(not (get-macro-character X\; 1) + false

The following is a possible definition for the single-quote reader macro in standard syntaz:

(defun single-quote-reader (stream char)
(declare (ignore char))
(list ‘quote (read stream t nil t))) -+ SINGLE-QUOTE-READER

(set-macro-character #\’ #‘single-quote-reader) -+ T

Here single-quote-reader reads an object following the single-quote and returns a list of quote
and that object. The char argument is ignored.

The following is a possible definition for the semicolon reader macro in standard syntaz:

(defun semicolon-reader (stream char)
(declare (ignore char))
;; First suallov the rest of the current input line.
;; End-of-file is acceptable for terknating the comment.
(do 0 ((char= (read-char stream nil #\Nevline t) #\Nevline)))
;; Return zero values.
(values)) * SEMICOLON-READER

(set-macro-character #\; #'semicolon-reader) -+ T

Reader 23-13

ANSI X3.226-1994 Programming Language-Common Lisp

Side Effects:
The readtable is modified.

See Also:
readtable

set-syntax-from-char Function

syntax:
set-syntax-from-char to-char from-char &optional to-readtable from-readtable + t

Arguments and Values:
to-char-a character.

from-char-a character.

to-readtable-a readtable. The default is the current readtable.

from-readtable-a readtable designator. The default is the standard readtable.

Description:
set-syntax-from-char makes the syntax of to-char in tweadtable be the same as the syntax of
from-char in from-readtable.

set-syntax-from-char copies the syntax types of from-char. If from-char is a macro character, its
reader macro function is copied also. If the character is a dispatching macro character, its entire
dispatch table of reader macro functions is copied. The constituent traits of from-char are not
copied.

A macro definition from a character such as ‘I can be copied to another character; the standard
definition for ‘I looks for another character that is the same as the character that invoked it. The
definition of (can not be meaningfully copied to C, on the other hand. The result is that lists are
of the form Ca b c), not {a b cl, because the definition always looks for a closing parenthesis, not
a closing brace.

Examples:

(eat-syntax-from-char X\? X\;) + T
123579 * 1235

Side Effects:
The to-madtable is modified.

Affected By:
The existing values in the from-readtable.

See Also:
set-macro-character, make-dispatch-macro-character, Section 2.1.4 (Character Syntax Types)

Notes:
The constikent trails of a character are “hard wired” into the parser for extended tokens. For
example, if the definition of s is copied to +, then * will become a constituent that is alphabetic2

23-14 Reader

Programming Language-Common Lisp ANSI X3.226-1994

but that cannot be used as a short float ezponent marker. For further information, see Section
2.1.4.2 (Constituent Traits).

.
with-standard-io-syntax Macro

Syntax:
with-standard-k-syntax {form}* --t {r~ru/t]*

Arguments and Values:
forms-an implicit progn.

results-the values returned by the forms.

Description:
Within the dynamic extent of the body of forms, all reader/printer control variables, including
any implementation-defined ones not specified by this standard, are bound to values that produce
standard read/print behavior. The values for the variables specified by this standard are listed in
Figure 23-l.

Variable Value
package The CL-USER package
print-array t
print-base 10
print-case : upcase
print-circle nil
print-escape t
print-gensym t
print-length nil
print-level nil
print-lines nil
print-miser-width nil
print-pprint-dispatch The standard pprint dispatch table
print-pretty nil
print-radix nil
print-readably t
print-right-margin nil
read-base 10
read-default-float-format single-float
read-eval t
read-suppress nil
readtable The standard readtable

Figure 23-l. Values of standard control variables

Examples:

(vith-open-file (file pathname :direction :output)
(Pith-standard-io-syntax

(print data file)))

Reader 23-15

ANSI X3.226-1994 Programming Language-Common Lisp

. . . **. -*- Later, in another Lisp:

(vith-open-file (file pathname :direction :input>
(vitb-standard-io-syntax

(setq data (read file))))

read-base Variable

Value Type:
a radix.

Initial Value:
10.

Description:
Controls the interpretation of tokens by read as being integers or ratios.

The value of *read-base*, called the current input base, is the radix in which integers and
ratios are to be read by the Lisp reader. The parsing of other numeric types (e.g., floats) is not
affected by this option.

The effect of *read-base* on the reading of any particular rational number can be locally overrid-
den by explicit use of the #to, IX, #B, or SIR syntax or by a trailing decimal point.

Examples:

(dotines (i 6)
(let ((*read-base* (+ 10. i)))

(let ((object (read-from-string "(\\DAD DAD IBEEt BEE 123. 123)")))
(print (list *read-base* object)))))

D (IO (DAD DAD BEE BEE 123 123))
D (11 (DAD DAD BEE BEE 123 146) 1
P (12 (DAD DAD BEE BEE 123 171))
D (13 (DAD DAD BEE BEE 123 198))
D (14 (DAD 2701 BEE BEE 123 227))
D (15 (DAD 3088 BEE 2699 123 258))
+ NIL

Notes:
Altering the input radix can be useful when reading data files in special formats.

23-16 Reader

Programming Language-Common Lisp ANSI X3.226-1994

wead-default-float-format* Variable

Value Type:
one of the atomic type specifiers short-float, single-float, double-float, or long-float, or else some
other type specifier defined by the implementation to be acceptable.

Initial Value:
The symbol single-float.

Description:
Controls the floating-point format that is to be used when reading a floating-point number that
has no ezponent marker or that has e or E for an ezponent marker. Other ezponent markers
explicitly prescribe the floating-point format to be used.

The printer uses *read-default-float-format * to guide the choice of exponent markers when
printing floating-point numbers.

Examples:

(let ((*read-default-float-format* 'double-float))
(read-from-string "(1.0 1.0eO 1.0~0 l.OfO 1.0dO l.OLO)"))

+ (1.0 1.0 1.0 1.0 1.0 1.0) ;Implementation has float format F.
* (1.0 1.0 1.080 1.0 1.0 1.0) ;Implementation has float formats S and F.
-* (l.OdO l.OdO 1.0 1.0 l.OdO l.OdO) ;Implementation haa float formats F and D.
+ (l.OdO l.OdO 1.080 1.0 l.OdO l.OdO) ;Implementation has float formats S, F, D.
+ (l.OdO l.OdO 1.0 1.0 l.OdO l.OLO) ;Implementation has float formats F, D, L.
+ (l.OdO l.OdO 1.080 1.0 l.OdO i.OLO) ;Implementationhaa formats S. F, D. L.

read-eval Variable

Value Type:
a generalized boolean.

Initial Value:
true.

Description:
If it is true, the t. reader macro has its normal effect. Otherwise, that reader macro signals an
error of type reader-error.

See Also:
print-readably

Notes:
If *read-evaI* is faZse and *print-readably* is true, any method for print-object that would
output a reference to the #. reader macro either outputs something different or signals an error of
type print-not-readable.

Reader 23-17

ANSI X3.226-1994 Programming Language-Common Lisp

read-suppress Variable

Value Type:
a generalized boolean.

Initial Value:
false.

Description:
This variable is intended primarily to support the operation of the read-time conditional nota-
tions #+ and t-. It is important for the reader macros which implement these notations to be able
to skip over the printed representation of an ezpnssion despite the possibility that the syntax
of the skipped ezpression may not be entirely valid for the current implementation, since 1)+ and
it- exist in order to allow the same program to be shared among several Lisp implementations
(including dialects other than Common Lisp) despite small incompatibilities of syntax.

If it is false, the Lisp reader operates normally.

If the value of *read-suppress* is true, read, read-preserving-whitespace, read-delimited-list,
and read-from-string all return a primary value of nil when they complete successfully; however,
they continue to parse the representation of an object in the normal way, in order to skip over
the objeci, and continue to indicate end of file in the normal way. Except as noted below, any
standardized reader macro2 that is defined to read2 a following object or token will do so, but not
signal an error if the object read is not of an appropriate type or syntax. The standard syntat
and its associated reader macros will not construct any new objects (e.g., when reading the
representation of a symbol, no symbol will be constructed or interned).

Extended tokens

All extended tokens are completely uninterpreted. Errors such as those that might
otherwise be signaled due to detection of invalid potential numbers, invalid patterns of
package markers, and invalid uses of the dot character are suppressed.

Dispatching macro characters (including sharpsign)

Dispatching macro characters continue to parse an iniix numerical argument, and invoke
the dispatch function. The standardized sharpsign reader macros do not enforce any
constraints on either the presence of or the value of the numerical argument.

The #- notation is totally ignored. It doea not read a following object. It produces no
object, but is treated as whitespacez.

The w notation always produces nil.

No matter what the value of *read-suppress*, parentheses still continue to delimit and construct
lists; the rt(notation continues to delimit vectors; and comments, sttings, and the single-quoie
and backquoie notations continue to be interpreted properly. Such situations as ’), #c, t), and
#(Space) continue to signal errors.

23-18 Reader

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

(let ((*read-suppress* t))
(rapcar *‘read-from-string

‘(**t(foo bar baz)” VP(:type :lisp)*’ ‘*#cl.P”
“r.(PRIlIT 'PO01 M “#3AIELLO” “$S(IETEGER)”
“WABC” "t\GARBAGE" “tRALPHA” “~3R444”)))

- (IIL BIL NIL PIL IIL NIL IfIL IlIL IIIL HIL)

See Also:
read, Chapter 2 (Syntax)

Notes:
Programmers and implementations that define additional macro characters are strongly encour-
aged to make them respect *read-suppress* just as standardized macro characters do. That is,
when the value of *read-suppress* is true, they should ignore type errors when reading a follow-
ing object and the functions that implement dispatching macro characters should tolerate uil as
their infix parameter value even if a numeric value would ordinarily be required.

Variable

Value Type:
a readtable.

Initial Value:
A readtable that conforms to the description of Common Lisp syntax in Chapter 2 (Syntax).

Description:
The value of *readtable* is called the current readtable. It controls the parsing behavior of the
Lisp reader, and can also influence the Lisp printer (e.g., see the function readtable-case).

Examples:

(readtablep *readtable*) 4 true
(setq zvar 123) + 123
(set-syntax-from-char t\z t\’ (setq table2 (copy-readtable))) + 1
zvar + 123
(setq *readtable* tablea) ---) #<RBLE>
mar + VAR
(setq *readtable* (copy-readtable nil)) --) #<READTABLES
zvar -* 123

Affected By:
compile-flle, load

See Also:
compile-file, load, readtable, Section 2.1.1.1 (The Current Readtable)

Reader 23-19

_ .-.___ .__. ,

ANSI X3.226-1994 Programming Language-Common Lisp

reader-error Condition Type

Class Precedence List:
reader-error , parse-error, stream-error, error, seriqus-condition, condition, t

Description:
The type reader-error consists of error conditions that are related to tokenisation and parsing
done by the Lisp reader.

See Also:
read, stream-error-stream, Section 23.1 (Reader Concepts)

23-20 Reader

ANSI X3.226- 1994

Programming Language---Common Lisp

24. System Construction

__“i .^ .-..

ANSI X3.226-1994 Programming Language-Common Lisp

ii System Construction

Programming Language-Common Lisp ANSI X3.226-1994

24.1 System Construction Concepts

24.1.1 Loading
To load a file is to treat its contents as code and ezecute that code. The file may contain source
code or compiled code.

A file containing source code is called a source fiie. Loading a source file is accomplished
essentially by sequentially reading2 the forms in the file, evaluating each immediately after it
read.

A file containing compiled code is called a compiled He. Loading a compiled file is similar to
loading a source file, except that the file does not contain text but rather an implemeniation-
dependent representation of pre-digested expressions created by the compiler. Often, a compiled
file can be loaded more quickly than a source file. See Section 3.2 (Compilation).

The way in which a source file is distinguished from a compiled file is implementation-dependent.

24.1.2 Features
A feature is an aspect or attribute of Common Lisp, of the implementation, or of the environ-
ment. A feature is identified by a symbol.

A feature is said to be present in a Lisp image if and only if the symbol naming it is an element
of the list held by the variable *features*, which is called the features list.

24.1.2.1 Feature Expressions
Boolean combinations of features, called feature expressions, are used by the t+ and X- reader
macros in order to direct conditional reading of expressions by the Lisp reader.

The rules for interpreting a feature expression are as follows:

feature

If a symbol naming a feature is used as a feature expression, the feature expression
succeeds if that feature is present; otherwise it fails.

(not feature-conditional)

A not feature expression succeeds if its argument feature-conditional fails; otherwise, it
succeeds.

(and {feature-conditional}*)

An and feature expression succeeds if all of its argument featurtconditionals succeed;
otherwise, it fails.

(or {feature-conditional}*>

An or feature ezpression succeeds if any of its argument feature-conditionals succeed;
otherwise, it fails.

24.1.2.1.1 Examples of Feature Expressions

For example, suppose that in implementation A, the features spice and perq are present, but the
feature lispm is not present; in implementation B, the feature lispm is present, but the features

System Construction 24-l

ANSI X3.226-1994 Programming Language-Common Lisp

spice and perq are not present; and in implementation C, none of the features spice, lispm, or
perq are present. Figure 24-l shows some sample expressions, and how they would be read2 in
these implementations.

(cons t+spice “Spice” #-spice “Lisps” x1
in implementation A . . . (CONS “Spice” XI
in implementation B . . . (CONS “Lisps” X)
in implementation C . . . (CONS “Lispm” X)

(cons #+spice “Spice” #+LispH “Lispa” x1
in implementation A . . . (CONS “Spice” XI
in implementation B . . . (CONS “Lisps” XI
in implementation C . . . (CONS X)

(setq a ‘(I 2 Wperq 43 t+(not perq) 27))
in implementation A . . . (SETQ A ‘(1 2 43))
in implementation B . . . (SETQ A ‘(1 2 27))
in implementation C , . . (SETQ A ‘(1 2 27))

(let ((a 3) #+(or spice lispa) (b 3)) (foe a))
in implementation A . . . (LET ((A 3) (B 3)) (FOO A))
in implementation B . . . (LET ((A 3) (B 3)) (FOO A))
in implementation C . . . (LET ((A 3)) (FOO A))

(cons #+Lispm “#+Spice” #+Spice “foe” *-(or Lispm Spice) 7 x)
in implementation A . . . (CONS “foe” X)
in implementation B . . . (CONS V+Spice” XI
in implementation C . . . (CONS 7 X)

24-2 System Construction

Programming Language-Common Lisp ANSI X3.226-1994

compile-file Function

Syntax:
compile-file input-t% &key output-file verbose

print external-format

- output-truename, warnings-p, failure-p

Arguments and Values:
input-file-a pathname designator. (Default fillers for unspecified components are taken from
default-pathname-defaults.)

output-file-a pathname designator. The default is implementation-defined.

verbose-a generalized boolean. The default is the value of *compile-verbose*.

print-a generalized boolean. The default is the value of *compile-print*.

external-format-an external file format designator. The default is :def ault.

output-truename-a pathname (the truename of the output file), or nil.

warnings-p-a generalized boolean.

failure-p-a generalized boolean.

Description:
compih+fiIe transforms the contents of the file specified by input-file into implementation-
dependent binary data which are placed in the file specified by output-k

The file to which input-file refers should be a source file. output-file can be used to specify an
output pathname; the actual pathname of the compiled file to which compiled code will be output
is computed as if by calling compile-file-pathname.

If input-file or output-tile is a logical pathname, it is translated into a physical pathname as if by
calling translate-logical-pathname.

If verbose is true, compile-file prints a message in the form of a comment (i.e., with a leading
semicolon) to standard output indicating what file is being compiled and other useful information.
If verbose is false, compile-file does not print this information.

If print is true, information about top level forms in the file being compiled is printed to standard
output. Exactly what is printed is implementation-dependent, but nevertheless some information
is printed. If print is nil, no information is printed.

The axternal-format specifies the external file format to be used when opening the file; see the
function open. compile-file and load must cooperate in such a way that the resulting compiled
file can be loaded without specifying an external file format anew; see the function load.

compile-file binds *readtable* and *package* to the values they held before processing the file.

compile-Ale-truename is bound by compile-file to hold the truename of the pathname of the
file being compiled.

compile-Ale-pathname is bound by compile-file to hold a pathname de-
noted by the first argument to compile-file, merged against the defaults; that is,

System Construction 24-3

ANSI X3.226-1994 Programming Language-Common Lisp

(pathname (8erge-pathnaes input-file) 1.

The compiled functions contained in the compiled file become available for use when the compiled
file is loaded into Lisp. Any function definition that is processed by the compiler, including
*C'W3dda . . .) forms and local function definitions made by let, labels and defun forms, result
in an object of type compiled-function.

The primary value returned by compile-file, output-truename, is the truename of the output file,
or nil if the file could not be created.

The secondary value, warnings-p, is false if no conditions of type error or warning were detected
by the compiler, and true otherwise.

The tertiary value, failure-p, is false if no conditions of type error or warning (other than
style-warning) were detected by the compiler, and true otherwise.

For general information about how files are processed by the file compiler, see Section 3.2.3 (File
Compilation).

Programs to be compiled by the file compiler must only contain externalizable objects; for details
on such objects, see Section 3.2.4 (Literal Objects in Compiled Files). For information on how
to extend the set of externalizable objects, see the function make-load-form and Section 3.2.4.4
(Additional Constraints on Externalizable Objects).

Affected By:
error-output, *standard-output*, *compile-verbose*, *compile-print*

The computer’s file system.

Exceptional Situations:
For information about errors detected during the compilation process, see Section 3.2.5 (Excep
tional Situations in the Compiler).

An error of type Ale-error might be signaled if (wild-pathnare-p input-file) returns true.

If either the attempt to open the source file for input or the attempt to open the compiled file for
output fails, an error of type file-error is signaled.

See Also:
compile, declare, eval-when, pat&name, logical-pathname, Section 20.1 (File System Concepts),
Section 19.1.2 (Pathnames as Filenames)

compile-file-pat hname Function

Syntax:
compile-file-pathname input-file &keg output-file kallov-other-keys + pathnamc

Arguments and Values:
input-file-a pathname designator. (Default fillers for unspecified components are taken from
default-pathname-defaults.)

output-file-a pathname designator. The default is implementation-defined.

pathname-a pathname.

24-4 System Construction

Programming Language-Common Lisp ANSI X3.226-1994

Description:
Returns the palhname that compile-file would write into, if given the same arguments.

The defaults for the output-file are taken from the pathname that results from merging the input-
file with the value of *default-pathname-defaults*, except that the type component should
default to the appropriate implementation-defined default type for compiled files.

If input-file is a logical pothname and output-file is unsupplied, the result is a logical path-
name. If input-file is a logical pathname, it is translated into a physical pathname as if
by calling translate-logical-pathname. If input-file is a stream, the stream can be ei-
ther open or closed. compile-file-pathname returns the same pathname after a file is
closed as it did when the file was open. It is an error if input-file is a stream that is
created with make-two-way-stream, make-echo-stream, make-broadcast-stream,
make-concatenated-stream, make-string-input-stream, make-string-output-stream.

If an implementation supports additional keyword arguments to compile-file,
compile-file-pathname must accept the same arguments.

Examples:
See logical-pathname-translations.

Exceptional Situations:
An error of type Ale-error might be signaled if either input-file or output-file is wild.

See Also:
compile-file, pathname, logi&-pathname, Section 20.1 (File System Concepts), Section 19.1.2
(Pathnames as Filenames)

load Function

Syntax:
load fikpec tkey verbose print

if-does-not-exist external-format

+ generalized-boolean

Arguments and Values:
fikspec-a stream, or a pathname designator. The default is taken from *default-pathname-defauIts*

verbose-a generalized boolean. The default is the value of *load-verbose*.

print-a generalized boolean. The default is the valve of *load-print*.

if-does-not-exist-a generalized boolean. The default is true.

external-format-an external file joimat designator. The default is :default.

generalized-boolean-a generalized boolean.

Description:
load loads the file named by filespec into the Lisp environment.

System Construction 24-5

ANSI X3.226-1994 Programming Language+Common Lisp

The manner in which a source file is distinguished from a compiled file is implementation-
dependent. If the file specification is not complete and both a source file and a compiled file
exist which might match, then which of those files load selects is implementation-dependent.

If fikpec is a stream, load determines what kind of stream it is and loads directly from the
stream. If fkpcc is a logical pathname, it is translated into a physical pathname as if by calling
translate-logical-pathname.

load sequentially executes each form it encounters in the file named by filespec. If the file is a
source file and the implementation chooses to perform implicit compilation, load must recognize
top level forms as described in Section 3.2.3.1 (Processing of Top Level Forms) and arrange for
each top level form to be executed before beginning implicit compilation of the next. (Note,
however, that processing of eval-when forms by load is controlled by the :execute situation.)

If werbosc is true, load prints a message in the form of a comment (i.e., with a leading semicolon)
to standard output indicating what file is being loaded and other useful information. If verbose is
false, load does not print this information.

If print is true, load incrementally prints information to standard output showing the progress of
the loading process. For a source file, this information might mean printing the values yielded by
each form in the file as soon as those values are returned. For a compiled file, what is printed
might not reflect precisely the contents of the source file, but some information is generally
printed. If print is false, load does not print this information.

If the file named by fkpec is successfully loaded, load returns true.

If the file does not exist, the specific action taken depends on if-does-not-exist: if it is nil, load
returns nii; otherwise, load signals an error.

The external-format specifies the external file format to be used when opening the file (see the
function open), except that when the file named by fikspec is a compiled file, the external-format
is ignored. compile-file and load cooperate in an implementation-dependent way to assure the
preservation of the similarity of characters referred to in the source file at the time the source file
was processed by the file compiler under a given external file format, regardless of the value of
external-format at the time the compiled file is loaded.

load binds *readtable* and *package* to the values they held before loading the file.

load-truename is bound by load to hold the truename of the pathname of the file being loaded.

load-pathname is bound by load to hold a pathname that represents fikspec merged against
the defaults. That is, (pathname (merge-pathnames tikspec)).

Examples:

;Establish a data file...
(with-open-file (str “data.in” :direction :output :if-exists :error)

(print 1 str) (print ‘(setq a 888) str) t)
-*T

(load “data in”) -* true .
a -+ 888
(load (setq p (merge-pathnaaes “data.in”)) :verbose t)

; Loading contents of file /fred/data.in
; Finished loading /fred/data.in
+ true

(load p :print t)
; Loading contents of file /fred/data.in
: 1
; 888

24-6 System Construction

Programming Language-Common Lisp ANSI X3.226-1994

: Finished loading /fred/data.in
-* true

;----[Begin file SETUPl----
(in-package "HY-STUFF")
(defmacro compile-truename () “,*compile-file-truename*)
(defvar *my-compile-truename* (compile-truename) "Just for debugging.")
(defvar *my-load-pathname* *load-pathname*)
(defun load-my-system 0

(dolist (module-name '("FOO" "BAR" "BAZ"))
(load (merge-pathnames module-name *my-load-pathname*))))

;----[End of file SETUP]----

(load "SETUF"')
(load-my-system)

Affected By:
The implementation, and the host computer’s file system.

Exceptional Situations:
If :if-does-not-exist is supplied and is true, or is not supplied, load signals an error of type
Ale-error if the file named by fikspec does not exist, or if the file system cannot perform the
requested operation.

An error of type Ale-error might be signaled if (wild-pathname-p fhspcc) returns true.

See Also:
error, merge-pathnames , *load-verbose*, *default-pathname-defaults*, pathname,
logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as Filenames)

with-compilation-unit hiacT

Syntax:
with-compilation-unit (1 ioption]) {form}* + {result}*

option::=:override override

Arguments and Values:
override-a generalized boolean; evaluated. The default is nil.

forms-an implicit progn.

results-the values returned by the forms.

Description:
Executes forms from left to right. Within the dynamic environment of with-compilation-unit,
actions deferred by the compiler until the end of compilation will be deferred until the end of the
outermost call to with-compilation-unit.

System Construction 24-7

ANSI X3.226-1994 Programming Language-Common Lisp

The set of options permitted may be extended by the implementation, but the only standardized
keyword is : override.

If nested dynamically only the outer call to with-compilation-unit has any effect unless the value
associated with :override is true, in which case warnings are deferred only to the end of the
innermost call for which override is Itxe.

The function compiledUe provides the effect of

(oith-coqilation-unit (:override nil) . ..I

around its code.

Any implementation-dependent extensions can only be provided as the result of an explicit
programmer request by use of an implementation-dependent keyword. Implementations are
forbidden from attaching additional meaning to a use of this macro which involves either no
keywords or just the keyword :override.

Examples:
If an implementation would normally defer certain kinds of warnings, such as warnings about
undefined functions, to the end of a compilation unit (such as a file), the following example shows
how to cause those warnings to be deferred to the end of the compilation of several files.

(defun compile-files (trest files)
(vith-compilation-unit (1

bapcar #'(lambda (file) (compile-file file)) files)))

(compile-files "A" "B" 'VI

Note however that if the implementation does not normally defer any warnings, use of with-
compilation-unit might not have any effect.

See Also:
compile, compile-file

features Variable

Value Type:
a proper list.

Initial Value:
implementaiion-dependent.

Description:
The value of *features* is called the features list. It is a list of symbols, called feaiures, that
correspond to some aspect of the implementation or environment.

Most features have implementation-dependent meanings; The following meanings have been
assigned to feature names:

24-8 System Construction

Programming Language-Common Lisp ANSI X3.226-1994

:cltll

If present, indicates that the LISP package purports to conform to the 1984 specification
Common Lisp: The Language. It is possible, but not required, for a conforming imple-
mentation to have this feature because this specification specifies that its symbols are to
be in the COHHON-LISP package, not the LISP package.

:clt12

If present, indicates that the implementation purports to conform to Common Lisp: The
Language, Second Edition. This feature must not be present in any conforming imple-
mentation, since conformance to that document is not compatible with conformance to
this specification. The name, however, is reserved by this specification in order to help
programs distinguish implementations which conform to that document from implementa-
tions which conform to this specification.

:ieee-floating-point

If present, indicates that the implementation purports to conform to the requirements of
IEEE Standard for Binary Floating-Point Arithmetic.

:x3j13

If present, indicates that the implementation conforms to some particular working draft
of this specification, or to some subset of features that approximates a belief about
what this specification might turn out to contain. A conforming implementation might
or might not contain such a feature. (This feature is intended primarily as a stopgap
in order to provide implementors something to use prior to the availability of a draft
standard, in order to discourage them from introducing the :draft-anti-cl and :ansi-cl
features prematurely.)

:&aft-ami-cl

If present, indicates that the implementation purports to conform to the first full draft
of this specification, which went to public review in 1992. A conforming implementa-
tion which has the :draft-ansi-cl-2 or :ansi-cl feature is not permitted to retain the
:draft-anti-cl feature since incompatible changes were made subsequent to the first
draft.

:&aft-and-cl-;!

If present, indicates that a second full draft of this specification has gone to public review,
and that the implementation purports to conform to that specification. (If additional
public review drafts are produced, this keyword will continue to refer to the second draft,
and additional keywords will be added to identify conformance with such later drafts.
As such, the meaning of this keyword can be relied upon not to change over time.) A
conforming implementation which has the :ansi-cl feature is only permitted to retain the
:&-aft-ansi-cl feature if the finally approved standard is not incompatible with the draft
standard.

:ansi-cl

If present, indicates that this specification has been adopted by ANSI as an official
standard, and that the implementation purports to conform.

:common-lisp

This feature must appear in *features * for any implementation that has one or more of
the features :x3j13, :draft.-ansi-cl, or : ansi-cl. It is intended that it should also appear

System Construction 24-9

ANSI X3.226-1994 Programming Language-Common Lisp

in implementations which have the features :cltll or :clt12, but this specification
cannot force such behavior. The intent is that this feature should identify the language
family named “Common Lisp,” rather than some specific dialect within that family.

See Also:
Section 1.5.2.1.1 (Use of Read-Time Conditionals), Section 2.4 (Standard Macro Characters)

Notes:
The value of *features* is used by the #+ and #- reader syntax.

Symbols in the features list may be in any package, but in practice they are generally in the
KEYWORD package. This is because KEYWORD is the package used by default when reading2 feature
expressions in the #+ and s- reader macros. Code that needs to name a feature2 in a package P
(other than KEYWORD) can do so by making explicit use of a package prefix for P, but note that
such code must also assure that the package P exists in order for the feature expression to be
readz-even in cases where the feature expression is expected to fail.

It is generally considered wise for an implementation to include one or more features identifying
the specific implementation, so that conditional expressions can be written which distinguish
idiosyncrasies of one implementation from those of another. Since features are normally symbols
in the KEYWORD package where name collisions might easily result, and since no uniquely defined
mechanism is designated for deciding who has the right to use which symbol for what reason, a
conservative strategy is to prefer names derived from one’s own company or product name, since
those names are often trademarked and are hence leas likely to be used unwittingly by another
implementation.

compile-file-pat hname, *compile-file-truename*
variable

Value Type:
The value of *compile-file-pathname* must always be a pathname or nil. The value of
compile-Ale-truename must always be a physical pathname or nil.

Initial Value:
nil.

Description:
During a call to compile-file, *compile-Ale-pathname* is bound to the pathname denoted
by the first argument to compile-file, merged against the defaults; that is, it is bound to
(pathname (merge-pathnames input-file)) . During the same time interval, *compile-file-truename*
is bound to the truename of the file being compiled.

At other times, the value of these variables is nil.

If a break loop is entered while compile-file is ongoing, it is implementation-dependent whether
these variables retain the values they had just prior to entering the break loop or whether they
are bound to nil.

The consequences are unspecified if an attempt is made to assign or bind either of these vari-
ables.

24-10 System Construction

Programming Language-Common Lisp ANSI X3.226- 1994

Affected By:
The file system.

See Also:
compile-file

load-pathname, *load-truename* Variable

Value Type:
The value of *load-pathname* must always be a paihname or nil. The value of
load-truename must always be a physical pathname or nil.

Initial Value:
nil.

Description:
During a call to load, *load-pathname* is bound to the pathname denoted by
the the first argument to load, merged against the defaults; that is, it is bound to
(pathname (merge-pathnames filespec)) . During the same time interval, *load-truename* is
bound to the truename of the file being loaded.

At other times, the value of these variables is nil.

If a break loop is entered while load is ongoing, it is implementation-dependent whether these
variables retain the values they had just prior to entering the break loop or whether they are
bound to nil.

The consequences are unspecified if an attempt is made to assign or bind either of these vari-
ables.

Affected By:
The file system.

See Also:
load

compile-print, *compile-verbose* Variable

Value Type:
a generalized boolean.

Initial Value:
implementation-dependent.

Description:
The value of *compile-print* is the default value of the :print argument to compile-file. The
value of *compile-verbose* is the default value of the :verbose argument to compile-file.

System Construction 24-11

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
compile-file

load-print, *load-verbose*

Value Type:
a generalized boolean.

Initial Value:
The initial value of *load-print* is false. The initial value of *load-verbose* is implementation-
dependent.

Description:
The value of *load-print* is the default value of the :print argument to load. The value of
load-verbose is the default value of the :verbose argument to load.

See Also:
load

modules Variable

Value Type:
a list of strings.

Initial Value:
implementation-dependent.

Description:
The value of *modules* is a list of names of the modules that have been loaded into the current
Lisp image.

Affected By:
provide

See Also:
provide, require

Notes:
The variable *modules* is deprecated.

24-12 System Construction

Programming Language-Common Lisp ANSI X3.226-1994

provide, require Function

Syntax:
provide module-name + implementation-dependent

require module-name &optional pathnamtlist * implementation-dependent

Arguments and Values:
module-name-a string designator.

pathname-list-nil, or a designator for a non-empty list of pathname designators. The default is
nil.

Description:
provide adds the module-name to the list held by *modules*, if such a name is not already
present.

require tests for the presence of the module-name in the list held by *modules*. If it is present,
require immediately returns. Otherwise, an attempt is made to load an appropriate set of files
as follows: The pathname-list argument, if non-nil, specifies a list of pathnames to be loaded in
order, from left to right. If the pathname-list is nil, an implementation-dependent mechanism
will be invoked in an attempt to load the module named module-name; if no such module can be
loaded, an error of type error is signaled.

Both functions use string= to test for the presence of a module-name.

Examples:

*** This illustrates a nonportable use of REQUIRE, because it 9 9 9
;;; depends on the implementation-dependent file-loading mechanism.

(require "CALCULUS")

*** This use of REQUIRE is nonportable because of the literal * , t
;;; physical pathnave.

(require "CALCULUS" "/usr/lib/lisp/calculus")

;;; One forv of portable usage involves supplying a logical pathname,
..* vith appropriate translations defined elsevhere. 1..

(require "CALCULUS" "1ib:calculus")

:;; Another fora of portable usage involves using a variable or
;;; table lookup function to deternine the pathnaste, vhich again
;;; must be initialized elsevhere.

(require "CALCULUS" *calculus-module-pathnave*)

Side Effects:
provide modifies *modules*.

System Construction 24-13

ANSI X3.226-1994 Programming Language-Common Lisp

Affected By:
The specific action taken by require is affected by calls to provide (or, in general, any changes to
the value of *modules*).

Exceptional Situations:
Should signal an error of type type-error if module-name is not a string designator.

If require fails to perform the requested operation due to a problem while interacting with the file
system, an error of type me-error is signaled.

An error of type Ale-error might be signaled if any pathname in pathnamclist is a designator for
a mild pathname.

See Also:
modules, Section 19.1.2 (Pathnames as Filenames)

Notes:
The functions provide and require are deprecated.

If a module consists of a single package, it is customary for the package and module names to ix
the same.

24-14 System Construction

ANSI X3.226-1994

Programming Language-Common Lisp

25. Environment

ANSI X3.226-1994 Programming Language-Common Lisp

ii Environment

Programming Language-Common Lisp ANSI X3.226-1994

25.1 The External Environment

25.1.1 Top level loop
The top level loop is the Common Lisp mechanism by which the user normally interacts with the
Common Lisp system. This loop is sometimes referred to as the Lisp read-eunl-print loop because
it typically consists of an endless loop that reads an expression, evaluates it and prints the results.

The top level loop is not completely specified; thus the user interface is implementation-defined.
The top level loop prints all values resulting from the evaluation of a form. Figure 25-l lists
variables that are maintained by the Lisp read-eval-print loop.

* + ** ++ :, *** +++ /I/
Figure 25-l. Variables maintained by the Read-Eval-Print Loop

25.1.2 Debugging Utilities
Figure 25-2 shows defined names relating to debugging.

debugger-hook
apropos
apropos-list
break
describe

documentation
dribble
ed
inspect
invoke-debugger

step
time
trace
untrace

Figure 25-2. Defined names relating to debugging

25.1.3 Environment Inquiry
Environment inquiry dejined names provide information about the hardware and software config-
uration on which a Common Lisp program is being executed.

Figure 25-3 shows defined names relating to environment inquiry.

features
lisp-implementation-type
lisp-implementation-version
long-site-name

machine-instance
machine-type
machine-version
room

short-site-name
software-type
software-version

Figure 25-3. Defined names relating to environment inquiry.

Environment 25-l

_--.-

ANSI X3.226- 1994 Programming Language-Common Lisp

25.1.4 Time
Time is represented in four different ways in Common Lisp: decoded time, universal time, internal
time, and seconds. Decoded time and universal time are used primarily to represent calendar
time, and are precise only to one second. Internal time is used primarily to represent measure-
ments of computer time (such as run time) and is precise to some implementation-dependent
fraction of a second called an internal time unit, as specified by internal-time-units-per-second.
An internal time can be used for either absolute and relative time measurements. Both a univer-
sal time and a decoded time can be used only for absolute time measurements, In the case of one
function, sleep, time intervals are represented as a non-negative real number of seconds.

Figure 25-4 shows defined names relating to time.

decode-universal-time get-internal-run-time
encode-universal-time get-universal-time
get-decoded-time internal-time-units-per-second
get-internal-real-time sleep

Figure 25-4. Defined names involving Time.

25.1.4.1 Decoded Time
A decoded time is an ordered series of nine values that, taken together, represent a point in
calendar time (ignoring leap seconds):

Second

An integer between 0 and 59, inclusive.

Minute

An integer between 0 and 59, inclusive.

Hour

An integer between 0 and 23, inclusive.

Date

An integer between 1 and 31, inclusive (the upper limit actually depends on the month
and year, of course).

Month

An integer between 1 and 12, inclusive; 1 means January, 2 means February, and so on;
12 means December.

Year

An integer indicating the year A.D. However, if this integer is between 0 and 99, the
Uobviousn year is used; more precisely, that year is assumed that is equal to the integer
modulo 100 and within fifty years of the current year (inclusive backwards and exclusive
forwards). Thus, in the year 1978, year 28 is 1928 but year 27 is 2027. (Functions that
return time in this format always return a full year number.)

25-2 Environment

Programming Language-Common Lisp ANSI X3.226-1994

Day of week

An integer between 0 and 6, inclusive; 0 means Monday, 1 means Tuesday, and so on;
6 means Sunday.

Daylight saving time flag

A generalized boolean that, if true, indicates that daylight saving time is in effect.

Time zone

A time zone.

Figure 25-5 shows defined names relating to decoded time.

I decode-universal-time get-decoded-time I

Figure 25-5. Defined names involving time in Decoded Time.

25.1.4.2 Universal Time
Universal time is an absolute time represented as a single non-negative integer-the number
of seconds since midnight, January 1, 1900 GMT (ignoring leap seconds). Thus the time 1 is
0O:OO:Ol (that is, 12:OO:Ol a.m.) on January 1, 1900 GMT. Similarly, the time 2398291201 corre-
sponds to time 0O:OO:Ol on January 1, 1976 GMT. Recall that the year 1900 was not a leap year;
for the purposes of Common Lisp, a year is a leap year if and only if its number is divisible by 4,
except that years divisible by 100 are not leap years, except that years divisible by 400 are leap
years. Therefore the year 2000 will be a leap year. Because universal time must be a non-negative
integer, times before the base time of midnight, January 1, 1900 GMT cannot be processed by
Common Lisp.

decode-universal-time
encode-universal-time

get-universal-time

Figure 25-6. Defined names involving time in Universal Time.

25.1.4.3 Internal Time

lnternd time represents time as a single integer, in terms of an implementation-dependent unit
called an internal time unit. Relative time is measured as a number of these units. Absolute time
is relative to an arbitrary time base.

Figure 25-7 shows defined names related to internal time.

get-internal-real-time internal-time-units-per-second
get-internal-run-time

Figure 25-7. Defined names involving time in Internal Time.

Environment 25-3

ANSI X3.226-1994 Programming Language-Common Lisp

25.1.4.4 Seconds

One function, sleep, takes its argument as a non-negative real number of seconds. Informally, it
may be useful to think of this as a relative universal time, but it differs in one important way:
universal times are always non-negative integers, whereas the argument to sleep can be any kind
of non-negative real, in order to allow for the possibility of fractional seconds.

I sleep

Figure 25-8. Defined names involving time in Seconds.

I

25-4 Environment

Programming Language-Common Lisp ANSI X3.226-1994

decode-universal- time Function

Syntax:
decode-universal-time universakime &optional time-zone

+ second, minute. hour, date, month, year, day, daylight-p, zone

Arguments and Values:
universal-time-a universal time.

time-zone-a time zone.

second, minute, hour, date, month, year, day, daylight-p, zone-a decoded time.

Description:
Returns the decoded time represented by the given universal time.

If time-zone is not supplied, it defaults to the current time zone adjusted for daylight saving time.
If timczone is supplied, daylight saving time information is ignored. The daylight saving time flag
is nil if time-zone is supplied.

Examples:

(decode-universal-time 0 0) + 0, 0, 0, 1, 1, 1900, 0, false, 0

;; The next two examples assume Eastern Daylight Time.
(decode-universal-tine 2414296800 5) + 0. 0, 1, 4, 7, 1976, 6, fake, 5
(decode-universal-tine 2414293200) -* 0, 0, 1, 4, 7, 1976, 6, true, 5

:: This example assumes that the time zone is Eastern Daylight Time
;; (and that the time zone is constant throughout the example).

(let* ((here (nth 8 (multiple-value-list (get-decoded-time)))) ;Time zone
(recently (get-universal-time))
(a (nthcdr 7 (multiple-value-list (decode-universal-time recently))))
(b (nthcdr 7 (multiple-value-list (decode-universal-time recently here)))))

(list a b (equal a b))) --+ (CT 5) (NIL 5) NIL)

Affected By:
Implementation-dependent mechanisms for calculating when or if daylight savings time is in effect
for any given session.

See Also:
encode-universal-time, get-universal-time, Section 25.1.4 (Time)

Environment 25-5

ANSI X3.226-1994 Programming Language-Common Lisp

encode-universal-time function

syntax:
encode-universal-time second minute hour date month year

&optional tims-zone

-+ universal-time

Arguments and Values:
second, minute, hour, date, month, year, timozonc- the corresponding parts of a decoded time.
(Note that some of the nine values in a full decoded time are redundant, and so are not used as
inputs to this function.)

universal-time-a universal time.

Description:
encode-universal-time converts a time from Decoded Time format to a universal time.

If time-zone is supplied, no adjustment for daylight savings time is performed.

Examples:

(encode-universal-tie 0 0 0 1 1 1900 0) -* 0
(encode-universal-time 0 0 1 4 7 1976 5) * 2414296800

;; The next example assumes Eastern Daylight Time.
(encode-universal-tie 0 0 1 4 7 1976) -+ 2414293200

See Also:
decode-universal-time, get-decoded-time

get-universal-time, get-decoded-time Function

Syntax:
get-universal-time (no arguments) -+ universal-time

get-decoded-time (no arguments)
- second, minute. hour, date, month, year, day, daylight-p, zone

Arguments and Values:
universal-time-a universal time.

second, minute, hour, date, month, year, day, daylight-p, zone-a decoded time.

Description:
get-universaI-time returns the current time, represented as a universal time.

get-decoded-time returns the current time, represented as a decoded time.

25-6 Environment

Programming Language-Common Lisp ANSI X3.226-1994

Examples:

;; At noon on July 4. 1976 in Eastern Daylight Time.
(get-decoded-time) - 0. 0. 12, 4. 7. 1976, 6, true, 5

;; At exactly the same instant.
(get-universal-time) + 2414332800

;; Exactly five minutes later.
(get-universal-time) - 2414333100

;; The difference is 300 seconds (five minutes)
(- * **) - 300

Affected By:
The time of day (i.e., the passage of time), the system clock’s ability to keep accurate time, and
the accuracy of the system clock’s initial setting.

Exceptional Situations:
An error of type error might be signaled if the current time cannot be determined.

See Also:
decode-universal-time, encode-universal-time, Section 25.1.4 (Time)

Notes:

(get-decoded-time) E (decode-universal-time (get-universal-time))

No implementation is required to have a way to verify that the time returned is correct. However,
if an implementation provides a validity check (e.g., the failure to have properly initialized the
system clock can be reliably detected) and that validity check fails, the implementation is strongly
encouraged (but not required) to signal an error of type error (rather than, for example, returning
a known-to-be-wrong value) that is correctable by allowing the user to interactively set the correct
time.

sleep Function

Syntax:
sleep seconds - nil

Arguments and Values:
seconds-a non-negative real.

Description:
Causes execution to cease and become dormant for approximately the seconds of real time
indicated by seconds, whereupon execution is resumed.

Examples:

(sleep 1) + NIL

Environment 25-7

ANSI X3.226-1994 Programming Language-Common Lisp

;; Actually, since SLEEP is permitted to use approximate tiring,
; ; this night not always yield true, but it vi11 often enough that
;; we felt it to be a productive example of the intent.

(let ((then (get-universal-tine))
(nov (progn (sleep 10) (get-universal-time))))

(>= (- nov then) 10))
-+ true

Side Effects:
Causes processing to pause.

Affected By:
The granularity of the scheduler.

Exceptional Situations:
Should signal an error of type type-error if seconds is not a non-negative real.

apropos, apropos-list Function

Syntax:
apropos string &optional package + (no values)

apropos-list string &opt ional package -) symbols

Arguments and Values:
string-a string designator.

package-a package designator or nil. The default is nil.

symbols-a list of symbols.

Description:
These functions search for interned symbols whose names contain the substring string.

For apropos, as each such symbol is found, its name is printed on standard output. In addition,
if such a symbol is defined as a function or dynamic variable, information about those definitions
might also be printed.

For apropos-list, no output occurs as the search proceeds; instead a list of the matching symbols
is returned when the search is complete.

If package is non-nil, only the symbols accessible in that package are searched; otherwise all
symbols accessible in any package are searched.

Because a symbol might be available by way of more than one inheritance path, apropos might
print information about the same symbol more than once, or apropos-list might return a list
containing duplicate symbols.

Whether or not the search is case-sensitive is implementation-defined.

Affected By:
The set of symbols which are currently interned in any packages being searched.

apropos is also affected by *standard-output*,

25-8 Environment

Programming Language--Common Lisp ANSI X3.226-1994

describe Function

syntax:
describe object &optional stream --* (no vahes)

Arguments and Values:
object-an object.

stream-an output stream designator. The default is standard output.

Description:
describe displays information about object to stream.

For example, describe of a symbol might show the symbol’s value, its definition, and each of its
properties. describe of a float might show the number’s internal representation in a way that
is useful for tracking down round-off errors. In all cases, however, the nature and format of the
output of describe is implementation-dependent.

describe can describe something that it finds inside the object; in such cases, a notational device
such as increased indentation or positioning in a table is typically used in order to visually
distinguish such recursive descriptions from descriptions of the argument object.

The actual act of describing the object is implemented by describe-object. describe exists as an
interface primarily to manage argument defaulting (including conversion of arguments t and nil
into stream objects) and to inhibit any return values from describe-object.

describe is not intended to be an interactive function. In a conforming implementation, describe
must not, by default, prompt for user input. User-defined methods for describe-object are
likewise restricted.

Side Effects:
Output to standard output or terminal I/O.

Affected By:
standard-output and *terminal-io*, methods on describe-object and print-object for objects
having user-defined classes.

See Also:
inspect, describe-object

describe-object Standard Generic Function

Syntax:
describe-object object stream - implementation-dependent

Met hod Signatures:
describe-object (object standard-object) stream

Arguments and Values:
object-an object.

Environment 25-9

ANSI X3.226-1994 Programming Language-Common Lisp

stream-a stream.

Description:
The generic function describe-object prints a description of object to a stream. describe-object
is called by describe; it must not be called by the user.

Each implementation is required to provide a method on the class standard-object and methods
on enough other classes so as to ensure that there is always an applicable method. Implementa-
tions are free to add methods for other classes. Users can write methods for describe-object for
their own classes if they do not wish to inherit an implementation-supplied method.

Methods on describe-object can recursively call describe. Indentation, depth limits, and circu-
larity detection are all taken care of automatically, provided that each method handles exactly
one level of structure and calls describe recursively if there are more structural levels. The
consequences are undefined if this rule is not obeyed.

In some implementations the stream argument passed to a describe-object method is not the
original stream, but is an intermediate stream that implements parts of describe. Methods should
therefore not depend on the identity of this stream.

Examples:

(def class spaceship 0
((captain :initarg :captain :accesaor spaceship-captain)

(serial# :initarg :serial-number :accessor spaceship-serial-number)))

(defclass federation-starship (spaceship) (1)

(defmethod describe-object ((5 spaceship) stream)
(Pith-slots (captain serialat) s

(format stre2+m ‘I- t-S is a spaceship of type -S,'
-Xvith -A at the helm -

and vith serial number 'D.-X"
8 (type-of 5) captain serial*)))

(make-instance 'federation-starship
:captain "Rachel Garrett"
:serial-number 'WCC-1701-C")

+ #<FEDERATION-STARSHIP 26312465>

(describe *)
D #<FEDERATION-STARSHIP 26312465> is a spaceship of type FEDERATION-STARSHIP,
D vith Rachel Garrett at the helm and vith serial number NCC-1701-C.
+ (no values)

See Also:
describe

Notes:
The same implementation techniques that are applicable to print-object are applicable to
describe-object.

The reason for making the return values for describe-object unspecified is to avoid forcing users
to include explicit (values) in all of their methods. describe takes care of that.

25-10 Environment

Programming Language-Common Lisp ANSI X3.226-1994

trace, untrace Macro

Syntax:
trace {function-name)* + trace-result

untrace {function-name}* -+ untractresult

Arguments and Values:
function-name-a function name.

tractresult-implementation-dependent, unless no funchon-names are supplied, in which case
tractresult is a list of function names.

untrace-result-implemenlation-dependent.

Description:
trace and untrace control the invocation of the trace facility.

Invoking trace with one or more function-names causes the denoted fundions to be “traced.”
Whenever a traced fun&on is invoked, information about the call, about the arguments passed,
and about any eventually returned values is printed to trace output. If trace is used with no
function-names, no tracing action is performed; instead, a list of the funchons currently being
traced is returned.

Invoking untrace with one or more function names causes those functions to be “untraced” (i.e.,
no longer traced). If untrace is used with no function-names, all funchons currently being traced
are untraced.

If a function to be traced has been open-coded (e.g., because it was declared inline), a call to
that function might not produce trace output.

Examples:

(defun fact (n) (if (zerop n) 1 (* n (fact (- n 1)))))
+ FACT

(trace fact)
-+ (FACT)
;; Of course, the format of traced output is implementation-dependent.

(fact 3)
D 1 Enter FACT 3
D 1 2 Enter FACT 2
D 1 3 Enter FACT 1
D 1 I 4 Enter FACT 0
D 1 I 4 Exit FACT 1
D 1 3 Exit FACT 1
D I 2 Exit FACT 2
D 1 Exit FACT 6
-+6

Side Effects:
Might change the definitions of the functions named by function-names.

Affected By:
Whether the functions named are defined or already being traced.

Environment 25-11

ANSI X3.226- 1994 Programming Language-Common Lisp

Exceptional Situations:
Tracing an already traced function, or untracing a function not currently being traced, should
produce no harmful effects, but might signal a warning.

See Also:
trace-output, step

Notes:
trace and untrace may also accept additional implementation-dependent argument formats. The
format of the trace output is implementation-dependent.

Although trace can be extended to permit non-standard options, impIementalions are neverthe-
less encouraged (but not required) to warn about the use of syntax or options that are neither
specified by this standard nor added as an extension by the implementation, since they could be
symptomatic of typographical errors or of reliance on features supported in implementations other
than the current implementation.

syntax:
step form + {result}*

Arguments and Values:
form-a form; evaluated as described below.

results-the values returned by the form.

Description: Description:
step implements a debugging paradigm wherein the programmer is allowed to step through the step implements a debugging paradigm wherein the programmer is allowed to step through the
evaluation of a form. The specific nature of the interaction, including which I/O streams are used evaluation of a form. The specific nature of the interaction, including which I/O streams are used
and whether the stepping has lexical or dynamic scope, is implementation-defined. and whether the stepping has lexical or dynamic scope, is implementation-defined.

step evaluates form in the current environment. A call to step can be compiled, but it is accept-
able for an implementation to interactively step through only those parts of the computation that
are interpreted.

It is technically permissible for a conforming implementation to take no action at all other than
normal ezecution of the form. In such a situation, (step form) is equivalent to, for example,
(let 0 form). In implementations where this is the case, the associated documentation should
mention that fact.

See Also:
trace

Notes:
Implementations are encouraged to respond to the typing of ? or the pressing of a “help key” by
providing help including a list of commands.

25-12 Environment

Programming Language-Common Lisp ANSI X3.226-1994

time Macro

Syntax:
time form + {result}*

Arguments and Values:
form-a form; evaluated as described below.

results-the values returned by the form.

Description:
time evaluates form in the current environment (lexical and dynamic). A call to time can be
compiled.

time prints various timing data and other information to trace output. The nature and format
the printed information is implementation-defined. Implementations are encouraged to provide
such information as elapsed real time, machine run time, and storage management statistics.

Affected By:
The accuracy of the results depends, among other things, on the accuracy of the corresponding
functions provided by the underlying operating system.

The magnitude of the results may depend on the hardware, the operating system, the lisp imple-
mentation, and the state of the global environment. Some specific issues which frequently affect
the outcome are hardware speed, nature of the scheduler (if any), number of competing processes
(if any), system paging, whether the call is interpreted or compiled, whether functions called
are compiled, the kind of garbage collector involved and whether it runs, whether internal data
structures (e.g., hash tables) are implicitly reorganized, etc.

See Also:
get-internal-real-time, get-internal-run-time

Notes:
In general, these timings are not guaranteed to be reliable enough for marketing comparisons.
Their value is primarily heuristic, for tuning purposes.

For useful background information on the complicated issues involved in interpreting timing
results, see Performance and Evaluation of Lisp Programs.

internal-time-units-per-second Constant Variable

Constant Value:
A positive integer, the magnitude of which is implementation-dependent.

Description:
The number of internal time units in one second.

See Also:
get-internal-run-time, get-internal-real-time

Environment 25-13

ANSI X3.226-1994 Programming Language-Common Lisp

Notes:
These units form the basis of the Internal Time format representation.

get-internal-real-time Function

syntax:
get-internal-real-time (no arguments) --) internal-time

Arguments and Values:
internel-time-a non-negative integer.

Description:
get-internaLreaLtime returns as an integer the current time in internal lime units, relative to an
arbitrary time base. The difference between the values of two calls to this function is the amount
of elapsed real time (i.e., clock time) between the two calls.

Affected By:
Time of day (i.e., the passage of time). The time base affects the result magnitude.

See Also:
internal-time-units-per-second

get-internal-run-time Function

Syntax:
get-internal-run-time (no argumenh) + interna/-time

Arguments and Values:
internal-time-a non-negative integer.

Description:
Returns as an integer the current run time in internal iime units. The precise meaning of this
quantity is implemenWion-defined; it may measure real time, run time, CPU cycles, or some
other quantity. The intent is that the difference between the values of two calls to this function
be the amount of time between the two calls during which computational effort was expended on
behalf of the executing program.

Affected By:
The implementation, the time of day (i.e., the passage of time).

See Also:
internal-time-units-per-second

Notes:
Depending on the implemenhtion, paging time and garbage collection time might be included in
this measurement. Also, in a multitasking environment, it might not be possible to show the time
for just the running process, so in some implemeniaiions, time taken by other processes during
the same time interval might be included in this measurement as well.

25-14 Environment

Programming Language-Common Lisp ANSI X3.226-1994

disassemble Function

syntax:
disassemble fn -) nil

Arguments and Values:
f-v-an extended function designator or a lambda ezpression.

Description:
The function disassemble is a debugging aid that composes symbolic instructions or expressions
in some implementation-dependent language which represent the code used to produce the
function which is or is named by the argument fn. The result is displayed to standard output
in an implementation-dependent format.

If fn is a lambda ezpression or interpreted function, it is compiled first and the result is disassem-
bled.

If the fn designator is a function name, the function that it names is disassembled. (If that
function is an interpreted function, it is first compiled but the result of this implicit compilation is
not installed.)

Examples:

(defun f (a) Cl+ a)) - F
(eq (symbol-function ‘f)

(progn (disassemble ‘f)
(symbol-function ‘f I>> -+ true

Affected By:
standard-output.

Exceptional Situations:
Should signal an error of type type-error if fn is not an extended function designator or a lambda
expression.

document at ion, (setf document at ion) sttdd Generic Funci

Syntax:
documentation x dot-type --) documentation

(setf documentation) new-value x dot-type * new-value

Argument Precedence Order:
dot-type, object

Environment 25-15

ANSI X3.226-1994 Programming Language-Common Lisp

Met hod Signatures:
Functions, Macros, and Special Forms:

documentation (x function) (dot-type (eql It>)

documentation (x function) (hc-type (eql 'function))

documentation (X list) (dot-type (eql ‘fuaction))

documentation (x list) (doetype (eql ‘compiler-macro))

documentation (x symbol) (dot-type (eql 'function))

documentation (x symbol) (doe-type (eql ‘compiler-macro))

documentation (x symbol) (doe-type (eql ‘eetf 1)

(setf documentation) new-value (x function) (doe-type (eql 't>)

(setf documentation) new-value (X function) (doe-type (eql ‘function))

(setf documentation) new-value (X list) (doe-type (eql ‘function))

(setf documentation) new-value (x list) (doe-type (eql) corpiler-uacro))

(setf documentation) new-value (x symbol) (dot-type (eql ‘function))

(setf documentation) newvalue (X symbol) (dot-type (eql ycompiler-macro))

(setf documentation) new-value (x symbol) (doe-type (eql 'setf 1)

Method Combinations:

documentation (x method-combmation) (dot-type (eql) t 1)

documentation (x method-combination) (dot-type (eql ‘method-combination))

documentation (x symbol) (dot-type (eql ‘method-combination))

(setf documentation) new-value (x method-combination) (dot-type (eql ‘t>)

(setf documentation) new-value (x method-combination) (dot-type (eql ‘rethod-combination))

(setf documentation) new-value (x symbol) (dot-type (eql ‘method-coabination))

Methods:

documentation (x standard-method) (dot-type (eql ’ t>)

(setf documentation) new-vahe (x standard-method) (doc-type (eql 't 1)

Packages:

documentation (x package) (doe-type (eql 't))

(aetf documentation) new-value (x package) (dot-type (eql ‘t>)

Types, Classes, and Structure Names:

documentation (x standard-class) (dot-type (eql 't>)

documentation (X standard-class) (dot-type (eql 'type))

25-16 Environment

Programming Language-Common Lisp ANSI X3.226-1994

documentation (x structure-class) (dot-type (eql ‘t 1)

documentation (X structure-class) (~OC-type (eql ‘type))

documentation (x symbol) (dot-type (eql ‘type))

documentation (x symbol) (dot-type (eql ‘structure))

(setf documentation) new-value (x standard-class) (dot-type (eql ‘t>)

(setf documentation) new-value (x standard-class) (dot-type (eql ‘type))

(setf documentation) new-value (x structure-class) (dot-type (eql) t.>)

(setf documentation) new-value (x structure-class) (dot-type (eql ‘type))

(setf documentation) new-value (x symbol) (dot-type (eql ‘type>) .

(setf documentation) new-value (x symbol) (dot-type (eql ‘structure))

Variables:

documentation (x symbol) (dot-type (eql ‘variable))

(setf documentation) new-value (x symbol) (dot-type (eql ‘variable))

Arguments and Values:
x-an object.

dot-type-a symbol.

documentation-a string, or nil.

new-value-a string.

Description:
The genetic function documentation returns the documentation string associated with the given
object if it is available; otherwise it returns nil.

The generic junction (setf documentation) updates the documentation string associated with x
to new-value. If x is a list, it must be of the form (setf symbol).

Documentation strings are made available for debugging purposes. Conforming programs are
permitted to use documentation strings when they are present, but should not depend for their
correct behavior on the presence of those documentation strings. An implementation is permitted
to discard documentation strings at any time for implementation-defined reasons.

The nature of the documentation string returned depends on the dot-type, as follows:

compiler-macro

Returns the documentation string of the compiler macro whose name is the function.
name x.

function

If x is a function name, returns the documentation string of the function, macro, or
special operator whose name is x.

If x is a junction, returns the documentation string associated with x.

Environment 25-17

ANSI X3.226- 1994 Programming Language-Common Lisp

method-combination

If x is a symbol, returns the documentation string of the method combination whose name
is x.

If x is a method combination, returns the documentation string associated with x.

setf

Returns the documentation string of the setf expander whose name is the symbol x.

structure

Returns the documentation string associated with the structure name x.

t

Returns a documentation string specialized on the class of the argument x itself. For
example, if x is a function, the documentation string associated with the function x is
returned.

If x is a symbol, returns the documentation string of the class whose name is the symbol
x, if there is such a class. Otherwise, it returns the documentation string of the type
which is the type specifier symbol x.

If x is a structure class or standard class, returns the documentation string associated
with the class x.

variable

Returns the documentation string of the dynamic variable or constant variable whose
name is the symbol x.

A conforming implementation or a conforming program may extend the set of symbols that are
acceptable as the dot-type.

Notes:
This standard prescribes no means to retrieve the documentation strings for individual slots
specified in a defclass form, but implementations might still provide debugging tools and/or
programming language extensions which manipulate this information. Implementors wishing to
provide such support are encouraged to consult the Metaobject Protocol for suggestions about how
this might be done.

room Function

syntax:
room &optional x + implementation-dependent

Arguments and Values:
x-one of t, nil, or :def ault.

Description:
room prints, to standard output, information about the state of internal storage and its man-
agement. This might include descriptions of the amount of memory in use and the degree of

25-18 Environment

Programming Language-Common Lisp ANSI X3.226-1994

memory compaction, possibly broken down by internal data type if that is appropriate. The na-
ture and format of the printed information is implementation-dependent. The intent is to provide
information that a programmer might use to tune a program for a particular implementation.

(room nil) prints out a minimal amount of information. (room t) prints out a maximal amount of
information. (room) or (room :defanlt) prints out an intermediate amount of information that is
likely to be useful.

Side Effects:
Output to standard output.

Affected By:
standard-output.

ed Function

Syntax:
ed %optional x + implementation-dependent

Arguments and Values:
x-nil, a pathname, a string, or a function name. The default is nil.

Description:
ed invokes the editor if the implementation provides a resident editor.

If x is nil, the editor is entered. If the editor had been previously entered, its prior state is
resumed, if possible.

If x is a pathname or string, it is taken as the pathname designator for a file to be edited.

If x is a function name, the text of its definition is edited. The means by which the function text
is obtained is implementation-defined.

Exceptional Situations:
The consequences are undefined if the implementation does not provide a resident editor.

Might signal type-error if its argument is supplied but is not a symbol, a pathname, or nil.

If a failure occurs when performing some operation on the file system while attempting to edit a
file, an error of type Ale-error is signaled.

An error of type Ale-error might be signaled if x is a designator for a wild pathname.

Implementation-dependent additional conditions might be signaled as well.

See Also:
pathname, logical-pathname, compile-file, load, Section 19.1.2 (Pathnames as Filenames)

Environment 25-19

ANSI X3.226-1994 Programming Language-Common Lisp

inspect Function

syntax:
inspect object -+ implementation-dependent

Arguments and Values:
object-an object.

Description:
inspect is an interactive version of describe. The nature of the interaction is implementation-
dependent, but the purpose of inspect is to make it easy to wander through a data structure,
examining and modifying parts of it.

Side Effects:
implementation-dependent.

Affected By:
implementation-dependent.

Exceptional Situations:
implementation-dependent.

See Also:
describe

Notes:
Implementations are encouraged to respond to the typing of ? or a “help key” by providing help,
including a list of commands.

dribble Function

Syntax:
dribble &optional pathname + implementation-dependent

Arguments and Values:
pathname-a pathname designator.

Description:
Either binds *standard-input* and *standard-output* or takes other appropriate action, so aa
to send a record of the input/output interaction to a file named by pathname. dribble is intended
to create a readable record of an interactive session.

If pathname is a logical pathname, it is translated into a physical pathname as if by calling
translate-logical-pathname.

(dribble) terminates the recording of input and output and closes the dribble file.

If dribble is called while a stream to a “dribble file” is still open from a previous call to dribble,
the effect is implementation-defined. For example, the already-open stream might be closed, or

25-20 Environment

Programming Language-Common Lisp ANSI X3.226-1994

dribbling might occur both to the old stream and to a new one, or the old stream might stay open
but not receive any further output, or the new request might be ignored, or some other action
might be taken.

Affected By:
The implementation.

Exceptional Situations:
If a failure occurs when performing some operation on the file system while creating the dribble
file, an error of type file-error is signaled.

An error of type Ale-error might be signaled if pathname is a designator for a wild pathname.

See Also:
Section 19.1.2 (Pathnames as Filenames)

Notes:
dribble can return before subsequent forms are executed. It also can enter a recursive interaction
loop, returning only when (dribble) is done.

dribble is intended primarily for interactive debugging; its effect cannot be relied upon when used
in a program.

- Variable

Value Type:
afo77n.

Initial Value:
implementation-dependent.

Description:
The value of - is the form that is currently being evaluated by the Lisp read-eval-print loop.

Examples:

(format t "'&Evaluating -S-%" -)
D Evaluating (FORHAT T "'&Evaluating 3-Y." -)
+ NIL

Affected By:
Lisp read-eval-print loop.

See Also:
+ (variable), * (variable), / (variable), Section 25.1.1 (Top level loop)

Environment 25-21

ANSI X3.226- 1994 Programming Language-Common Lisp

+, ++, +++

Value Type:
an object.

Initial Value:
implementation-dependent.

Description:
The variables +, ++, and +++ are maintained by the Lisp read-eual-print loop to save forms
that were recently evaluated.

The value of + is the last form that was evaluated, the value of ++ is the previous value of +,
and the value of +++ is the previous value of ++.

Examples:

(+ 0 1) + 1
(- 4 2) - 2
u 9 3) - 3
(list + ++ +++) * CC/ 9 3) (- 4 2) (+ 0 1))
(setq a 1 b 2 c 3 d (list a b c)) - (1 2 3)
(setq a 4 b 5 c 6 d (list a b c)) - (4 5 6)
(list a b c) -+ (4 5 6)
(eval +++I * (1 2 3)
#.'(.a* d) + (1 2 3 (1 2 3))

Affected By:
Lisp read-eval-print loop.

See Also:
- (variable), * (variable), / (variable), Section 25.1.1 (Top level loop)

*, **, *** Variable

Value Type:
an object.

Initial Value:
implementation-dependent.

Description:
The variables *, **, and *** are maintained by the Lisp read-eval-print loop to save the values of
results that are printed each time through the loop.

The value of * is the most recent primary value that was printed, the value of ** is the previous
value of *, and the value of *** is the previous value of **.

If several values are produced, * contains the first value only; * contains nil if zero values are
produced.

25-22 Environment

Programming Language-Common Lisp ANSI X3.226-1994

The values of *, **, and *** are updated immediately prior to printing the return value of a
top-level form by the Lisp read-eval-print loop. If the evaluation of such a form is aborted prior
to its normal return, the values of *, **, and *** are not updated.

Examples:

(values 'al 'a2) 4 Al, A2
'b + B
(values 'cl '~2 '~3) -+ Cl, C2, C3
(list * ** ***) - (Cl B Al)

(defun cube-root (x) (expt x l/3)) + CUBE-ROOT
(compile *I --+ CUBE-ROOT
(setq a (cube-root 27.0)) + 3.0
(* * 9.0) + 27.0

Affected By:
Lisp read-eval-print loop.

See Also:
- (variable), + (variable), / (variable), Section 25.1.1 (Top level loop)

Notes:

* E (car /I
** z (car //I
*** z (car ///I

variable

Value Type:
a proper list.

Initial Value:
implementation-dependent.

Description:
The variables /, //, and /// are maintained by the Lisp read-eval-print loop to save the values of
results that were printed at the end of the loop.

The value of / is a list of the most recent values that were printed, the value of // is the previous
value of /, and the value of /// is the previous value of //.

The values of /, //, and /// are updated immediately prior to printing the return due of a
top-level form by the Lisp read-eval-prinf loop. If the evaluation of such a form is aborted prior
to its normal return, the values of /, //, and /// are not updated.

Examples:

(floor 22 7) -+ 3, 1
(+ (* (car /) 7) (cadr /)I - 22

Environment 25-23

ANSI X3.226-1994 Programming Language-Common Lisp

Affected By:
Lisp read-eval-print loop.

See Also:
- (variable), + (variable), * (variable), Section 25.1.1 (Top level loop)

lisp-implementation-type, lisp-implementation-
version Function

syntax:
lispimplementation-type (no arguments) -) description

lisp-implementation-version (no arguments) + description

Arguments and Values:
description-a string or nil.

Description:
lisp-implementation-type and lisp-implementation-version identify the current implementation
of Common Lisp.

lisp-implementation-type returns a string that identifies the generic name of the particular
Common Lisp implementation.

lisp-implementation-version returns a string that identifies the version of the particular Com-
mon Lisp implementation.

If no appropriate and relevant result can be produced, nil is returned instead of a string.

Examples:

(lisp-implementation-type)
* "ACH!Z Lisp"
z "Joe's Common Lisp"

(lisp-implementation-version)
- "1.3a"
---i "V2"
z "Release 17.3, ECU 116"

25-24 Environment

Programming Language-Common Lisp ANSI X3.226-1994

short-site-name, long-site-name Function

Syntax:
short-site-name (no arguments) + description

long-site-name (no nrguments) -+ description

Arguments and Values:
description-a string or nil.

Description:
short-site-name and long-site-name return a string that identifies the physical location of the
computer hardware, or nil if no appropriate description can be produced.

Examples:

(short-site-name)
- 'WIT AI Lab"
4 "CMJ-CSD"

(long-site-name)
- "HIT Artificial Intelligence Laboratory"
s YHIJ Computer Science Department"

Affected By:
The implementation, the location of the computer hardware, and the installation/configuration
process.

machine-instance Function

Syntax:
machine-instance (no arguments) -+ description

Arguments and Values:
description-a string or nil.

Description:
Returns a string that identifies the particular instance of the computer hardware on which
Common Lisp is running, or nil if no such string can be computed.

Examples:

(machine-instance)
+ “ACHE. COW
4 "SD 123231"
4 "18.26.0.179"
z “AA-OO-04-OO-A7-A4

Affected By:
The machine instance, and the implementation.

Environment 25-25

ANSI X3.226-1994 Programming Language-Common Lisp

See Also:
machine-type, machine-version

machine-type Function

syntax:
machine-type (no arguments) - description

Arguments and Values:
description-a string or nil.

Description:
Returns a string that identifies the generic name of the computer hardware on which Common
Lisp is running.

Examples:

(machine-type)
-* "DEC PDP-10"
s "Symbolics LH-2"

Affected By:
The machine type. The implementation.

See Also:
machine-version

machine-version Function

Syntax:
machine-version (no arguments) + description

Arguments and Values:
description-a string or nil.

Description:
Returns a string that identifies the version of the computer hardware on which Common Lisp is
running, or nil if no such value can be computed.

Examples:

(machine-version) + 'XL-10, microcode 9"

Affected By:
The machine version, and the implementation.

See Also:
machine-type, machine-instance

25-26 Environment

Programming Language-Common Lisp ANSI X3.226-1994

software-type, software-version Function

Syntax:
software-type (no arguments) - description

software-version (no arguments) -+ description

Arguments and Values:
description-a string or nil.

Description:
software-type returns a string that identifies the generic name of any relevant supporting soft-
ware, or nil if no appropriate or relevant result can be produced.

software-version returns a string that identifies the version of any relevant supporting software,
or nil if no appropriate or relevant result can be produced.

Examples:

(software-type) -) “Multics”
(sof tvare-version) -) “1.3~”

Affected By:
Operating system environment.

Notes:
This information should be of use to maintainers of the impIementation.

user- homedir-pat hname Function

Syntax:
user-homedir-pathname &optional host + pathname

Arguments and Values:
host-a stn’ng, a list of strings, or :unspecific.

pathname-a pathname, or nil.

Description:
user-homedir-pathname determines the pathname that corresponds to the user’s home directory
on host. If host is not supplied, its value is implementation-dependent. For a description of
:unspecific, see Section 19.2.1 (Pathname Components).

The definition of home directory is implementation-dependent, but defined in Common Lisp to
mean the directory where the user keeps personal files such as initialization files and mail.

user-homedir-pathna returns a pathname without any name, type, or version component
(those components are all nil) for the user’s home directory on host.

If it is impossible to determine the user’s home directory on host, then nil is returned.
user-homedir-pathname never returns nil if host is not supplied.

Environment 25-27

ANSI X3.226-1994 Programming Language-Common Lisp

Examples:

(pathnamep (user-homedir-pathnaae)) - lrue

Affected By:
The host computer’s file system, and the implementation.

25-28 Environment

ANSI X3.226-1994

Programming Language-Common Lisp

26. Glossary

ANSI X3.226-1994 Programming Language-Common Lisp

ii Glossary

Programming Language-Common Lisp ANSI X3.226-1994

26.1 Glossary
Each entry in this glossary has the following parts:

0 the term being defined, set in boldface.

l optional pronunciation, enclosed in square brackets and set in boldface, as in the following
example: [’ allist]. The pronunciation key follows Webster’s Third New International
Dictionary the English Language, Unabridged, except that “8 is used to notate the schwa
(upside-down “e”) character.

l the part or parts of speech, set in italics. If a term can be used as several parts of speech,
there is a separate definition for each part of speech.

l one or more definitions, organized as follows:

- an optional number, present if there are several definitions. Lowercase letters might also
be used in cases where subdefinitions of a numbered definition are necessary.

- an optional part of speech, set in italics, present if the term is one of several parts of
speech.

- an optional discipline, set in italics, present if the term has a standard definition being
repeated. For example, “Math.”

- an optional context, present if this definition is meaningful only in that context. For
example, “(of a symbol)“.

- the definition.

- an optional example sentence. For example, “This is an example of an example.”

- optional cross references.

In addition, some terms have idiomatic usage in the Common Lisp community which is not
shared by other communities, or which is not technically correct. Definitions labeled UIdiom.n
represent such idiomatic usage; these definitions are sometimes followed by an explanatory note.

Words in this font are words with entries in the glossary. Words in example sentences do not
follow this convention.

When an ambiguity arises, the longest matching substring has precedence. For example, “complez
jioat” refers to a single glossary entry for “compZez float” rather than the combined meaning of
the glossary terms “complex” and “float.”

Subscript notation, as in “somethingn” means that the nth definition of “something” is intended.
This notation is used only in situations where the context might be insufficient to disambiguate.

The following are abbreviations used in the glossary:

Glossary 26-l

ANSI X3.226-1994 Programming Language-Common Lisp

Abbreviation

adj.
adu.
ANSI
Comp.
Idiom.
IEEE
IS0
Math.
Thd.
n.
U.
v. t.

Meaning
adjective
adverb
compatible with one or more ANSI standards
computers
idiomatic
compatible with one or more IEEE standards
compatible with one or more IS0 standards
mathematics
traditional
noun
verb
transitive verb

Non-alphabetic

() [’ nil], n. an alternative notation for writing the symbol nil, used to emphasize
the use of nil as an empty list.

A

absolute adj. 1. (of a time) representing a specific point in time. 2. (of a pathname)
representing a specific position in a directory hierarchy. See relative.

access n., v.t. 1. v.t. (a place, or array) to read1 or write1 the value of the place or
an element of the array. 2. n. (of a place) an attempt to access1 the value of the
place.

accessibility n. the state of being accessible.

accessible adj. 1. (of an object) capable of being referenced. 2. (of shared slots or
local slots in an instance of a class) having been defined by the class of the instance
or inherited from a superclass of that class. 3. (of a symbol in a package) capable of
being referenced without a package prefiz when that package is current, regardless of
whether the symbol is present in that package or is inherited.

accessor n. an operator that performs an access. See reader and writer.

active adj. 1. (of a handler, a restart, or a catch tag) having been established but
not yet disestablished. 2. (of an element of an array) having an index that is greater
than or equal to zero, but less than the fill pointer (if any). For an array that has no
jlll pointer, all elements are considered active.

actual adjustability n. (of an array) a generalized boolean that is associated with
the army, representing whether the array is actually adjustable. See also expressed
adjustability and acQustable-array-p.

actual argument n. Trad. an argument.

actual array element type n. (of an array) the type for which the array is actually
specialized, which is the upgraded array element type of the expressed array element
type of the array. See the function array-element-type.

26-2 Glossary

ANSI X3.226-1994 Programming Language-Common Lisp

vector-push-extend 15-28 8
vectorp 15-30
vertical-bar 26-51
Vertical-Bar (format directive) 22-21
Vertical-Bar (sharpsign reader macro) 2-29
W (format directive) 22-27
warn 9-24
warning 9-9
warning 1-16
when 5-59
whitespace 26-51
wild 26-52
:uild 19-5, 19-6
:vild-inferiors 19-5, 19-6
wild-pathname-p 19-26
with-accessors 7-46
with-compilation-unit 24-7
with-condition-restarts 9-51
with-hash-table-iterator 18-11
with-input-from-string 21-45
with-open-file 21-30
with-open-stream 21-33
with-output-to-string 21-46
with-package-iterator 11-18
with-simple-restart 9-52
with-slots 7-48
with-standard-i*syntax 23-15
wn.te 26-52
write 22-52
write-byte 21-12
write-char 21-18
write-line 21-20
write-sequence 21-22
write-string 21-20
write-t-string 22-54
writer 26-52
X (format directive) 22-23
X (sharpsign reader macro) 2-26
y-or-n-p 2 1-36
yes-or-no-p 2 l-36
yield 26-52
zerop 12-21
‘ 2-20

. . .
XVlll

Index

Programming Language-Common Lisp ANSI X3.226-1994

t

Tilde Right-Bracket (format directive) 22-31
Tilde Right-Paren (format directive) 22-33
Tilde S (format directive) 22-26
Tilde Semicolon (format directive) 22-33
Tilde Slash (format directive) 22-28
Tilde T (format directive) 22-28
Tilde Tilde (format directive) 22-22
Tilde Underscore (format directive) 22-27
Tilde Vertical-Bar (format directive) 22-21
Tilde W (format directive) 22-27
Tilde X (format directive) 22-23
time 26-48
time 25-13
time zone 26-48
token 2-5, 26-48
top level form 26-48
trace 25-l 1
trace output 26-48
trace-output 21-47
translate-logical-pathmune 19-28
translate-pathname 19-29
tree 14-1, 26-48
tree structure 26-48
tree-equal 14-14
true 26-48
truename 20-2,26-48
truename 20-5
truncate 12-22
two-way stream 26-48
two-way-stream 21-8
two-way-stream-input-stream 21-40
two-way-stream-output-stream 21-40
type 26-48
type 3-74,25-16, 25-17
type declaration 26-49
type equivalent 26-49
type expand 26-49
type specifier 26-49
type-error 4-33
type-error-datum 4-33
type-error-expected-type 4-33
type-of 4-30
typecase 5-62
typep 4-31
unbound 26-49
unbound variable 26-49
unbound-slot 7-74
unbound-slot-instance 7-74
unbound-variable lo-19
undefined consequences l-15
undefined function 26-49
undefined-function 5-86
Underscore (format directive) 22-27
unexport 1 l-20
unintem 26-49
unintern 1 l-21

unintemed 26-49
union 14-50
universal time 25-3, 26-49
unless 5-59
unqualified method 26-49
unread-char 21-17
unregistered package 26-49
unsafe l-14, 26-49
unsafe call 3-40, 26-49
unsigned-byte 12-16
:unspecific 19-5
unspecified consequences l-15
unspecified values l-15
untrace 25-l 1
unuse-package 1 l-23
unwind-protect 5-41
:up 19-6
update-instance-for-different-class 7-28
update-instance-for-redefined-class 7-29
upgrade 26-49
upgraded array element type 15-2, 26-50
upgraded complex part type 26-50
upgraded-array-element-type 15-24
upgraded-complex-part-type 12-50
upper-case-p 13-17
uppercase 26-50
use 26-50
use list 26-50
use-package 1 l-24
use-value 9-56
user 26-50
USER package A-l
user-homedir-pathname 25-27
valid array dimension 26-50
valid array index 26-50
valid array row-major index 26-50
valid fill pointer 26-50
valid logical pathname host 26-50
valid pathname device 26-51
valid pathname direct0 y 26-51
valid pathname host 26-51
valid pathname name 26-51
valid pathname type 26-51
valid pathname version 26-51
valid physical pathname host 26-51
valid sequence index 26-51
value 26-51
value cell 26-51
values 4-23, 5-69
values-list 5-70
variable 26-51
variable 25-l 7
vector 15-1, 26-51
vector 2-24, 15-6, 15-27
vector-pop 15-28
vector-push 15-28

Index xvii

Programming Language-Common Lisp ANSI X3.226-1994

actual complex part type n. (of a complez) the type in which the real and imag-
inary parts of the complex are actually represented, which is the upgraded complex
part type of the expressed complex part type of the complex.

actual parameter n. Trad. an argument.

actually adjustable adj. (of an array) such that adjust-array can adjust its char-
acteristics by direct modification. A conforming program may depend on an array
being actually adjustable only if either that army is known to have been expressly
adjustable or if that array has been explicitly tested by adjustable-array-p.

adjustability n. (of an array) 1. expressed adjustability. 2. actual adjustability.

adjustable adj. (of an array) 1. expressly adjustable. 2. actually adjustable.

after method n. a method having the qualifier :after.

alist [‘&list], n. an association list.

alphabetic n., adj. 1. adj. (of a character) being one of the standard characters A
through z or a through z, or being any implementation-defined character that has
case, or being some other graphic character defined by the implementation to be
alphabeticl. 2. a. n. one of several possible constituent traits of a character. For
details, see Section 2.1.4.1 (Constituent Characters) and Section 2.2 (Reader Algo-
rithm). b. adj. (of a character) being a character that has syntax type constituent in
the current readtable and that has the constituent trait alphabeticz,. See Figure 2-8.

alphanumeric adj. (of a character) being either an alphabetic1 character or a
numeric character.

ampersand n. the standard character that is called “ampersand” (P). See Figure 2-
5.

anonymous adj. 1. (of a class or function) having no name 2. (of a restart) having
a name of nil.

apparently uninterned adj. having a home package of nil. (An apparently unin-
terned symbol might or might not be an unintemed symbol. Unintemed symbols have
a home package of nil, but symbols which have be-en unintemed from their home
package also have a home package of nil, even though they might still be interned in
some other package .)

applicable adj. 1. (of a handler) being an applicable handler. 2. (of a method) being
an applicable method. 3. (of a restart) being an applicable restart.

applicable handler n. (for a condition being signaled) an active handler for which
the associated type contains the condition.

applicable method n. (of a generic function called with arguments) a method of
the generic function for which the arguments satisfy the parameter specializers of
that method. See Section 7.6.6.1.1 (Selecting the Applicable Methods).

applicable restart n. 1. (for a condition) an active handler for which the associated
test returns true when given the condition as an argument. 2. (for no particular
condition) an active handler for which the associated test returns true when given nil
as an argument.

Glossary 26-3

___ --_,. _
.

*

ANSI X3.226-1994 Programming Language-Common Lisp

apply v.i. (a function to a list) to call the fundion with arguments that are the
elements of the list. “Applying the function + to a list of integers returns the sum of
the elements of that list.”

argument n. 1. (of a function) an object which is offered as data to the function
when it is called. 2. (of a format control) a format argument.

argument evaluation order n. the order in which arguments are evaluated in a
function call. “The argument evaluation order for Common Lisp is left to right.” See
Section 3.1 (Evaluation).

argument precedence order n. the order in which the arguments to a generic
function are considered when sorting the applicable methods into precedence order.

around method n. a method having the qualifier :around.

array n. an object of type array, which serves as a container for other objects ar-
ranged in a Cartesian coordinate system.

array element type n. (of an array) 1. a type associated with the array, and of
which all elements of the array are constrained to be members. 2. the actual array
element type of the array. 3. the ezpressed artxzy element type of the array.

array total size n. the total number of elements in an array, computed by taking
the product of the dimensions of the array. (The size of a zeredimensional array is
therefore one.)

assign v.t. (a variable) to change the value of the variable in a binding that has
already been established. See the special operator setq.

association list n. a list of conses representing an association of keys with values,
where the car of each cons is the key and the cdr is the value associated with that
key.

asterisk n. the standard character that is variously called “asterisk” or “star” (*).
See Figure 2-5.

at-sign n. the standard character that is variously called “commercial at* or Uat
sign” (a). See Figure 2-5.

atom n. any object that is not a cons. “A vector is an atom.”

atomic adj. being an atom. “The number 3, the symbol foo, and nil are atomic.*

atomic type specifier n. a type specifier that is atomic. For every atomic type spec-
ifier, z, there is an equivalent compound type specifier with no arguments supplied,
(xl.

attribute n. (of a character) a program-visible aspect of the character. The only
standardized attribute of a character is its code*, but implementations are permitted
to have additional implementation-defined attributes. See Section 13.1.3 (Character
Attributes). “An implementation that support fonts might make font information
an attribute of a character, while others might represent font information separately
from characters.”

26-4 Glossary

Programming Language-Common Lisp ANSI X3.226- 1994

aux variable n. a variable that occurs in the part of a lambda list that was intro-
duced by &aux. Unlike all other variables introduced by a lambda-list, aut variables
are not parameters.

auxiliary method n. a member of one of two sets of methods (the set of primary
methods is the other) that form an exhaustive partition of the set of methods on the
method’s generic function. How these sets are determined is dependent on the method
combination type; see Section 7.6.2 (Introduction to Methods).

I3

baclcquote n. the standard characier that is variously called “grave accent” or
“backquote” (‘). See Figure 2-5.

backslash n. the standard character that is variously called “reverse solidus” or
“backslash” (\). See Figure 2-5.

base character n. a character of type base-char.

base string n. a string of type base-string.

before method n. a method having the qualifier :before.

bidirectional adj. (of a stream) being both an input stream and an output stream.

binary adj. 1. (of a stream) being a stream that has an element type that is a
subtype of type integer. The most fundamental operation on a binary input stream is
read-byte and on a binary output stream is write-byte. See character. 2. (of a file)
having been created by opening a binary stream. (It is implementation-dependent
whether this is an detectable aspect of the file, or whether any given character file
can be treated as a binary file.)

bind v.t. (a variable) to establish a binding for the variable.

binding n. an association between a name and that which the name denotes. “A
lexical binding is a lexical association between a name and its value.” When the term
binding is qualified by the name of a namespace, such as “variable” or “function,”
it restricts the binding to the indicated namespace, as in: “let establishes variable
bindings.” or “let establishes bindings of variables.”

bit n. an object of type bit; that is, the integer o or the integer 1.

bit array n. a specialized array that is of type (array bit), and whose elements are
of type bit.

bit vector n. a specialized vector that is of type bit-vector, and whose elements are
of type bit.

bit-wise logical operation specifier n. an object which names one of the sixteen
possible bit-wise logical operations that can be performed by the boole function,
and which is the value of exactly one of the constant variables bookclr, book-set,
book-l, book-2 book+cl, bookc2, book-and, book+ior, book+xor, bookeqv,
book-nand, book-nor, book-andcl, book+andcf, bookorcl, or book+orct.

block n. a named lexical ezit point, established explicitly by block or implicitly by
operators such as loop, do and prog, to which control and values may be transfered
by using a return-from form with the name of the block.

Glossary 26-5

ANSI X3.226- 1994 Programming Language-Common Lisp

block tag n. the symbol that, within the lexical scope of a block form, names the
block established by that block form. See return or return-from.

boa lambda list n. a lambda list that is syntactically like an ordinary lambda
list, but that is processed in “by order of argument” style. See Section 3.4.6 (Boa
Lambda Lists).

body parameter n. a parameter available in certain lambda lists which from the
point of view of conforming programs is like a rest parameter in every way except
that it is introduced by &body instead of &rest. (Implementations are permitted
to provide extensions which distinguish body parameters and rest parameters-e.g.,
the forms for operators which were defined using a body pammeter might be pretty
printed slightly differently than forms for operators which were defined using rest
parameters.)

boolean n. an object of type boolean; that is, one of the following objects: the
symbol t (representing true), or the symbol nil (representing false). See generalized
boolean.

boolean equivalent n. (of an object 01) any object 02 that has the same truth
value as 01 when both 01 and 02 are viewed as generalized booleans.

bound adj., u.t. 1. adj. having an associated denotation in a binding. “The variables
named by a let are bound within its body.” See unbound. 2. adj. having a local
binding which shadows2 another. “The variable *print-escape* is bound while in the
print function.” 3. u.t. the past tense of bind.

bound declaration n. a declaration that refers to or is associated with a variable
or function and that appears within the special form that establishes the variable or
function, but before the body of that special form (specifically, at the head of that
form’s body). (If a bound declaration refers to a function binding or a lezical variable
binding, the scope of the declaration is exactly the scope of that binding. If the
declaration refers to a dynamic variable binding, the scope of the declamiion is what
the scope of the binding would have been if it were lexical rather than dynamic.)

bounded adj. (of a sequence S, by an ordered pair of bounding indices ista+l and
iend) restricted to a subrange of the elements of S that includes each element begin-
ning with (and including) the one indexed by 2 ‘start and continuing up to (but not
including) the one indexed by ien,+

bounding index n. (of a sequence with length n) either of a conceptual pair of
integers, i,,,,, and iend, respectively called the “lower bounding index” and “upper
bounding index”, such that 0 5 istart < icnd < n, and which therefore delimit a
subrange of the sequence bounded by istort and-&,,,+

bounding index designator (for a sequence) one of two objects that, taken to-
gether as an ordered pair, behave as a designator for bounding indices of the se-
quence; that is, they denote bounding indices of the sequence, and are either: an
integer (denoting itself) and nil (denoting the length of the sequence), or two integers
(each denoting themselves).

break loop n. A variant of the normal Lisp read-eval-print loop that is recursively
entered, usually because the ongoing evaluation of some other form has been sus-
pended for the purpose of debugging. Often, a break loop provides the ability to exit
in such a way as to continue the suspended computation. See the function break.

26-6 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

broadcast stream n. an output stream of type broadcast-stream.

built-in class R. a class that is a generalized instance of class built-in-class.

built-in type n. one of the types in Figure 4-2.

byte n. 1. adjacent bits within an integer. (The specific number of bits can vary
from point to point in the program; see the function byte.) 2. an integer in a speci-
fied range. (The specific range can vary from point to point in the program; see the
functions open and write-byte.)

byte specifier n. An object of implementation-dependent nature that is returned by
the junction byte and that specifies the range of bits in an integer to be used as a
byte by functions such as ldb.

C

cadr [’ ka,der], n. (of an object) the cur of the cdr of that object.

call u.t., n. 1. v.t. (a function with arguments) to cause the code represented by
that function to be executed in an environment where bindings for the values of its
parameters have been established based on the arguments. “Calling the function +
with the arguments 5 and 1 yields a value of 6.” 2. n. a situation in which a function
is called.

captured initialization form n. an initialization form along with the lexical envi-
ronment in which the form that defined the initialization form was evaluated. “Each
newly added shared slot is set to the result of evaluating the captured initialization
form for the slot that was specified in the defclass form for the new class.”

car n. 1. a. (of a cons) the component of a cons corresponding to the first argument
to cons; the other component is the Cdr. “The function rplaca modifies the car of a
cons.” b. (of a list) th e fi t J rs e ement of the list, or nil if the list is the empty list. 2.
the object that is held in the curl. “The function car returns the car of a cons.”

case n. (of a character) the property of being either uppercase or lowercase. Not
all characters have case. “The characters #\A and #\a have case, but the character
tt\$ has no case.” See Section 13.1.4.3 (Characters With Case) and the function
both-case-p.

case sensitivity mode n. one of the symbols :upcase, :dovncase, :preserve, or
: invert.

catch n. an exit point which is established by a catch form within the dynamic scope
of its body, which is named by a catch tag, and to which control and values may be
thrown.

catch tag n. an object which names an active catch. (If more than one catch is
active with the same catch tag, it is only possible to throw to the innermost such
catch because the outer one is shadoweda.)

cddr [’ klidc, drr] or [’ kc, dfidcr], n. (of an object) the cdr of the cdr of that
objecf .

Glossary 26-7

ANSI X3.226-1994 Programming Language-Common Lisp

cdr [’ kti,drr], n. 1. a. (of a cons) the component of a cons corresponding to the
second argument to cons; the other component is the car. “The function rplacd
modifies the cdr of a cons.” b. (of a list L1) either the list Lz that contains the
elements of L1 that follow after the first, or else nil if L1 is the empty list. 2. the
object that is held in the c&l. ‘The function cdr returns the cdr of a cons.”

cell n. Bud. (of an object) a conceptual slot of that object. The dynamic variable
and global junction bindings of a symbol are sometimes referred to as its value cell
and function cell, respectively.

character n., adj. 1. n. an object of type character; that is, an object that repro-
sents a unitary token in an aggregate quantity of text; see Section 13.1 (Character
Concepts). 2. adj. a. (of a stream) having an element type that is a subtype of
type character. The most fundamental operation on a character input stream is
read-char and on a character output stream is write-char. See binary. b. (of a file)
having been created by opening a character stream. (It is implementation-dependent
whether this is an inspectable aspect of the file, or whether any given binary file can
be treated as a character file.)

character code n. 1. one of possibly several attributes of a character. 2. a non-
negative integer less than the value of char-code-limit that is suitable for use as a
character codel.

character designator n. a designator for a character; that is, an object that de-
notes a character and that is one of: a designator for a string of length one (denoting
the character that is its only element), or a character (denoting itself).

circular adj. 1. (of a list) a circular lid. 2. (of an arbitrary object) having a compo-
nent, element, constituentz, or subexpression (as appropriate to the context) that is
the object itself.

circular list n. a chain of conses that has no termination because some cons in the
chain is the cdr of a later cons.

class n. 1. an object that uniquely determines the structure and behavior of a set
of other objects called its direct instances, that contributes structure and behavior
to a set of other objects called its indirect instances, and that acts as a type specijer
for a set of objects called its generalized instances. “The class integer is a subclass
of the class number.” (Note that the phrase “the class foe” is often substituted
for the more precise phrase “the class named too”-in both cases, a class object
(not a symbol) is denoted.) ,2. (of an object) the uniquely determined class of which
the object is a direct instance. See the function class-of. “The class of the object
returned by gensym is symbol.” (Note that with this usage a phrase such as “its
class is foo” is often substituted for the more precise phrase “its class is the class
named foe”-in both cases, a class object (not a symbol) is denoted.)

class designator n. a designator for a class; that is, an object that denotes a class
and that is one of: a symbol (denoting the class named by that symbol; see the
function And-class) or a class (denoting itself).

class precedence list n. a unique total ordering on a class and its superclasses that
is consistent with the local precedence orders for the class and its superclasses. For
detailed information, see Section 4.3.5 (Determining the Class Precedence List).

close v.t. (a stream) to terminate usage of the stream as a source or sink of data,
permitting the implementation to reclaim its internal data structures, and to free any
external resources which might have been locked by the stream when it was opened.

26-8 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

closed adj. (of a stream) having been closed (see close). Some (but not all) oper-
ations that are valid on open streams are not valid on closed streams. See Section
21.1.1.1.2 (Open and Closed Streams).

closure n. a lexical closure.

coalesce v.t. (literal objects that are similar) to consolidate the identity of those
objects, such that they become the same object. See Section 3.2.1 (Compiler Termi-
nology).

code n. 1. Trad. any representation of actions to be performed, whether conceptual
or as an actual object, such as forms, lambda expressions, objects of type function,
text in a source file, or instruction sequences in a compiled file. This is a generic
term; the specific nature of the representation depends on its context. 2. (of a
character) a character code.

coerce v-t. (an object to a type) to produce an object from the given object, with-
out modifying that object, by following some set of coercion rules that must be
specifically stated for any context in which this term is used. The resulting object is
necessarily of the indicated type, except when that type is a subtype of type complex;
in that case, if a complez rational with an imaginary part of zero would result, the
result is a rational rather than a complexsee Section 12.1.5.3 (Rule of Canonical
Representation for Complex Rationals).

colon n. the standard character that is called “colon” (:). See Figure 2-5.

comma n. the standanl character that is called “comma” (,). See Figure 2-5.

compilation n. the process of compiling code by the compiler.

compilation environment n. 1. An environment that represents information
known by the compiler about a form that is being compiled. See Section 3.2.1
(Compiler Terminology). 2. An object that represents the compilation environment1
and that is used as a second argument to a macro function (which supplies a value
for any &environment parameter in the macro function’s definition).

compilation unit n. an interval during which a single unit of compilation is occur-
ring. See the macro with-compilation-unit.

compile v.t. 1. (code) to perform semantic preprocessing of the code, usually op-
timizing one or more qualities of the code, such as run-time speed of ezecution or
run-time storage usage. The minimum semantic requirements of compilation are that
it must remove all macro calls and arrange for all load time values to be resolved
prior to run time. 2. (a function) to produce a new object of type compiled-function
which represents the result of compiling the code represented by the function. See the
function compile. 3. (a source file) to produce a compiled file from a source file. See
the function compile-file.

compile time n. the duration of time that the compiler is processing source code.

compile-time definition n. a definition in the compilation environment.

compiled code n. 1. compiled functions. 2. code that represents compiled functions,
such as the contents of a compiled file.

Glossary 26-9

ANSI X3.226- 1994 Programming Language-Common Lisp

compiled file n. a file which represents the results of compiling the jams which
appeared in a corresponding source file, and which can be loaded. See the junction
compile-file.

compiled function n. an object of type compiled-function, which is a junction that
has been compiled, which contains no references to macros that must be expanded at
run time, and which contains no unresolved references to load time values.

compiler n. a facility that is part of Lisp and that translates code into an
implementation-dependent form that might be represented or executed efficiently.
The functions compile and compile-file permit programs to invoke the compiler.

compiler macro n. an auxiliary macro definition for a globally defined junction or
macro which might or might not be called by any given conforming implementation
and which must preserve the semantics of the globally defined junction or macro but
which might perform some additional optimizations. (Unlike a macro, a compiler
macro does not extend the syntax of Common Lisp; rather, it provides an alternate
implementation strategy for some existing syntax or functionality.)

compiler macro expausioli n. 1. the process of translating a form into another
form by a compiler macro. 2. the form resulting from this process.

compiler macro form n. a junction form or macro form whose operator has a
definition as a compiler macro, or a funcall form whose first argument is a function
form whose argument is the name of a junction that has a definition as a compiler
macro.

compiler macro function n. a junction of two arguments, a form and an enuiron-
ment, that implements compiler macro expansion by producing either a form to be
used in place of the original argument form or else nil, indicating that the original
form should not be replaced. See Section 3.2.2.1 (Compiler Macros).

complex n. an object of type complex.

complex float n. an object of type complex which has a complex part type that is a
subtype of float. A complex jloat is a complex, but it is not a j?oat.

complex part type n. (of a complex) 1. the type which is used to represent both
the real part and the imaginary part of the complex. 2. the actual complex part type
of the complex. 3. the ezpressed complex part type of the complex.

complex rational n. an object of type complex which has a complex part type that
is a subtype of rational. A complex rational is a complex, but it is not a rational.
No complex rational has an imaginary part of zero because such a number is always
represented by Common Lisp as an object of type rational; see Section 12.1.5.3 (Rule
of Canonical Representation for Complex Rationals).

complex single float n. an object of type complex which has a complex part type
that is a subtype of single-float. A complex single float is a complex, but it is not a
single float.

composite stream n. a stream that is composed of one or more other streams.
“make-synonym-stream creates a compositt stream.”

compound form n. a non-empty list which is a form: a special form, a lambda
form, a macro form, or a junction form.

26-10 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

compound type specifier n. a type specifier that is a cons; i.e., a type specifier
that is not an atomic type specifier. “(vector single-float) is a compound type
specifier .n

concatenated stream n. an input stream of type concatenated-stream.

condition n. 1. an object which represents a situation-usually, but not necessarily,
during signaling. 2. an object of type condition.

condition designator n. one or more objects that, taken together, denote either an
existing condition object or a condition object to be implicitly created. For details,
see Section 9.1.2.1 (Condition Designators).

condition handler n. a function that might be invoked by the act of signaling, that
receives the condition being signaled as its only argument, and that is permitted to
handle the condition or to decline. See Section 9.1.4.1 (Signaling).

condition reporter n. a function that describes how a condition is to be printed
when the Lisp printer is invoked while *print-escape* is false. See Section 9.1.3
(Printing Conditions).

conditional newline n. a point in output where a newline might be inserted at
the discretion of the pretty printer. There are four kinds of conditional newlines,
called “linear-style,” Yill-style, n “miser-style,” and “mandatory-style.” See the
function pprint-newline and Section 22.2.1.1 (Dynamic Control of the Arrangement
of Output).

conformance n. a state achieved by proper and complete adherence to the require-
ments of this specification. See Section 1.5 (Conformance).

conforming code n. code that is all of part of a conforming program.

conforming implementation n. an implementation, used to emphasize complete
and correct adherance to all conformance criteria. A conforming implementation is
capable of accepting a conforming program as input,, preparing that program for exe-
cution, and executing the prepared program in accordance with this specification. An
implementation which has been extended may still be a conforming implementation
provided that no extension interferes with the correct function of any conforming
program.

conforming processor n. ANSI a conforming implementation.

conforming program n. a program, used to emphasize the fact that the program
depends for its correctness only upon documented aspects of Common Lisp, and can
therefore be expected to run correctly in any conforming implementation.

congruent n. conforming to the rules of lambda list congruency, as detailed in
Section 7.6.4 (Congruent Lambda-lists for all Methods of a Generic Function).

cons n.u. 1. n. a compound data object having two components called the car
and the cdr. 2. v. to create such an object. 3. v. Idiom. to create any object, or to
allocate storage.

constant n. 1. a constant form. 2. a constant variable. 3. a constant object. 4. a
self-evaluating object.

Glossary 26-11

ANSI X3.226-1994 Programming Language-Common Lisp

constant form n. any form for which evaluation always yields the same value, that
neither affects nor is affected by the environment in which it is evaluated (except
that it is permitted to refer to the names of constant variables defined in the environ-
ment), and that neither affects nor is affected by the state of any object except those
objects that are othenvise inaccessible parts of objects created by the form itself. “A
car form in which the argument is a quote form is a constant form.”

constant object n. an object that is constrained (e.g., by its context in a program
or by the source from which it was obtained) to be immutable. “A literal object that
has been processed by compile-file is a constant object.”

constant. variable n. a variable, the value of which can never change; that
is, a keyword1 or a named constant. “The symbols t, nil, :direction, and
most-positive-fixnum are constant variables.”

constituent n., adj. 1. a. n. the syntaz type of a character that is part of a token.
For details, see Section 2.1.4.1 (Constituent Characters). b. adj. (of a character)
having the constituentl, syntaz types. c. n. a COnsfitUentlb character. 2. n. (of a
composite stream) one of possibly several objects that collectively comprise the source
or sink of that stream.

constituent trait n. (of a character) one of several classifications of a constituent
character in a readtable. See Section 2.1.4.1 (Constituent Characters).

constructed stream n. a stream whose source or sink is a Lisp object. Note that
since a stream is another Lisp object, composite streams are considered constructed
streams. “A string stream is a constructed stream.”

contagion n. a process whereby operations on objects of differing types (e.g., arith-
metic on mixed types of numbers) produce a result whose type is controlled by the
dominance of one argument’s type over the types of the other arguments. See Section
12.1.1.2 (Contagion in Numeric Operations).

--

continuable n. (of an error) an error that is correctable by the continue restart.

control form n. 1. a form that establishes one or more places to which control can
be transferred. 2. a form that transfers control.

copy n. 1. (of a cons C) a fresh cons with the same car and cdr aa C. 2. (of a list
L) a fresh list with the same elements as L. (Only the list structure is fresh; the
elements are the same.) See the junction copy-list.. 3. (of an association list A with
elements Ai) a fresh list B with elements Bi, each of which is nil if Ai is nil, or else
a copy of the cons Ai. See the function copy-a%&. 4. (of a tree T) a fresh tree with
the same leaves as T. See the function copy-tree. 5. (of a random state R) a fresh
random state that, if used as an argument to to the function random would produce
the same series of “random” values as R would produce. 6. (of a structure S) a fresh
structure that has the same type as S, and that has slot values, each of which is the
same as the corresponding slot value of S. (Note that since the difference between a
cons, a list, and a tree is a matter of “view” or “intention,” there can be no general-
purpose function which, based solely on the type of an object, can determine which
of these distinct meanings is intended. The distinction rests solely on the basis of the
text description within this document. For example, phrases like “a copy of the given
list” or “copy of the list x” imply the second definition.)

correctable adj. (of an error) 1. (by a restart other than abort that has been
associated with the error) capable of being corrected by invoking that restart. “The

26-12 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

function terror signals an error that is correctable by the continue restart.” (Note
that correctability is not a property of an error object, but rather a property of
the dynamic environment that is in effect when the error is signaled. Specifically,
the restart is “associated with” the error condition object. See Section 9.1.4.2.4
(Associating a Restart with a Condition).) 2. (w h en no specific restart is mentioned)
correctablel by at least one restart. “import signals a correctable error of type
pac@e-error if any of the imported symbols has the same name as some distinct
symbol already accessible in the package.”

current input base n. (in a dynamic environment) the mdiz that is the value of
read-base in that environment, and that is the default radiz employed by the Lisp
reader and its related functions.

current logical block n. the context of the innermost lexically enclosing use of
pprint-logical-block

current output base n. (in a dynamic environment) the radiz that is the value of
print-base in that environment, and that is the default radix employed by the Lisp
printer and its related functions.

current package n. (in a dynamic environment) the package that is the value of
pa&age in that environment, and that is the default package employed by the Lisp
reader and Lisp printer, and their related functions.

current pprint dispatch table n. (in a dynamic environment) the pprint dispatch
table that is the value of *print-pprint-dispatch* in that environment, and that is
the default pprint dispatch table employed by the pretty printer.

current random state n. (in a dynamic environment) the random state that is the
value of *random-state* in that environment, and that is the default random state
employed by random.

current readtable n. (in a dynamic environment) the readtable that is the value of
readtable in that environment, and that affects the way in which ezpressionsz are
parsed into objects by the Lisp reader.

D

data type n. Trad. a type.

debug I/O n. the bidirectional stream that is the value of the variable *debug-io*.

debugger n. a facility that allows the user to handle a condition interactively. For
example, the debugger might permit interactive selection of a restart from among the
active restarts, and it might perform additional implementation-defined services for
the purposes of debugging.

declaration n. a global declaration or local declaration.

declaration identifier n. one of the symbols declaration, dynamic-extent, ftype,
function, ignore, inline, notinline, optimize, special, or type; or a symbol which is
the name of a type; or a symbol which has been declared to be a declaration identifier
by using a declaration declaration.

Glossary 26-13

ANSI X3.226-1994 Programming Language-Common Lisp

declaration specifier n. an ezpression that can appear at top level of a declare
expression or a declaim form, or as the argument to proclaim, and which has a
car which is a declaration identifier, and which has a cdr that is data interpreted
according to rules specific to the declaration identifier.

declare u. to estabhsh a decJaration. See declare, declaim, or proclaim.

decline v. (of a handler) to return normally without having handled the condition
being signaled, permitting the signaling process to continue as if the handler had not
been present.

decoded time n. absolute time, represented as an ordered series of nine objects
which, taken together, form a description of a point in calendar time, accurate to the
nearest second (except that leap seconds are ignored). See Section 25.1.4.1 (Decoded
Time).

default method n. a method having no parameter specializers other than the class
t. Such a method is always an applicable method but might be shadowed2 by a more
specific method.

defaulted initialization argument list n. a list of alternating initialization argu-
ment names and values in which unsupplied initialization arguments are defaulted,
used in the protocol for initializing and reinitializing instances of classes.

define-method-combination arguments lambda list n. a lambda list used by
the :argurento option to define-method-combination. See Section 3.4.10 (Define-
method-combination Arguments Lambda Lists).

define-modify-macro lambda list n. a lambda list used by define-modify-macro,
See Section 3.4.9 (Define-modify-macro Lambda Lists).

defined name n. a symbol the meaning of which is defined by Common Lisp.

defining form n. a form that has the side-effect of establishing a definition. “defun
and defparameter are defining forms.”

defsetf lambda list n. a lambda list that is like an ordinary lambda list except that
it does not permit &aux and that it permits use of &environment. See Section 3.4.7
(Defsetf Lambda Lists).

deftype lambda list n. a lambda list that is like a macro lambda list except that
the default value for unsupplied optional parameters and keyword parameters is the
symbol * (rather than nil). See Section 3.4.8 (Deftype Lambda Lists).

denormalized adj., ANSI, IEEE (of a float) conforming to the description of
“denormalized” as described by IEEE Standard for Binary Floating-Point Arithmetic.
For example, in an implementation where the minimum possible exponent was -7
but where 0.001 was a valid mantissa, the number I .~a-10 might be representable
as O.OOI~-7 internally even if the normalized representation would call for it to
be represented instead as I.o~-IO or O. le-9. By their nature, denormalized floats
generally have less precision than normalized fJoats.

derived type n. a type specifier which is defined in terms of an expansion into
another type specifier. deftype defines derived types, and there may be other
implementation-defined operators which do so as well.

26-14 Glossary

Programming Languag~Common Lisp ANSI X3.226- 1994

derived type specifier n. a type specijier for a derived type.

designator n. an object that denotes another object. In the dictionary entry for an
opemtor if a parameter is described as a designator for a type, the description of the
operator is written in a way that assumes that appropriate coercion to that type has
already occurred; that is, that the parameter is already of the denoted type. For more
detailed information, see Section 1.4.1.5 (Designators).

destructive adj. (of an operator) capable of modifying some program-visible aspect
of one or more objects that are either explicit arguments to the operator or that can
be obtained directly or indirectly from the global environment by the opemtor.

destructuring lambda list n. an evtended lambda list used in destructuring-bind
and nested within macro lambda lists. See Section 3.4.5 (Destructuring Lambda
Lists).

different adj. not the same “The strings lgFOO” and “foe” are different under equal
but not under equalp.”

digit n. (in a mdiz) a chamcter that is among the possible digits (0 to 9, A to Z, and
a to z) and that is defined to have an associated numeric weight as a digit in that
mdiz. See Section 13.1.4.6 (Digits in a Radix).

dimension n. 1. a non-negative integer indicating the number of objects an array
can hold along one axis. If the array is a vector with a fill pointer, the fill pointer
is ignored. “The second dimension of that array is 7.” 2. an axis of an array. “This
array has six dimensions.”

direct instance n. (of a class C) an object whose class is C itself, rather than some
subclass of C. “The function mak&nstance always returns a direct instance of the
class which is (or is named by) its first argument.”

direct subclass n. (of a class Cl) a class Cz, such that Cr is a direct superclass of
(32.

direct superclass n. (of a class Ci) a class C2 which was explicitly designated as a
superclass of Ci in the definition of Ci.

disestablish v.t. to withdraw the establishment of an object, a binding, an ezit point,
a tag, a handler, a restart, or an environment.

disjoint n. (of types) having no elements in common.

dispatching macro character n. a macro character that has an associated table
that specifies the function to be called for each character that is seen following the
dispatching macro character. See the function make-dispatch-macro-character.

displaced array n. an array which has no storage of its own, but which is instead
indirected to the storage of another army, called its target, at a specified offset, in
such a way that any attempt to access the displaced array implicitly references the
target array.

distinct adj. not identical.

Glossary 26-15

ANSI X3.226-1994 Programming Languag~Common Lisp

documentation string n. (in a defining form) A literal string which because of
the context in which it appears (rather than because of some intrinsically observable
aspect of the string) is taken as documentation. In some cases, the documentation
string is saved in such a way that it can later be obtained by supplying either an
object, or by supplying a name and a “kind” to the function documentation. “The
body of code in a defmacro form can be preceded by a documentation string of kind
function.”

dot n. the standard character that is variously called “full stop,” “period,” or “dot”
(.). See Figure 2-5.

dotted list n. a list which has a terminating atom that is not nil. (An atom by itself
is not a dotted Zist, however.)

dotted pair n. 1. a cons whose cdr is a non-list. 2. any cons, used to emphasize the
use of the cons as a symmetric data pair.

double float n. an object of type double-float.

double-quote n. the standard character that is variously called Uquotation mark” or
“double quote” (‘I). See Figure 2-5.

dynamic binding n. a binding in a dynamic environment.

dynamic environment n. that part of an environment that contains bindings
with dynamic eztent. A dynamic environment contains, among other things: exit
points established by unwind-protect, and bindings of dynamic variables, exit points
established by catch, condition handlers, and restarts.

dynamic extent n. an eztent whose duration is bounded by points of establishment
and disestablishment within the execution of a particular form. See indefinite extent.
“Dynamic variable bindings have dynamic extent.”

dynamic scope n. indefinite scope along with dynamic eztent.

dynamic variable n. a variable the binding for which is in the dynamic environ-
ment. See special.

E

echo stream n. a stream of type echo-stream.

effective method n. the combination of applicable methods that are executed when
a generic function is invoked with a particular sequence of arguments.

element n. 1. (of a list) an object that is the car of one of the conses that comprise
the list. 2. (of an array) an object that is stored in the array. 3. (of a sequence) an
object that is an element of the list or array that is the sequence. 4. (of a type) an
object that is a member of the set of objects designated by the type. 5. (of an input
stream) a character or number (as appropriate to the element type of the stream)
that is among the ordered series of objects that can be read from the stream (using
read-char or read-byte, as appropriate to the stream). 6. (of an output stream) a ’
character or number (as appropriate to the element type of the stream) that is among
the ordered series of objects that has been or will be written to the stream (using
writechar or write-byte, as appropriate to the stream). 7. (of a class) a generalized
instance of the class.

26-16 Gl0-V

Programming Language-Common Lisp ANSI X3.226-1994

element type n. 1. (of an army) the array element type of the array. 2. (of a
stream) the stream element type of the stream.

em n. Bud. a context-dependent unit of measure commonly used in typesetting,
equal to the displayed width of of a letter “M” in the current font. (The letter “M”
is traditionally chosen because it is typically represented by the widest glyph in
the font, and other characters’ widths are typically fractions of an em. In imple-
mentations providing non-Roman characters with wider characters than “M,” it is
permissible for another character to be the implementation-defined reference char-
acter for this measure, and for “M” to be only a fraction of an em wide.) In a fixed
width font, a line with n characters is n ems wide; in a variable width font, n ems is
the expected upper bound on the width of such a line.

empty list n. the list containing no elements. See 0.

empty type n. the type that contains no elements, and that is a subtype of all types
(including itself). See nil.

end of file n. 1. the point in an input stream beyond which there is no further data.
Whether or not there is such a point on an intemctive stream is implementation-
defined. 2. a situation that occurs upon an attempt to obtain data from an input
stream that is at the end of filer.

environment n. 1. a set of bindings. See Section 3.1.1 (Introduction to Environ-
ments). 2. an environment object. “macroexpand takes an optional environment
argument.”

environment object n. an object representing a set of lexical bindings, used
in the processing of a form to provide meanings for names within that form.
“macroexpand takes an optional environment argument.” (The object nil when
used as an environment object denotes the null lexical environment; the values of
environment parameters to macro functions are objects of impJementation-dependent
nature which represent the environments in which the corresponding macro form is
to be expanded.) See Section 3.1.1.4 (Environment Objects).

environment parameter n. A pammeter in a defining fotm f for which there is no
corresponding argument; instead, this parameter receives as its value an environment
object which corresponds to the lexical environment in which the defining form f
appeared.

error n. 1. (only in the phrase “is an error”) a situation in which the semantics
of a program are not specified, and in which the consequences are undefined. 2. a
condition which represents an error situation. See Section 1.4.2 (Error Terminology).
3. an object of type error.

error output n. the output stream which is the value of the dynamic variable
error-output.

escape n., adj. 1. n. a single escape or a multiple escape. 2. adj. single escape or
multiple escape.

establish u.t. to build or bring into being a binding, a declaration, an exit point, a
tag, a handler, a mstart, or an environment. “let establishes lexical bindings.”

evaluate v.2. (a form or an implicit progn) to etecute the code represented by the
form (or the series of forms making up the implicit progn) by applying the rules of
evaluation, returning zero or more values.

Glossary 26-17

ANSI X3.226-1994 Programming Language-Common Lisp

evaluation n. a model whereby forms are etecuted, returning zero or more values.
Such execution might be implemented directly in one step by an interpreter or in two
steps by first compiling the form and then ezecuting the compiled code; this choice is
dependent both on context and the nature of the implementation, but in any case is
not in general detectable by any program. The evaluation model is designed in such a
way that a conforming implementaiion might legitimately have only a compiler and
no interpreter, or vice versa. See Section 3.1.2 (The Evaluation Model).

evaluation environment n. a run-time environment in which macro expanders and
code specified by eval-when to be evaluated are evaluated. All evaluations initiated
by the compiler take place in the evaluation environment.

execute v.t. Dad. (code) to perform the imperative actions represented by the code.

execution time n. the duration of time that compiled code is being executed.

exhaustive partition n. (of a type) a set of paitrrrise disjoint types that form an
exhaustive union.

exhaustive union n. (of a type) a set of subtypes of the type, whose union contains
all elements of that type.

exit point n. a point in a control form from which (e.g., block), through which (e.g.,
unwind-protect), or to which (e.g., tagbody) control and possibly values can be
transferred both actively by using another control form and passively through the
normal control and data flow of evaluation. “catch and block establish bindings for
exit points to which throw and return-from, respectively, can transfer control and
values; tagbody establishes a binding for an exit point with lexical extent to which
go can transfer control; and unwind-protect establishes an exit point through which
control might be transferred by operators such as throw, return-from, and go.”

explicit return n. the act of transferring control (and possibly values) to a block by
using return-from (or return).

explicit use n. (of a variable V in a form F) a reference to V that is directly ap-
parent in the normal semantics of F; i.e., that does not expose any undocumented
details of the macro expansion of the form itself. References to V exposed by ex-
panding subforms of F are, however, considered to be ezplicit uses of V.

exponent marker n. a character that is used in the textual notation for a float to
separate the mantissa from the exponent. The characters defined as exponent markers
in the standard readtable are shown in Figure 26-l. For more information, see Section
2.1 (Character Syntax). “The exponent marker ‘d’ in ‘3.0d7’ indicates that this
number is to be represented as a double float.”

Marker Meaning
D or d double-float
E or e float (see *read-default-float-format*)
P or f single-float
L or 1 long-float
S or s short-float

Figure 26-l. Exponent Markers

26-18 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

export u.t. (a symbol in a package) to add the symbol to the list of ezternal symbols
of the package.

exported adj. (of a symbol in a package) being an external symbol of the package.

expressed adjustability n. (of an array) a generalized boolean that is conceptually
(but not necessarily actually) associated with the array, representing whether the
array is expressly adjustable. See also actual adjustability.

expressed array element type n. (of an anury) the type which is the array element
type implied by a type declaration for the army, or which is the requested amay
element type at its time of creation, prior to any selection of nn upgmded array
element type. (Common Lisp does not provide a way of detecting this type directly at
run time, but an implementation is permitted to make assumptions about the array’s
contents and the operations which may be performed on the array when this type is
noted during code analysis, even if those assumptions would not be valid in general
for the upgraded array element type of the expressed array element type.)

expressed complex part type n. (of a complez) the type which is implied as the
complex part type by a type declaration for the complex, or which is the requested
complex part type at its time of creation, prior to any selection of an upgmded com-
plex part type. (Common Lisp does not provide a way of detecting this type directly
at run time, but an implementation is permitted to make assumptions about the op-
erations which may be performed on the complex when this type is noted during code
analysis, even if those assumptions would not be valid in general for the upgmded
complez part type of the expressed complex part type.)

expression n. 1. an object, often used to emphasize the use of the object to encode
or represent information in a specialized format, such as program text. “The second
expression in a let form is a list of bindings.” 2. the textual notation used to notate
an object in a source file. “The expression ‘sample is equivalent to (quote sample).”

expressly adjustable adj. (of an array) being actually adjustable by virtue of an
explicit request for this characteristic having been made at the time of its creation.
All arrays that are expressly adjustable are actually adjustable, but not necessarily
vice versa.

extended character n. a chamcter of type extended-char: a character that is not a
base character.

extended function designator n. a designator for a function; that is, an object
that denotes a function and that is one of: a function name (denoting the function it
names in the global environment), or a function (denoting itself). The consequences
are undefined if a function name is used as an extended function designator but it
does not have a global definition as a function, or if it is a symbol that has a global
definition as a macro or a special form. See also function designator.

extended lambda list n. a list resembling an ordinary lambda list in form and
purpose, but offering additional syntax or functionality not available in an ordinary
lambda list. “defmacro uses extended lambda lists.”

extension n. a facility in an implementation of Common Lisp that is not specified by
this standard.

extent n. the interval of time during which a reference to an object, a binding, an
ezit point, a tag, a handler, a restart, or an environment is defined.

Glossary 26-19

ANSI X3.226-1994 Programming Language-Common Lisp

external file format n. an object of implementation-dependent nature which deter-
mines one of possibly several implementation-dependent ways in which characters are
encoded externally in 8 character file.

external file format designator n. a designator for an external file format; that
is, an object that denotes an external file format and that is one of: the symbol
:def ault (denoting an implementation-dependent default external file format that
can accomodate at least the base characters), some other object defined by the
implementation to be an edema1 file format designator (denoting an implementation-
defined external file format), or some other object defined by the implementation to
be an external file format (denoting itself).

external symbol n. (of a package) a symbol that is part of the ‘external interface’
to the package and that are inherited3 by any other package that uses the package.
When using the Lisp reader, if a package prefiz is used, the name of an external
symbol is separated from the package name by a single package marker while the
name of an internal symbol is separated from the package name by a double package
marker; see Section 2.3.4 (Symbols as Tokens).

externalizable object n. an object that can be used as a literal object in code to be
processed by the file compiler.

F

false n. the symbol nil, used to represent the failure of a predicate teat.

abound [’ ef,batind] adj. (of a function name) bound in the function namespace.
(The names of macros and special operators are fbound, but the nature and iype of
the object which is their value is implementation-dependent. Further, defining a setf
expander F does not cause the setjfunction (setf F) to become defined; as such, if
there is a such a definition of a setf expander F, the function (setf F) can be fbound
if and only if, by design or coincidence, a function binding for (setf F) has been
independently established.) See the functions fboundp and symbol-function.

feature n. 1. an aspect or attribute of Common Lisp, of the implementation, or of
the environment. 2. a symbol that names a featurel. See Section 24.1.2 (Features).
“The :ansi-cl feature is present in all conforming implementations.”

feature expression n. A boolean combination of features used by the *t+ and *-
reader macros in order to direct conditional reading of expressions by the Lisp
reader. See Section 24.1.2.1 (Feature Expressions).

features list n. the list that is the value of *features*.

file n. a named entry in a file system, having 8n implementation-defined nature.

file compiler n. any compiler which compiles source code contained in a file,
producing a compiled file as output. The compile-file function is the only in-
terface to such a compiler provided by Common Lisp, but there might be other,
implementation-de$ned mechanisms for invoking the file compiler.

file position n. (in a stream) a non-negative integer that represents a position
in the stream. Not all streams are able to represent the notion of file position; in
the description of any operator which manipulates file positions, the behavior for
streams that don’t have this notion must be explicitly stated. For binary streams, the

26-20 Gl==Y

Programming Language-Common Lisp ANSI X3.226-1994

file position represents the number of preceding bytes in the stream. For character
streams, the constraint is more relaxed: file positions must increase monotonically,
the amount of the increase between file positions corresponding to any two successive
characters in the stream is implementaiion-dependent .

file position designator n. (in a stream) a designator for a file position in that
stream; that is, the symbol :start (denoting 0, the first file position in that stream),
the symbol :end (denoting the last file position in that stream; i.e., the position
following the last element of the stream), or a file position (denoting itself).

file stream n. an object of type Ale-stream.

file system n. a facility which permits aggregations of data to be stored in named
files on some medium that is external to the Lisp image and that therefore persists
from session to session.

filename n. a handle, not necessarily ever directly represented as an object, that can
be used to refer to a file in a file system. Pathnames and names2rings are two kinds
of objects that substitute for filenames in Common Lisp.

fill pointer n. (of a vector) an integer associated with a uecior that represents the
index above which no elements are active. (A fill pointer is a non-negative integer
no larger than the total number of elements in the vector. Not all vectors have fill
pointers.)

finite adj. (of a type) having a finite number of elements. “The type specifier
(integer o 5) denotes a finite type, but the type specifiers integer and (integer 0)
do not.”

fixnum n. an integer of type fixnum.

float n. an object of type float.

for-value adj. (of a reference to a binding) being a reference that reads1 the value of
the binding.

form n. 1. any object meant to be evaluated. 2. a symbol, a compound form, or a
self-eualualing object. 3. (for an operalor, as in “((operaior)) form”) a compound form
having that operator as its first element. “A quote form is a constant form.”

formal argument n. Dad. a parameter.

formal parameter n. nad. a parameter.

format v.t (a forma2 control and format arguments) to perform output as if by
format, using the format s+ing and format arguments.

format argument n. an object which is used as data by functions such as format
which interpret fomaai controls.

format control n. a format string, or a function that obeys the argument con-
ventions for a function returned by the formatter macro. See Section 22.2.1.3
(Compiling Format Strings).

Glossary 26-21

ANSI X3.226-1994 Progra+ming Language-Common Lisp

format directive n. 1. a sequence of characters in a format siring which is intro-
duced by a tilde, and which is specially interpreted by code which processes format
strings to mean that some special operation should be performed, possibly involving
data supplied by the format arguments that accompanied the format string. See the
function format. “In “‘D base 10 - WV’, the character sequences “D’ and “8R’ are
format directives.” 2. the conceptual category of all format directiuesl which use the
same dispatch character. “Both IS’3dvS and Y+, ‘OD” are valid uses of the “D’ format
directive.”

format string n. a string which can contain both ordinary text and format direc-
tives, and which is used in conjunction with forma2 avuments to describe how text
output should be formatted by certain functions, such as format.

free declaration n. a declaration that is not a bound declaralion. See declare.

fresh cdj. 1. (of an object yielded by a function) having been newly-allocated by
that function. (The caller of a function that returns a fresh object may freely modify
the object without fear that such modification will compromise the future correct
behavior of that function.) 2. (of a binding for a name) newly-allocated; not shared
with other bindings for that name.

freshline n. a conceptual operation on a stream, implemented by the function
fresh-line and by the format directive -3 which advances the display position to the
beginning of the next line (as if a newline had been typed, or the function terpri had
been called) unless the stream is already known to be positioned at the beginning of a
line. Unlike newline, freshline is not a charucter.

funbound [’ efunbatind] n. (of a function name) not pound.

function n. 1. an object representing code, which can be called with zero or more
arguments, and which produces zero or more values. 2. an object of type function.

function block name n. (of a function name) The symbol that would be used as
the name of an implicit block which surrounds the body of a function having that
function name. If the function name is a symbol, its function block name is the
function name itself. If the function name is a lisl whose car is setf and whose cadr
is a symbol, its function block name is the symbol that is the cadr of the function
name. An implementation which supports additional kinds of function names must
specify for each how the corresponding fun&on block name is computed.

function cell n. Trod. (of a symbol) The place which holds the definition of the
global function binding, if any, named by that symbol, and which is accessed by
symbol-function. See cell.

function designator n. a design&or for a function; that is, an object that denotes
a function and that is one of: a symbol (denoting the function named by that symbol
in the global environment), or a function (denoting itself). The consequences are
undefined if a symbol is used as a function designator but it does not have a global
definition as a function, or it has a global definition as a macro or a special form. See
also eztended function designator.

function form n. a form that is a list and that has a first element which is the
name of a function to be called on arguments which are the result of evaluating
subsequent elements of the function form.

function name n. 1. (in an environment) A symbol or a list (setf symbol) that is
the name of a function in that environment. 2. A symbol or a list (setf symbol).

26-22 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

functional evaluation n. the process of extracting a functional value from a func-
tion name or a lambda ezpression. The evaluator performs junctional evaluation
implicitly when it encounters a function name or a lambda expression in the car of a
compound form, or explicitly when it encounters a function special jonn. Neither a
use of a symbol as a junction designator nor a use of the junction symbol-function
to extract the junctional value of a symbol is considered a junctional evaluation.

functional value n. 1. (of a junction name N in an environment E) The value of
the binding named N in the function namespace for environment E; that is, the
contents of the junction cell named N in environment E. 2. (of an jbound symbol
S) the contents of the symbol’s function cell; that is, the value of the binding named
S in the junction namespace of the global environment. (A name that is a macro
name in the global environment or is a special operator might or might not be fbound.
But if S is such a name and is jbound, the specific nature of its functional value is
implementation-dependent; in particular, it might or might not be a function.)

further compilation n. implementation-dependent compilation beyond minimal
compilation. Further compilation is permitted to take place at run time. “Block
compilation and generation of machine-specific instructions are examples of further
compilation.”

G

general adj. (of an array) having element type t, and consequently able to have any
object as an element.

generalized boolean n. an object used as a truth value, where the symbol nil
represents false and all other objects represent true. See boolean.

generalized instance n. (of a class) an object the class of which is either that
class itself, or some subclass of that class. (Because of the correspondence between
types and classes, the term “generalized instance of X” implies “object of type X”
and in cases where X is a class (or class name) the reverse is also true. The former
terminology emphasizes the view of X as a class while the latter emphasizes the view
of X as a type specifier.)

generalized reference n. a reference to a location storing an object as if to a
vatiable. (Such a reference can be either to read or write the location.) See Section
5.1 (Generalized Reference). See also place.

generalized synonym stream n. (with a synonym stream symbol) 1. (to a stream)
a synonym stream to the stream, or a composite stream which has as a target a
generalized synonym stream to the stream. 2. (to a symbol) a synonym stream to the
symbol, or a composite stream which has as a target a generalized synonym stream to
the symbol.

generic function n. a junction whose behavior depends on the classes or identities
of the arguments supplied to it and whose parts include, among other things, a set of
methods, a lambda list, and a method combination type.

generic function lambda list n. A lambda list that is used to describe data flow
into a generic function. See Section 3.4.2 (Generic Function Lambda Lists).

gensym n. Dad. an unintemed symbol. See the function gensym.

Glossary 26-23

ANSI X3.226-1994 Programming Language-Common Lisp

global declaration n. a form that makes certain hinds of information about code
globally available; that is, a proclaim form or a declaim form.

global environment n. that part of an enoironment that contains bindings with
indefinite scope and indefinite extent.

global variable n. a dynamic variable or a constant variable.

glyph n. a visual representation. “Graphic characters have associated glyphs.”

go u. to transfer control to a go point. See the special operator go.

go point one of possibly several exit points that are established by tagbody (or other
abstractions, such as prog, which are built from tagbody).

go tag n. the symbol or integer that, within the lexical scope of a tagbody form,
names an exit point established by that tagbody form.

graphic adj. (of a character) being a “printing” or “displayable” character that
has a standard visual representation as a single glyph, such as A or * or =. Space is
defined to be graphic. Of the standard characters, all but newline are graphic. See
non-graphic.

H

handle w. (of a condition being signaled) to perform a non-local transfer of control,
terminating the ongoing signaling of the condition.

handler n. a condition handler.

hash table n. an object of type hash-table, which provides a mapping from keys to
values.

home package n. (of a symbol) the package, if any, which is contents of the package
cell of the symbol, and which dictates how the Lisp printer prints the symbol when it
is not accessible in the current package. (Symbols which have nil in their package cell
are said to have no home package, and also to be apparently uninterned.)

I

I/O customization variable n. one of the stream variables in Figure 26-2, or some
other (implementation-defined) stream variable that is defined by the implementation
to be an I/O customization variable.

debug-io *error-io* query-io*
standard-input *standard-output* *trace-output*

Figure 26-Z. Standardized I/O Customization Variables

identical adj- the same under eq.

identifier n. 1. a symbol used to identify or to distinguish names. 2. a string used
the same way.

.-

26-24 GlCXSS~

Programming Language-Common Lisp ANSI X3.226-1994

immutable adj. not subject to change, either because no operator is provided which
is capable of effecting such change or because some constraint exists which prohibits
the use of an operator that might otherwise be capable of effecting such a change.
Except as explicitly indicated otherwise, implementations are not required to detect
attempts to modify immutable objects or cells; the consequences of attempting to
make such modification are undefined. “Numbers are immutable.”

implementation a. a system, mechanism, or body of code that implements the
semantics of Common Lisp.

implementation limit n. a restriction imposed by an implementation.

implementation-defined adj. implementation-dependent, but required by this
specification to be defined by each conforming implementation and to be documented
by the corresponding implementor.

implementation-dependent adj. describing a behavior or aspect of Common
Lisp which has been deliberately left unspecified, that might be defined in some
conforming implementations but not in others, and whose details may differ be-
tween implementations. A conforming implementation is encouraged (but not re-
quired) to document its treatment of each item in this specification which is marked
implementation-dependent, although in some cases such documentation might simply
identify the item as “undefined.”

implementation-independent adj. used to identify or emphasize a behavior or
aspect of Common Lisp which does not vary between conforming implementations.

implicit block n. a block introduced by a macro form rather than by an explicit
block form.

implicit compilation n. compilation performed during evaluation.

implicit progn n. an ordered set of adjacent forms appearing in another form, and
defined by their context in that joma to be executed as if within a progn.

implicit tagbody n. an ordered set of adjacent forms and/or tags appearing in
another form, and defined by their context in that form to be executed as if within a
tagbody.

import u.t. (a symbol into a package) to make the symbol be present in the package.

improper list n. a list which is not a proper list: a circular list or a dotted list,

inaccessible adj. not accessible.

indefinite extent n. an eztent whose duration is unlimited. “Most Common Lisp
objects have indefinite extent.”

indefinite scope n. scope that is unlimited.

indicator n. a property indicator.

indirect instance n. (of a class Cl) an object of class Cz, where Cz is a subclass of
(7’1. “An integer is an indirect instance of the class number.”

Glossary 26-25

ANSI X3.226-1994 Programming Language-Common Lisp

inherit u.t. 1. to receive or acquire a quality, trait, or characteristic; to gain access
to a feature defined elsewhere. 2. (a class) to acquire the structure and behavior
defined by a superclass. 3. (a package) to make symbols exported by another package
accessible by using use-package.

initial pprint dispatch table n. the value of *print-pprint-dispatch* at the time
the Lisp image is started.

initial readtable n. the value of *readtable* at the time the Lisp image is started.

initialiiation argument list n. a property list of initialization argument names and
values used in the protocol for initializing and reinitializing instances of classes. See
Section 7.1 (Object Creation and Initialization).

initialization form n. a form used to supply the initial value for a slot or variable.
“The initialization form for a slot in a defclass form is introduced by the keyword
:initform."

input adj. (of a stream) supporting input operations (i.e., being a “data source”).
An input stream might. also be an output stream, in which case it is sometimes called
a bidirectional stream. See the function input-stream-p.

instance n. 1. a direct instance. 2. a generalized instance. 3. an indirect instance.

integer n. an objeci of type integer, which represents a mathematical integer.

interactive stream n. a stream on which it makes sense to perform interactive
querying. See Section 21.1.1.1.3 (Interactive Streams).

intern v.i. 1. (a string in a package) to look up the string in the package, returning
either a symbol with that name which was already accessible in the package or a
newly created internal symbol of the package with that name. 2. Idiom. generally,
to observe a protocol whereby objects which are equivalent or have equivalent names
under some predicate defined by the protocol are mapped to a single canonical
object.

internal symbol n. (of a package) a symbol which is accessible in the package, but
which is not an eztemal symbol of the package.

internal time n. time, represented as an integer number of internal time units.
Absolute internal time is measured as an offset from an arbitrarily chosen,
implementation-dependent base. See Section 25.1.4.3 (Internal Time).

internal time unit n. a unit of time equal to l/n of a second, for
some implementation-defined integer value of n. See the variable
internal-time-units-per-second.

interned adj. Tmd. 1. (of a symbol) accessibles in any package. 2. (of a symbol in a
specific package) present in that package.

interpreted function n. a fun&on that is not a compiled function. (It is possible
for there to be a conforming implementation which has no interpreted functions, but
a conforming program must not assume that all functions are compiled functions.)

26-26 Glossary

Programming LanguageCommon Lisp ANSI X3.226-1994

interpreted implementation n. an implementation that uses an execution strategy
for interpreted functions that does not involve a one-time semantic analysis pm-pass,
and instead uses “lazy” (and sometimes repetitious) semantic analysis of forms as
they are encountered during execution.

interval designator n. (of type T) an ordered pair of objects that describe a subtype
of T by delimiting an interval on the real number line. See Section 12.1.6 (Interval
Designators).

invalid n., adj. 1. n. a possible constituent trait of a character which if present
signifies that the character cannot ever appear in a token except under the control of
a single escape character. For details, see Section 2.1.4.1 (Constituent Characters). 2.
adj. (of a character) being a chamcier that has syntax iype cons2iiued in the current
readtable and that has the constiiuenZ tmit invalidl. See Figure 2-8.

iteration form n. a compound form whose opemtor is named in Figure 26-3, or a
compound form that has an implementation-defined opemtor and that is defined by
the implemeniation to be an ilemtion form.

I do do-external-symbols dotimes
do* do-symbols loop
do-all-symbols dolist

Figure 26-3. Standardized Iteration Forms

iteration variable n. a variable V, the binding for which was created by an explicit
use of V in an iteration form.

K

key n. an object used for selection during retrieval. See association list, property list,
and hash table. Also, see Section 17.1 (Sequence Concepts).

keyword n. 1. a symbol the home package of which is the KEYWORD package. 2.
any symbol, usually but not necessarily in the KEYWORD package, that is used as an
identifying marker in keyword-style argument passing. See lambda. 3. Idiom. a
lambda lisi keyword.

keyword parameter n. A parameter for which a corresponding keyword argument
is optional. (There is no such thing as a required keyword orgumeni.) If the argument
is not supplied, a default value is used. See also supplied-p parameter.

keyword/value pair n. two successive elements (a keyword and a value, respec-
tively) of a property list.

lambda combination n. Rad. a lambda form.

lambda expression n. a list which can be used in place of a function name in
certain contexts to denote a function by directly describing its behavior rather than
indirectly by referring to the name of an established function; its name derives from
the fact that its first element is the symbol lambda. See lambda.

Glossary 2627

ANSI X3.226-1994 Programming Language-Common Lisp

lambda form n. a form that is a lid and that has a first element which is a lambda
expression representing a function to be called on arguments which are the result of
evaluating subsequent elements of the lambda form.

lambda list n. a list that specifies a set of parameters (sometimes called lambda
variables) and a protocol for receiving values for those parameters; that is, an ordi-
nay lambda list, an extended lambda list, or a modified lambda list,

lambda list keyword n. a symbol whose name begins with ampersand and that is
specially recognized in a lambda list. Note that no standardized lambda lisi keyword
is in the KEYWORD package.

lambda variable n. a formal parameter, used to emphasize the variable’s relation to
the lambda list that established it.

leaf n. 1. an atom in a treel. 2. a terminal node of a tn?ez.

leap seconds n. additional one-second intervals of time that are occasionally in-
serted into the true calendar by official timekeepers as a correction similar to “leap
years.” All Common Lisp time representations ignore leap seconds; every day is
assumed to be exactly 86400 seconds long.

left-parenthesis n. the standard character “C’, that is variously called “left paren-
thesis” or “open parenthesis” See Figure 2-5.

length n. (of a sequence) the number of elements in the sequence. (Note that if the
sequence is a vector with a fill pointer, its length is the same as the fill pointer even
though the total allocated size of the vector might be larger.)

lexical binding n. a binding in a lexical environment.

lexical closure n. a fun&on that, when invoked on arguments, executes the body of
a lambda expression in the lexical environment that was captured at the time of the
creation of the lexical closure, augmented by bindings of the function’s parameters to
the corresponding arguments.

lexical environment n. that part of the environment that contains bindings whose
names have lexical scope. A lexical environment contains, among other things: ordi-
nary bindings of variable names to values, lexically established bindings of function
names to functions, macros, symbol macros, blocks, tags, and local declaraiions (see
declare).

lexical scope n. scope that is limited to a spatial or textual region within the
establishing form. “The names of parameters to a function normally are lexically
scoped.”

lexical variable n. a variable the binding for which is in the lexical environment.

Lisp image n. a running instantiation of a Common Lisp implementation. A Lisp
image is characterized by a single address space in which any object can directly
refer to any another in conformance with this specification, and by a single, com-
mon, global environment. (External operating systems sometimes call this a “core
image,” “fork,” “incarnation,” “job,” or “process.” Note however, that the issue of a
“process” in such an operating system is technically orthogonal to the issue of a Lisp
image being defined here. Depending on the operating system, a single “process”
might have multiple Lisp images, and multiple “processes” might reside in a single

26-28 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

Lisp image. Hence, it is the idea of a fully shared address space for direct reference
among all objects which is the defining characteristic. Note, too, that two “processes”
which have a communication area that permits the sharing of some but not all objects
are considered to be distinct Lisp images.)

Lisp printer n. Bad. the procedure that prints the character representation of an
object onto a stream. (This procedure is implemented by the function write.)

Lisp read-eval-print loop n. lhd. an endless loop that reads2 a form, evaluaies it,
and prints (i.e., wrilesz) the results. In many implemeniations, the default mode of
interaction with Common Lisp during program development is through such a loop.

Lisp reader n. Trad. the procedure that parses character representations of objects
from a stream, producing objech. (This procedure is implemented by the function
read .)

list n. 1. a chain of conses in which the car of each cons is an element of the list,
and the cdr of each cons is either the next link in the chain or a terminating atom.
See also proper list, dotted list, or circular list. 2. the type that is the union of null
and cons.

list designator n. a designator for a list of objects; that is, an object that denotes
a list and that is one of: a non-nil atom (denoting a singleton lisl whose element is
that non-nil atom) or a proper list (denoting itself).

list structure n. (of a list) the set of conses that make up the list. Note that while
the c(lrlb component of each such cons is part of the list slructure, the objects that
are elements of the list (i.e., the objects that are the cars2 of each cons in the list)
are not themselves part of its list structure, even if they are conses, except in the
(circularz) case where the lid actually contains one of its tails as an element. (The
list struchwe of a list is sometimes redundantly referred to as its “top-level list
structure” in order to emphasize that any conses that are elements of the lisi are not
involved.)

literal adj. (of an object) referenced directly in a program rather than being
computed by the program; that is, appearing as data in a quote form, or, if
the object is a self-evaluating object, appearing as unquoted data. “In the form
(cons “one” ’ (“tvo”) 1, the expressions “one”, (“tvo”), and “tvo” are literal objects.”

load v.t. (a file) to cause the code contained in the file to be ezeculed. See the
function load.

load time n. the duration of time that the loader is loading compiled code.

load time value n. an object referred to in code by a load-time-value form. The
value of such a form is some specific object which can only be computed in the run-
time environment. In the case of file compilalion, the value is computed once as part
of the process of loading the compiled file, and not again. See the special operator
load-time-value.

loader n. a facility that is part of Lisp and that loads a file. See the junction load.

local declaration n. an expression which may appear only in specially designated
positions of certain forms, and which provides information about the code contained
within the containing form; that is, a declare expression.

Glossary 26-29

ANSI X3.226-1994 Programming Language-Common Lisp

local precedence order n. (of a class) a list consisting of the class followed by its
direct superclasses in the order mentioned in the defining form for the class.

local slot n. (of a class) a slot accessible in only one instance, namely the instance
in which the slot is allocated.

logical block n. a conceptual grouping of related output used by the pretty printer.
See the macro pprint-logical-block and Section 22.2.1.1 (Dynamic Control of the
Arrangement of Output).

logical host n. an object of implementation-dependent nature that is used as the
representation of a “host” in a logical pathname, and that has an associated set of
translation rules for converting logical pathnames belonging to that host into physical
pathnames. See Section 19.3 (Logical Pathnames).

logical host designator n. a designator for a logical host; that is, an object that
denotes a logical host and that is one of: a string (denoting the logical host that it
names), or a logical host (denoting itself). (Note that because the representation of a
logical host is implementation-dependent, it is possible that an implementation might
represent a logical host as the string that names it.)

logical pathname n. an object of type logical-pathname.

long float n. an object of type long-float.

loop keyword n. Dad. a symbol that is a specially recognized part of the syntax of
an extended loop form. Such symbols are recognized by their nume (using string=),
not by their identity; as such, they may be in any package. A loop keyword is not a
keyword.

lowercase adj. ‘(of a charucter) being among standard characters corresponding
to the small letters a through z, or being some other implementation-defined chor-
acter that is defined by the implementation to be lowercase. See Section 13.1.4.3
(Characters With Case).

M

macro n. 1. a macro form 2. a macro junction. 3. a macro name.

macro character n. a character which, when encountered by the Lisp reader in its
main dispatch loop, introduces a reader macrol. (Macro characters have nothing to
do with macros.)

macro expansion n. 1. the process of translating a macro form into another form.
2. the form resulting from this process.

macro form n. a form that stands for another form (e.g., for the purposes of
abstraction, information hiding, or syntactic convenience); that is, either a compound
form whose first element is a macro name, or a jot-m that is a symbol that names a
symbol macro.

macro function n. a function of two arguments, a form and an environment, that
implements macro ezpansion by producing a form to be evaluated in place of the
original argument form.

26-30 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

macro lambda list n. an extended lambda list used in forms that establish macro
definitions, such as defmacro and macrolet. See Section 3.4.4 (Macro Lambda Lists).

macro name R. a name for which macro-function returns true and which when
used as the first element of a compound form identifies that form as a macro form.

macroexpand hook n. the function that is the value of *macroexpand-hook*.

mapping n. 1. a type of iteration in which a function is successively applied to
objects taken from corresponding entries in collections such as sequences or hash
tables. 2. Math. a relation between two sets in which each element of the first set (the
“domain”) is assigned one element of the second set (the “range”).

metaclass n. 1. a class whose instances are classes. 2. (of an object) the class of the
class of the object.

Metaobject Protocol n. one of many possible descriptions of how a conforming
implementation might implement various aspects of the object system. This descrip
tion is beyond the scope of this document, and no conforming implementation is
required to adhere to it except as noted explicitly in this specification. Nevertheless,
its existence helps to establish normative practice, and implementors with no reason
to diverge from it are encouraged to consider making their implementation adhere to
it where possible. It is described in detail in The Art of the Metaobject Protocol.

method n. an object that is part of a generic function and which provides informa-
tion about how that generic function should behave when its arguments are objects
of certain classes or with certain identities.

method combination n. 1. generally, the composition of a set of methods
to produce an effective method for a generic function. 2. an object of type
method-combination, which represents the details of how the method combinationl
for one or more specific generic functions is to be performed.

method-defining form n. a form that defines a method for a generic function,
whether explicitly or implicitly. See Section 7.6.1 (Introduction to Generic Func-
tions) .

method-defining operator n. an operator corresponding to a method-defining
form. See Figure 7-1.

minimal compilation n. actions the compiler must take at compile time. See
Section 3.2.2 (Compilation Semantics).

modified lambda list n. a list resembling an ordinary lambda list in form and
purpose, but which deviates in syntax or functionality from the definition of an
ordinary lambda list. See ordinary lambda list. Udeftype uses a modified lambda
list.*

most recent adj. innermost; that is, having been established (and not yet disestab-
lished) more recently than any other of its kind.

multiple escape n., adj. 1. n. the syntaz type of a character that is used in pairs to
indicate that the enclosed characters are to be treated as alphabetic:! characters with
their case preserved. For details, see Section 2.1.4.5 (Multiple Escape Characters). 2.
adj. (of a character) having the multiple escape syntax type. 3. n. a multiple escape2
character. (In the standard readtable, vertical-bar is a multiple escape character.)

Glossary 26-31

ANSI X3.226-1994 Programming Language-Common Lisp

multiple values R. 1. more than one value. “The function truncate returns multiple
values.” 2. a variable number of values, possibly including zero or one. “The function
values returns multiple values.” 3. a fixed number of values other than one. “The
macro multiple-value-bind is among the few operators in Common Lisp which can
detect and manipulate multiple values.”

N

name n., u.t. 1. n. an identifier by which an object, a binding, or an ezit point is
referred to by association using a binding. 2. u.t. to give a name to. 3. n. (of an
object having a name component) the object which is that component. “The string
which is a symbol’s name is returned by symbol-name.” 4. n. (of a pathname) a. the
name component, returned by pathname-name. b. the entire name&ring, returned
by namestring. 5. n. (of a character) a string that names the character and that
has length greater than one. (All non-graphic characters are required to have names
unless they have some implementation-defined attribute which is not null. Whether
or not other characters have names is implementation-dependent.)

named constant n. a variable that is defined by Common Lisp, by the implemen-
tation, or by user code (see the macro defconstant) to always yield the same value
when evaluated. “The value of a named constant may not be changed by assignment
or by binding.”

namespace n. 1. bindings whose denotations are restricted to a particular kind.
“The bindings of names to tags is the tag namespace.” 2. any mapping whose
domain is a set of names. “A package defines a namespace.”

namestring n. a string that represents a filename using either the standardized
notation for naming logical pathnames described in Section 19.3.1 (Syntax of Logical
Pathname Namestrings), or some implementation-defined notation for naming a
physical pathname.

newline n. the standard character (Newline), notated for the Lisp reader as
t\lerrline.

next method n. the next method to be invoked with respect to a given method for
a particular set of arguments or argument classes. See Section 7.6.6.1.3 (Applying
method combination to the sorted list of applicable methods).

nickname n. (of a package) one of possibly several names that can be used to refer
to the package but that is not the primary name of the package.

nil n. the object that is at once the symbol named WIL" in the COMMON-LISP package,
the empty list, the boolean (or generalized boolean) representing false, and the name
of the empty type.

non-atomic adj. being other than an atom; i.e., being a cons.

non-constant variable n. a variable that is not a constant variable.

non-correctable adj. (of an error) not intentionally correctable. (Because of the
dynamic nature of restarts, it is neither possible nor generally useful to completely
prohibit an error from being correctable. This term is used in order to express an
intent that no special effort should be made by code signaling au error to make that
error correctable; however, there is no actual requirement on conforming programs or
conforming implementations imposed by this term.)

26-32 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

non-empty odj. having at least one element.

non-generic function A. a func2ion that is not a generic func2ion.

non-graphic adj. (of a character) not graphic. See Section 13.1.4.1 (Graphic Charac-
ters).

non-list n., adj. other than a list; i.e., a non-nil atom.

non-local exit n. a transfer of control (and sometimes dues) to an ezit point for
reasons other than a normal return. “The operators go, throw, and return-from
cause a non-local exit.”

non-nil n., adj. not nil. Technically, any object which is not nil can be referred to
as true, but that would tend to imply a unique view of the object as a generalized
boolean, Referring to such an object as non-nil avoids this implication.

non-null lexical environment n. a Zeticul environment that has additional infor-
mation not present in the global environment, such as one or more bindings.

non-simple odj. not simple.

non-terminating adj. (of a macro ciraracter) being such that it is treated as a
constituent character when it appears in the middle of an extended token. See
Section 2.2 (Reader Algorithm).

non-top-level form n. a form that, by virtue of its position as a subform of another
form, is not a top level form. See Section 3.2.3.1 (Processing of Top Level Forms).

normal return n. the natural transfer of control and values which occurs after the
complete execution of a form.

normalized adj., ANSI, IEEE (of a float) conforming to the description of “nor-
malized” as described by IEEE Standard for Binary Floating-Point Arithmetic. See
denormalized.

null adj., n. 1. adj. a. (of a list) having no elements: empty. See empty list. b. (of
a &ring) having a length of zero. (It is common, both within this document and
in observed spoken behavior, to refer to an empty string by an apparent definite
reference, as in “the null string” even though no attempt is made to interns null
strings. The phrase “a null string” is technically more correct, but is generally
considered awkward by most Lisp programmers. As such, the phrase “the null
string” should be treated as an indefinite reference in all cases except for anaphoric
references.) c. (of an implementation-defined attribute of a character) An object to
which the value of that attribute defaults if no specific value was requested. 2. n. an
object of type null (the only such object being nil).

null lexical environment n. the lexical environment which has no bindings.

number n. an object of type number.

numeric adj. (of a character) being one of the standard characters o through 9, or
being some other graphic character defined by the implementation to be numeric.

Glossary 26-33

ANSI X3.226-1994 Programming Language-Common Lisp

0

object n. 1. any Lisp datum. “The function cons creates an object which refers
to two other objects.” 2. (immediately following the name of a type) an object
which is of that type, used to emphasize that the object is not just a name for an
object of that type but really an element of the type in cases where objects of that
type (such as function or class) are commonly referred to by name. “The function
symbol-function takes a function name and returns a function object.”

object-traversing adj. operating in succession on components of an object. “The
operators mapcar, maphash, with-package-iterator and count perform object-
traversing operations.”

open adj., u.t. (a file) 1. ct. to create and return a stream to the file. 2. adj. (of a
stream) having been opened 1, but not yet closed.

operator n. 1. a function, macro, or special operator. 2. a symbol that names such
a function, macro, or special operator. 3. (in a function special form) the cadr of the
function special form, which might be either an operator2 or a lambda ezpression.
4. (of a compound form) the car of the compound form, which might be either an
operator2 or a lambda ezpression, and which is never (setf symbol).

optimize quality n. one of several aspects of a program that might be optimizable
by certain compilers. Since optimizing one such quality might conflict with opti-
mizing another, relative priorities for qualities can be established in an optimize
declaration. The standardized optimize qualities are compilation-speed (speed of
the compilation process), debug (ease of debugging), safety (run-time error check-
ing), space (both code size and run-time space), and speed (of the object code).
Implementations may define additional optimize qualities.

optional parameter n. A parameter for which a corresponding positional argument
is optional. If the argument is not supplied, a default value is used. See also supplied-
p parameter.

ordinary function n. a function that is not a generic function.

ordinary lambda list n. the kind of lambda list used by lambda. See modified
lambda list and e&ended lambda list. “defun uses an ordinary lambda list.”

otherwise inaccessible part n. (of an object, 01) an object, 02, which would
be made inaccessible if 01 were made inaccessible. (Every object is an otherroise
inaccessible part of itself.)

output adj. (of a stream) supporting output operations (i.e., being a “data sink”).
An output stream might also be an input stream, in which case it is sometimes called
a bidirectional stream. See the function output-stream-p.

P

package n. an object of type package.

package cell n. Trad. (of a symbol) The place in a symbol that holds one of possibly
several packages in which the symbol is interned, called the home package, or which
holds nil if no such package exists or is known. See the function symbol-package.

26-34 Glossary

Programming Languag~Common Lisp ANSI X3.226-1994

package designator n. a designator for a package; that is, an object that denotes
a package and that is one of: a string designator (denoting the package that has
the string that it designates as its name or as one of its nicknames), or a package
(denoting itself).

package marker n. a character which is used in the textual notation for a symbol to
separate the package name from the symbol name, and which is colon in the standard
readtable. See Section 2.1 (Character Syntax).

package prefix n. a notation preceding the name of a symbol in text that is pro
ceased by the Lisp reader, which uses a package name followed by one or more
package markers, and which indicates that the symbol is looked up in the indicated
package.

package registry n. A mapping of names to package objects. It is possible for there
to be a package object which is not in this mapping; such a package is called an
unregistered package. Operators such as And-package consult this mapping in order
to find a package from its name. Operators such as do-all-symbols, find-all-symbols,
and list-all-packages operate only on packages that exist in the package registry.

pairwise adv. (of an adjective on a set) applying individually to all possible pairings
of elements of the set. “The types A, B, and C are pairwise disjoint if A and B are
disjoint, B and C are disjoint, and A and C are disjoint.”

parallel adj. Trad. (of binding or assignment) done in the style of psetq, let, or do;
that is, first evaluating all of the forms that produce values, and only then assigning
or binding the variables (or places). Note that this does not imply traditional compu-
tational “parallelism” since the forms that produce values are evaluated sequentially.
See sequential.

parameter n. 1. (of a function) a variable in the definition of a function which takes
on the value of a corresponding argument (or of a list of corresponding arguments)
to that function when it is called, or which in some cases is given a default value
because there is no corresponding argument. 2. (of a format directive) an object
received as data flow by a format directive due to a prefix notation within the format
string at the format directive’s point of use. See Section 22.3 (Formatted Output).
“In “-3, 'OD", the number 3 and the character t\o are parameters to the 'D format
directive.”

parameter specializer n. 1. (of a method) an expression which constrains the
method to be applicable only to argument sequences in which the corresponding
argument matches the parameter specializer. 2. a class, or a list (eql object).

parameter specializer name n. 1. (of a method definition) an expression used in
code to name a parameter specializer. See Section 7.6.2 (Introduction to Methods). 2.
a class, a symbol naming a class, or a list (eql form>.

pathname n. an object of type pathname, which is a structured representation
of the name of a file. A pathname has six components: a “host,” a “device,” a
“directory,” a “name,” a “type,” and a “version.”

pathname designator n. a designator for a pathname; that is, an object that
denotes a pathname and that is one of: a pathname namestring (denoting the corre-
sponding pathname), a stream associated with a jile (denoting the pathname used to
open the file; this may be, but is not required to be, the actual name of the file), or a
pathname (denoting itself). See Section 21.1.1.1.2 (Open and Closed Streams).

Glossary 26-35

._-___ .___

ANSI X3.226-1994 Programming Language-Common Lisp

physical pathname n. a pathname that is not a logical pathname.

place n. 1. a form which is suitable for use as a generalized reference. 2. the concep
tual location referred to by such a placel.

plist [’ pE,list] n. a property list.

portable adj. (of code) required to produce equivalent results and observable side
effects in all conforming implementations.

potential copy n. (of an object 01 subject to constriants) an object 02 that if the
specified constraints are satisfied by 01 without any modification might or might not
be identical to 01, or else that must be a fresh object that resembles a copy of 01
except that it has been modified as necessary to satisfy the constraints.

potential number n. A textual notation that might be parsed by the Lisp reader
in some conforming implementation as a number but is not required to be parsed ss
a number. No object is a potential number-either an object is a number or it is not.
See Section 2.3.1.1 (Potential Numbers as Tokens).

pprint dispatch table n. an object that can be the value of *print-pprint-dispatch*
and hence can control how objects are printed when *print-pretty* is true. See Sec-
tion 22.2.1.4 (Pretty Print Dispatch Tables).

predicate n. a function that returns a generalized boolean as its first value.

present n. 1. (of a feature in a Lisp image) a state of being that is in effect if and
only if the symbol naming the feature is an element of the features list. 2. (of a
symbol in a package) being accessible in that package directly, rather than being
inherited from another package.

pretty print u-t. (an object) to invoke the pretty printer on the object.

pretty printer n. the procedure that prints the character representation of an
object onto a stream when the value of *print-pretty* is true, and that uses layout
techniques (e.g., indentation) that tend to highlight the structure of the object in
a way that makes it easier for human readers to parse visually. See the variable
print-pprint-dispatch and Section 22.2 (The Lisp Pretty Printer).

pretty printing stream n. a stream that does pretty printing. Such streams are
created by the function pprint-logical-block as a link between the output stream and
the logical block.

primary method n. a member of one of two sets of methods (the set of auziliary
methods is the other) that form an exhaustive partition of the set of methods on the
method’s generic function. How these sets are determined is dependent on the method
combination type; see Section 7.6.2 (Introduction to Methods).

primary value n. (of values resulting from the evaluation of a form) the first value,
if any, or else nil if there are no values. “The primary value returned by truncate is
an integer quotient, truncated toward zero.”

principal adj. (of a value returned by a Common Lisp function that implements a
mathematically irrational or transcendental function defined in the complex domain)
of possibly many (sometimes an infinite number of) correct values for the mathe-
matical function, being the particular value which the corresponding Common Lisp
function has been defined to return.

26-36 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

print name n. Dad. (usually of a symbol) a names.

printer control variable n. a variable whose specific purpose is to control some
action of the Lisp printer; that is, one of the variables in Figure 22-1, or else some
implementation-defined variable which is defined by the implementation to be a
printer control variable.

printer escaping n. The combined state of the printer control variables
print-escape and *print-readably *. If the value of either *print-readably* or
print-escape is true, then printer escaping is “enabled”; otherwise (if the values
of both *print-readably* and *print-escape* are false), then printer escaping is
“disabled”.

printing adj. (of a character) being a graphic character other than space.

process u.t. (a form by the compiler) to perform minimal compilation, determining
the time of evaluation for a form, and possibly evaluating that form (if required).

processor n., ANSI an implementation.

proclaim u.t. (a proclamation) to establish that proclamation.

proclamation n. a global declaration.

prog tag n. l+ad. a go tag.

program n. Bad. Common Lisp code.

programmer n. an active entity, typically a human, that writes a program, and that
might or might not also be a user of the program.

programmer code n. code that is supplied by the programmer; that is, code that is
not system code.

proper list n. A list terminated by the empty list. (The empty list is a proper list.)
See improper list.

proper name n. (of a class) a symbol that names the class whose name is that
symbol. See the functions class-name and And-class.

proper sequence n. a sequence which is not an improper list; that is, a vector or a
proper list.

proper subtype n. (of a type) a subtype of the type which is not the same type as
the type (i.e., its elements are a “proper subset” of the type).

property n. (of a property list) 1. a conceptual pairing of a property indicator and
its associated property value on a property list. 2. a property value.

property indicator n. (of a property list) the name part of a property, used as a key
when looking up a property value on a property list.

property list n. 1. a list containing an even number of elements that are alternating
names (sometimes called indicators or keys) and values (sometimes called proper-
ties). When there is more than one name and value pair with the identical name
in a property list, the first such pair determines the property. 2. (of a symbol) the
component of the symbol containing a property,list.

Glossary 26-37

ANSI X3.226-1994 Programming Language-Common Lisp

property value n. (of a property indicator on a property list) the object associated
with the property indicator on the property lisi.

purports to conform u. makes a good-faith claim of conformance. This term
expresses intention to conform, regardless of whether the goal of that intention is
realized in practice. For example, language implementations have been known to
have bugs, and while an implementation of this specification with bugs might not be
a conforming implementation, it can still purport to conform. This is an important
distinction in certain specific cases; e.g., see the variable *features*.

Q

qualified method n. a method that has one or more qualifiers.

qualifier n. (of a method for a generic function) one of possibly several objects used
to annotate the method in a way that identifies its role in the method combination.
The method combination type determines how many qualifiers are permitted for each
method, which qualifiers are permitted, and the semantics of those qualifiers.

query I/O n. the bidirectional stream that is the value of the variable *query-io*.

quoted object n. an object which is the second element of a quote form.

radii n. an integer between 2 and 36, inclusive, which can be used to designate a
base with respect to which certain kinds of numeric input or output are performed.
(There are n valid digit characters for any given radix n, and those digits are the first
n digits in the sequence 0, 1, . . ., 9, A, B, . . ., 2, which have the weights 0, 1, . . ., 9, 10,
11, . ..) 35, respectively. Case is not significant in parsing numbers of radix greater
than IO, so “9b8a” and “9B8A” denote the same radix 16 number.)

random state n. an object of type random-state.

rank n. a non-negative integer indicating the number of dimensions of an array.

ratio n. an object of type ratio.

ratio marker n. a character which is used in the textual notation for a ratio to
separate the numerator from the denominator, and which is slash in the standard
readtable. See Section 2.1 (Character Syntax).

rational n. an object of type rational.

read v.t. 1. (a binding or slot or component) to obtain the value of the binding or
slot. 2. (an object from a stream) to parse an object from its representation on the
stream.

readably adu. (of a manner of printing an object 01) in such a way as to permit the
Lisp Reader to later parse the printed output into an object 02 that is similar to 01.

reader n. 1. a function that reads1 a variable or slot. 2. the Lisp reader.

26-38 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

reader macro n. 1. a textual notation introduced by dispatch on one or two char-
acters that defines special-purpose syntax for use by the Lisp reader, and that is
implemented by a reader macro function. See Section 2.2 (Reader Algorithm). 2. the
character or characters that introduce a reader macrol; that is, a macro character
or the conceptual pairing of a dispatching macro character and the character that
follows it. (A reader macro is not a kind of macro.)

reader macro function n. a function designator that denotes a function
that implements a reader macroz. See the functions set-macrecharacter and
set-dispatch-macro-character.

readtable n. an object of type readtable.

readtable case n. an attribute of a readtable whose value is a case sensitivity mode,
and that selects the manner in which characters in a symbol’s name are to be treated
by the Lisp reader and the Lisp printer. See Section 23.1.2 (Effect of Readtable Case
on the Lisp Reader) and Section 22.1.3.3.2 (Effect of Readtable Case on the Lisp
Printer).

readtable designator n. a designator for a readtable; that is, an object that denotes
a readtable and that is one of: nil (denoting the standard readtable), or a readtable
(denoting itself).

recognizable subtype n. (of a type) a subtype of the type which can be reliably
detected to be such by the implementation. See the function subtypep.

reference n., v.t. 1. n. an act or occurrence of referring to an object, a binding, an
ezit point, a tag, or an environment. 2. v-t. to refer to an object, a binding, an ezit
point, a tag, or an environment, usually by name.

registered package n. a package object that is installed in the package registry.
(Every registered package has a name that is a string, as well as zero or more string
nicknames. All packages that are initially specified by Common Lisp or created by
make-package or defpackage are registered packages. Registered packages can be
turned into unregistered packages by delete-package.)

relative adj. 1. (of a time) representing an offset from an absolute time in the units
appropriate to that time. For example, a relative internal time is the difference
between two absolute internal times, and is measured in internal time units. 2. (of a
pathname) representing a position in a directory hierarchy by motion from a position
other than the root, which might therefore vary. “The notation #P”. ./foe. text”
denotes a relative pathname if the host file system is Unix.” See absolute.

repertoire n.,
toires).

IS0 a subtype of character. See Section 13.1.2.2 (Character Reper-

report n. (of a condition) to call the function print-object on the condition in an
environment where the value of *print-escape* is false.

report message n. the text that is output by a condition reporter.

required parameter n. A parameter for which a corresponding positional argument
must be supplied when calling the function.

rest list n. (of a function having a rest parameter) The list to which the rest param-
eter is bound on some particular call to the function.

Glossary 26-39

ANSI X3.226-1994 Programming Language-Common Lisp

rest parameter n. A parameter which was introduced by &rest.

restart n. an object of type restart.

restart designator n. a designator for a restart; that is, an object that denotes a
restart and that is one of: a non-nil symbol (denoting the most recently established
active restart whose name is that symbol), or a restart (denoting itself).

restart function n. a function that invokes a restart, as if by invoke-restart.
The primary purpose of a restart function is to provide an alternate interface. By
convention, a restart function usually has the same name as the restart which it
invokes. Figure 26-4 shows a lit of the standardized restart functions.

abort mufffe-warning
continue store-due

Figure 264. Standardized Restart Functions

use-value

I

return u.t. (of values) 1. (from a block) to transfer control and values from the
block; that is, to cause- the block to yield the values immediately without doing any
further evaluation of the forms in its body. 2. (from a form) to yield the values.

return value n. Bad. a value1

right-parenthesis n. the standard character “I”, that is variously called “right
parenthesis” or “close parenthesis” See Figure 2-5.

run time n. 1. load time 2. ezecution time

run-time compiler n. refers to the compile function or to implicit compilation, for
which the compilation and run-time environments are maintained in the same Lisp
image.

run-time definition n. a definition in the run-time environment.

run-time environment n. the environment in which a program is ececuted.

S

safe adj. 1. (of code) processed in a lexical environment where the the highest safety
level (3) was in effect. See optimize. 2. (of a call) a safe call.

safe call n. a call in which the call, the function being called, and the point of
functional evaluation are all safe1 code. For more detailed information, see Section
3.5.1.1 (Safe and Unsafe Calls).

same adj. 1. (of objects under a specified predicate) indistinguishable by that pred-
icate. “The symbol car, the string “car”, and the string “CAR” are the same under
string-equal”. 2. (of objects if no predicate is implied by context) indistinguishable
by eql. Note that eq might be capable of distinguishing some numbers and characters
which eql cannot distinguish, but the nature of such, if any, is implementation-
dependent. Since eq is used only rarely in this specification, eql is the default pred-
icate when none is mentioned explicitly. “The conses returned by two successive
calls to cons are never the same.” 3. (of types) having the same set of elements;
that is, each type is a subtype of the others. “The types specified by (integer 0 11,
(unsigned-byte l), and bit are the same.”

26-40 Glossary

Programming Languag~Common Lisp ANSI X3.226-1994

satisfy the test u. (of an object being considered by a sequence function) 1. (for
a one argument test) to be in a state such that the function which is the predicate
argument to the sequence function returns true when given a single argument that
is the result of calling the sequence function’s key argument on the object being
considered. See Section 17.2.2 (Satisfying a One-Argument Test). 2. (for a two or-
gument test) to be in a state such that the two-place predicate which is the sequence
function’s test argument returns true when given a first argument that is the object
being considered, and when given a second argument that is the result of calling the
sequence function’s key argument on an element of the sequence function’s sequence
argument which is being tested for equality; or to be in a state such that the test-not
function returns false given the same arguments. See Section 17.2.1 (Satisfying a
Two-Argument Test).

scope n. the structural or textual region of code in which references to an object, a
binding, an exit point, a tag, or an environment (usually by name) can occur.

script n. IS0 one of possibly several sets that form an exhaustive partition of the
type character. See Section 13.1.2.1 (Character Scripts).

secondary value n. (of values resulting from the evaluation of a form) the second
value, if any, or else nil if there are fewer than two values. “The secondary value
returned by truncate is a remainder.”

section n. a partitioning of output by a conditional newline on a pretty printing
stream. See Section 22.2.1.1 (Dynamic Control of the Arrangement of Output).

self-evaluating object n. an object that is neither a symbol nor a cons. If a self-
evaluating object is evaluated, it yields itself as its only value. “Strings are self-
evaluating objects.”

semi-standard adj. (of a language feature) not required to be implemented by any
conforming implementation, but nevertheless recommended as the canonical approach
in situations where an implementation does plan to support such a feature. The
presence of semi-standard aspects in the language is intended to lessen portability
problems and reduce the risk of gratuitous divergence among implementations that
might stand in the way of future standardization.

semicolon n. the standard character that is called “semicolon” (;). See Figure 2-5.

sequence n. 1. an ordered collection of elements 2. a vector or a list.

sequence function n. one of the functions in Figure 17-1, or an implementation-
defined function that operates on one or more sequences. and that is defined by the
implementation to be a sequence function.

sequential adj. Trad. (of binding or assignment) done in the style of setq, let*, or
do*; that is, interleaving the evaluation of the forms that produce values with the
assignments or bindings of the variables (or places). See parallel.

sequentially adv. in a sequential way.

serious condition n. a condition of type serious-condition, which represents a
situation that is generally sufficiently severe that entry into the debugger should be
expected if the condition is signaled but not handled.

Glossary 26-41

ANSI X3.226-1994 Programming Language-Common Lisp

session n. the conceptual aggregation of events in a Lisp image from the time it is
started to the time it is terminated.

set v.2. Dad. (any variable or a symbol that is the name of a dynamic variable) to
assign the variable.

setf expander n. a function used by setf to compute the setf expansion of a place.

setf expansion n. a set of five ezpressionsl that, taken together, describe how to
store into a place and which subforms of the macro call associated with the place are
evaluated. See Section 5.1.1.2 (Setf Expansions).

setf function n. a function whose name is (setf symbol).

setf function name n. (of a symbol 5) the list (setf 9.

shadow v.t. 1. to override the meaning of. “That binding of X shadows an outer
one.” 2. to hide the presence of. “That macrolet of F shadows the outer flet of F.” 3.
to replace. “That package shadows the symbol cl:car with its own symbol car.”

shadowing symbol n. (in a package) an element of the package’s shadowing symbols
list.

shadowing symbols list n. (of a package) a list, associated with the package, of
symbols that are to be exempted from ‘symbol conflict errors’ detected when packages
are used. See the fitnction package-shadowing-symbols.

shared slot n. (of a class) a slot accessible in more than one instance of a class;
specifically, such a slot is accessible in all direct instances of the class and in those
indirect instances whose class does not shadow1 the slot.

sharpsign n. the standard character that is variously called “number sign,” “sharp,”
or “sharp sign” (#). See Figure 2-5.

short float n. an object of type short-float.

sign n. one of the standard characters W’ or K*.

signal v. to announce, using a standard protocol, that a particular situation, rep
resented by a condition, has been detected. See Section 9.1 (Condition System
Concepts).

signature n. (of a meihod) a description of the parameters and parameter speciol-
izers for the method which determines the method’s applicability for a given set of
required arguments, and which r&o describes the argument conventions for its other,
non-required arguments.

similar adj. (of two objects) defined to be equivalent under the similarity relation-
ship.

similarity n. a two-place conceptual equivalence predicate, which is independent of
the Lisp image so that two objects in different Lisp images can be understood to be
equivalent under this predicate. See Section 3.2.4 (Literal Objects in Compiled Files).

26-42 Glossary

Programming Languag~Common Lisp ANSI X3.226-1994

simple adj. 1. (of an arruy) being of type simple-array. 2. (of a character) having
no implementation-defined attributes, or else having implementation-defined attributes
each of which has the null value for that attribute.

simple array n. an array of type simple-array.

simple bit array n. a bit array that is a simple array; that is, an object of type
(simple-array bit).

simple bit vector n. a bii vector of type simple-bit-vector.

simple condition n. a condition of type simple-condition.

simple general vector n. a simple vector.

simple string n. a string of type simple-string.

simple vector n. a vector of type simple-vector, sometimes called a “simple general
vector.” Not all vectors that are simple are simple vectors--only those that have
element type t.

single escape n., adj. 1. n. the syntax type of a character that indicates that the
next character is to be treated us an alphabetic2 character with its case preserved.
For details, see Section 2.1.4.6 (Single Escape Character). 2. adj. (of a character)
having the single escape syntax type. 3. n. a single escape2 character. (In the stan-
dard readtable, slash is the only single escape.)

single float n. an object of type single-float.

single-quote n. the standard character that is variously called “apostrophe,” “acute
accent,” Uquote,n or “single quote” (‘). See Figure 2-5.

singleton adj. (of a sequence) having only one element. “(list 'hello) returns a
singleton list .”

situation n. the evaluation of a form in a specific environment.

slash n. the standard character that is variously called “solidus” or “slash” (/). See
Figure 2-5.

slot n. a component of an object that can store a value.

slot specifier n. a representation of a slot that includes the name of the slot and
zero or more slot options. A slot option pertains only to a single slot.

source code n. code representing objects suitable for evaluation (e.g., objects created
by read, by macro expansion, or by compiler macro expansion).

source file n. a file which contains a textual representation of source code, that can
be edited, loaded, or compiled.

space n. the standard character (Space), notated for the Lisp reader as #\Space.

special form n. a list, other than a macro form, which is a form with special, syntax
or special evaluation rules or both, possibly manipulating the evaluation environment
or control flow or both. The first element of a special form is a special operator.

Glossary 2643

ANSI X3.226-1994 Programming Language-Common Lisp

special operator n. one of a fixed set of symbols, enumerated in Figure 3-2, that
may appear in the car of a form in order to identify the form as a special form.

special variable n. Dad. a dynamic variable.

specialize u.t. (a generic function) to define a method for the generic function, or
in other words, to refine the behavior of the generic function by giving it a specific
meaning for a particular set of classes or arguments.

specialized adj. 1. (of a generic function) having methods which special-
ize the generic function. 2. (of an array) having an actual array element type
that is a proper subtype of the type t; see Section 15.1.1 (Array Elements).
“(rak?-array 5 :element-type 'bit) makes an array of length five that is special-
ized for bits.”

specialized lambda list n. an ectended lambda list used in forms that establish
method definitions, such as defmethod. See Section 3.4.3 (Specialized Lambda Lists).

spreadable argument list designator n. a designator for a list of objects; that
is, an object that denotes a list and that is a non-null list Ll of length n, whose last
element is a list L2 of length m (denoting a list L3 of length m+n- 1 whose elements
are Lli for i<n- 1 followed by L2j for j < m). “The list (1 2 (3 4 5)) is a spreadable
argument list designator for the list (1 2 3 4 5).”

stack allocate v.t. Trad. to allocate in a non-permanent way, such as on a stack.
Stack-allocation is an optimization technique used in some implementations for
allocating certain kinds of objects that have dynamic extent. Such objects are al-
located on the stack rather than in the heap so that their storage can be freed as
part of unwinding the stack rather than taking up space in the heap until the next
garbage collection. What types (if any) can have dynamic eztent can vary from im-
plementation to implementation. No implementation is ever required to perform
stack-allocation.

stack-allocated adj. Trad. having been stack allocated.

standard character n. a character of type standard-char, which is one of a fixed
set of 96 such characters required to be present in all conforming implementations.
See Section 2.1.3 (Standard Characters).

standard class n. a class that is a generalized instance of class standard-class.

standard generic function a function of type standard-generic-function.

standard input n. the input stream which is the value of the dynamic variable
standard-input.

standard method combination n. the method combination named standard.

standard object n. an object that is a generalized instance of class
standard-object.

standard output n. the output stream which is the value of the dynamic variable
standard-output.

26-44 Glossary

Programming Language-Common Lisp ANSI X3.226- 1994

standard pprint dispatch table n. A pprint dispatch table that is different from
the initial pprint dispatch table, that implements pretty printing as described in this
specification, and that, unlike other pprint dispatch tables, must never be modified by
any program. (Although the definite reference “the standard pprint dispatch table” is
generally used within this document, it is actually implementation-dependent whether
a single object fills the role of the standant pprint dispatch table, or whether there
might be multiple such objects, any one of which could be used on any given occasion
where “the standard pprinf dispatch table” is called for. As such, this phrase should
be seen as an indefinite reference in all cases except for anaphoric references.)

standard readtable n. A readtable that is diflerent from the initial readtable,
that implements the expression syntax defined in this specification, and that, unlike
other readtables, must never be modified by any program. (Although the definite
reference “the standard readtable” is generally used within this document, it is actu-
ally implementation-dependent whether a single object fills the role of the standard
readtable, or whether there might be multiple such objects, any one of which could
be used on any given occasion where “the standard readtable” is called for. As such,
this phrase should be seen as an indefinite reference in all cases except for anaphoric
references.)

standard syntax n. the syntax represented by the standard readtable and used as a
reference syntax throughout this document. See Section 2.1 (Character Syntax).

standardized adj. (of a name, object, or definition) having been defined by Common
Lisp. “All standardized variables that are required to hold bidirectional streams have
“-io*” in their name.”

startup environment n. the global environment of the running Lisp image from
which the compiler was invoked.

step v.t., n. 1. v.t. (an iteration variable) to assign the variable a new value at the
end of an iteration, in preparation for a new iteration. 2. n. the code that identifies
how the next value in an iteration is to be computed. 3. v.t. (code) to specially
execute the code, pausing at intervals to allow user confirmation or intervention,
usually for debugging.

stream n. an object that can be used with an input or output function to identify an
appropriate source or sink of characters or bytes for that operation.

stream associated with a file n. a file stream, or a synonym stream
the target of which is a stream associated with a file. Such a stream
cannot be created with make-twc+way-stream, make-echo-stream,
make-broadcast-stream, make-concatenated-stream, make-string-input-stream, or
make-string-output-stream.

stream designator n. a designator for a stream; that is, an object that denotes
a stream and that is one of: t (denoting the value of *terminal-io*), nil (denoting
the value of *standard-input* for input stream designators or denoting the value of
standard-output for output stream designators), or a stream (denoting itself).

stream element type n. (of a stream) the type of data for which the stream is
specialized.

stream variable n. a variable whose value must be a stream.

Glossary 2645

ANSI X3.226-1994 Programming Language-Common Lisp

strecun variable designator n. a designator for a stream variable; that is, a symbol
that denotes a stream variable and that is one of: t (denoting *terminal-io*), nil
(denoting *standard-input* for input stream variable designators or denoting
standard-output for output stream uariable designators), or some other symbol
(denoting itself).

string n. a specialized vector that is of type string, and whose elements are of type
character or a subtype of type character.

string designator n. a designator for a string; that is, an object that denotes a
string and that is one of: a characier (denoting a singIefon string that has the
character as its only element), a symbol (denoting the string that is its name), or a
string (denoting itself). The intent is that this term be consistent with the behavior
of string; implementations that extend string must extend the meaning of this term
in a compatible way.

string equal adj. the same under string-equal.

string stream n. a stream of type string-stream.

structure n. an object of type structure-object.

structure class n. a class that is a generalized instance of class structure-class.

structure name n. a name defined with defstruct. Usually, such a type is also a
structure class, but there may be implementation-dependent situations in which this
is not so, if the :type option to defstruct is used.

style warning n. a condition of type style-warning.

subclass n. a class that inherits from another class, called a superclass. (No class is
a subclass of itself.)

subexpression n. (of an ezpression) an expression that is contained within the
expression. (In fact, the state of being a subexpression is not an attribute of the
subexpression, but really an attribute of the containing ezpression since the same
object can at once be a subexpression in one context, and not in another.)

subform n. (of a fom) an expression that is a subexpression of the form, and which
by virtue of its position in that form is also a fem. “(f x1 and x, but not exit, are
subforms of (return-fro8 exit (f x)1.”

subrepertoire n. a subset of a repertoire.

subtype n. a type whose membership is the same as or a proper subset of the
membership of another type, called a supertype. (Every type is a subtype of itself.)

superclass n. a class from which another class (called a subclass) inherits. (No class
is a superclass of itself.) See subclass.

supertype n. a type wh&e membership is the same as or a proper superset of the
membership of another type, called a subtype. (Every type is a supertype of itself.)
See subtype.

26-46 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

supplied-p parameter n. a parameter which recieves its generalized boolean value
implicitly due to the presence or absence of an argument corresponding to another
parameter (such as an optional parameter or a rest parameter). See Section 3.4.1
(Ordinary Lambda Lists).

symbol n. an object of type symbol.

symbol macro n. a symbol that stands for another form. See the macro
symbol-macrolet.

synonym stream R. 1. a stream of type synonym-stream, which is consequently a
stream that is an alias for another stream, which is the value of a dynamic variable
whose name is the synonym stream symbol of the synonym stream. See the finction
mak++synonym-stream. 2. (to a stream) a synonym stream which has the stream as
the value of its synonym stream symbol. 3. (to a symbol) a synonym stream which
has the symbol as its synonym stream symbol.

synonym stream symbol n. (of a synonym stream) the symbol which names the
dynamic variable which has as its value another stream for which the synonym stream
is an alias.

syntax type n. (of a character) one of several classifications, enumerated in Fig-
ure 2-6, that are used for dispatch during parsing by the Lisp reader. See Section
2.1.4 (Character Syntax Types).

system class n. a class that may be of type built-in-class in a conforming imple-
mentation and hence cannot be inherited by classes defined by conforming programs.

system code n. code supplied by the implementation to implement this specifica-
tion (e.g., the definition of mapcar) or generated automatically in support of this
specification (e.g., during method combination); that is, code that is not programmer
code.

T

t n. 1. a. the boolean representing true. b. the canonical generalized boolean repro-
sentiug true. (Although any object other than nil is considered true as a generalized
boolean, t is generally used when there is no special reason to prefer one such object
over another.) 2. the name of the type to which all objects belong-the supertype of
all types (including itself). 3. the name of the superclass of all classes except itself.

tag n. 1. a catch tag. 2. a go tag.

tail n. (of a list) an object that is the same as either some cons which makes up that
list or the atom (if any) which terminates the list. “The empty list is a tail of every
proper list.”

target n. 1. (of a constructed stream) a constituent of the construcied stream. “The
target of a synonym stream is the value of its synonym stream symbol.” 2. (of a
displaced array) the array to which the displaced array is displaced. (In the case of a
chain of constructed streams or displaced arrays, the unqualified term “target” always
refers to the immediate target of the first item in the chain, not the immediate target
of the last item.)

terminal I/O n. the bidireclional stream that is the value of the variable
terminal-io.

Glossary 2647

_ _-_ c-c _---____ -_

ANSI X3.226-1994 Progmnming Language-Common Lisp

terxuiuating n. (of a macro character) being such that, if it appears while parsing a
token, it terminates that token. See Section 2.2 (Reader Algorithm).

tertiary value n. (of values resulting from the evaluaiion of a form) the third value,
if any, or else nil if there are fewer than three values.

throw v. to transfer control and values to a catch. See the special operator throw.

tilde n. the standard chamcter that is called “tilde” (‘). See F igure 2-5.

time a representation of a point (absolute time) or an interval (relative lime) on a
time line. See decoded time, internal time, and universal time.

time zone n. a mtional multiple of l/3600 between -24 (inclusive) and 24 (inclusive)
that represents a time zone ss a number of hours offset from Greenwich Mean T ime.
T ime zone values increase with motion to the west, so Massachusetts, U.S.A. is in
time zone 5, California, U.S.A. is time zone 8, and Moscow, Russia is time zone -3.
(When “daylight sav ings time” is separately represented as an argument or return
value, the lime zone that accompanies it does not depend on whether daylight
sav ings time is in effect.)

token n. a textual representation for a number or a symbol. See Section 2.3 (Inter-
pretation of Tokens).

top level form n. a form which is processed specially by compile-itle for the
purposes of enabling compile time evaluaiion of that form. Top level forms include
those forms which are not subforms of any other form, and certain other casea. See
Section 3.2.3.1 (Processing of Top Level Forms).

trace output n. the output stream which is the value of the dynamic variable
tracesutput.

tree n. 1. a binary recursive data structure made up of conses and atoms: the conses
are themselves also trees (sometimes called “subtrees” or “branches”), and the atoms
are terminal nodes (sometimes called leaves). Typically, the leaves represent data
while the branches establish some relationship among that data. 2. in general, any
recursive data structure that has some notion of “branches” and leaves.

tree structure n. (of a treel) the set of conses that make up the iwe. Note that
while the Csrl) component of each such cons is part of the tree str&ure, the objects
that are the cars2 of each cons in the tree are not themselves part of its iree structun
unless they are also conses.

true n. any object that is not false and that is used to represent the success of a
predicate test. See il.

truename n. 1. the canonical filename of a file in the file system. See Section 20.1.3
(Truenames). 2. a pathname representing a truenamel.

two-way stream n. a stream of type two-way-stream, which is a bidirectional
composite stream that receives its input from an associated input stream and sends
its output to an associated output stream.

type n. 1. a set of objects, usually with common structure, behavior, or purpose.
(Note that the expression “X is of type S,,” naturally implies that “X is of type !?bn if
S,, is a subtype of sb.) 2. (immediately following the name of a type) a subtype of that
type. “The type vector is an array type.”

26-48 G lossary

Programming Languag~Common Lisp ANSI X3.226-1994

type declaration n. a declaration that asserts that every reference to a specified
binding within the scope of the declamtion results in some object of the specified
type.

type equivalent adj. (of two types X and Y) having the same elements; that is, X
is a subtype of Y and Y is a subtype of X.

type expand n. to fully expand a type specifier, removing any references to derived
types. (Common Lisp provides no program interface to cause this to occur, but the
semantics of Common Lisp are such that every implementation must be able to do
this internally, and some situations involving type specifiers are most easily described
in terms of a fully expanded type specifier.)

type specifier n. an ezpression that denotes a type. “The symbol random-state,
the list (integer 3 5), the list (and list (not null)), and the class named
standard-class are type specifiers.*

U

unbound adj. not having an associated denotation in a binding. See bound.

unbound variable n. a name that is syntactically plausible as the name of a
variable but which is not bound in the variable namespace.

undefined function n. a name that is syntactically plausible as the name of a
function but which is not bound in the function namespace.

unintern v.t. (a symbol in a package) to make the symbol not be present in that
package. (The symbol might continue to be accessible by inheritance.)

uninterned adj. (of a symbol) not accessible in any package; i.e., not intemedl.

universal time n. time, represented as a non-negative integer number of seconds.
Absolute universal time is measured as an offset from the beginning of the year 1900
(ignoring leap seconds). See Section 25.1.4.2 (Universal Time).

unqualified method n. a method with no qualifiers.

unregistered package n. a package object that is not present in the package reg-
istry. An unregistered package has no name; i.e., its name is nil. See the function
delete-package.

unsafe adj. (of code) not safe. (Note that, unless explicitly specified otherwise, if
a particular kind of error checking is guaranteed only in a safe context, the same
checking might or might not occur in that context if it were unsafe; describing a
context as unsafe means that certain kinds of error checking are not reliably enabled
but does not guarantee that error checking is definitely disabled.)

unsafe call n. a call that is not a safe call. For more detailed information, see
Section 3.5.1.1 (Safe and Unsafe Calls).

upgrade v.t. (a declared type to an actual type) 1. (when creating an army)
to substitute an actual array element type for an expressed array element type
when choosing an appropriately specialized array representation. See the function
upgraded-array-element-type. 2. (when creating a complez) to substitute an actual
complex part type for an expressed complex part type when choosing an appropriately
specialized complez representation. See the function upgraded-complex-part-type.

Glossary 2649

ANSI X3.226-1994 Programming Language-Common Lisp

upgraded array element type n. (of a type) a iype that is a supertype of the
iype and that is used instead of the type whenever the iype is used as an array
element type for object creation or type discrimination. See Section 15.1.2.1 (Array
Upgrading).

upgraded complex part type n. (of a type) a type that is a superfype of
the fype and that is used instead of the type whenever the hype is used as a
complez part type for object creation or type discrimination. See the function
upgraded-complex-part-type.

uppercase adj. (of a character) being among standard characters corresponding to
the capital letters A through Z, or being some other implemeniation-defined cbar-
acier that is defined by the implemeniation to be uppercase. See Section 13.1.4.3
(Characters With Case).

use u.t. (a package PI) to inherit the external symbols of PI. (If a package P2
uses PI, the ezternal symbols of PI become internal symbols of Pz unless they are
explicitly ezpotied.) “The package CL-USER use9 the package CL."

use list n. (of a package) a (possibly empty) lisi associated with each package which
determines what other packages are currently being used by that package.

user n. an active entity, typically a human, that invokes or interacts with a program
at run time, but that is not necessarily a programmer.

V

valid array dimension n. a fiznum suitable for use as an array dimension.
Such a fixnum must be greater than or equal to zero, and less than the value of
array-dimension-limit. When multiple array dimensions are to be used together
to specify a multi-dimensional array, there is also an implied constraint that the
product of all of the dimensions be leas than the value of array-total-size-limit.

valid array index n. (of an array) a Mum suitable for use as one of possibly sev-
eral indices needed to name an element of the array according to a multi-dimensional
Cartesian coordinate system. Such a jiznum must be greater than or equal to zero,
and must be less than the corresponding dimensionr of the army. (Unless otherwise
explicitly specified, the phrase “a list of valid army indices” further implies that the
length of the lisi must be the same as the mnk of the array.) “For a 2 by 3 array,
valid array indices for the first dimension are o and 1, and valid array indices for the
second dimension are 0, 1 and 2.”

vaIid array row-major index n. (of an amy, which might have any number of
dimensionsz) a single &urn suitable for use in naming any element of the army, by
viewing the array’s storage as a linear series of elements in row-major order. Such a
&mum must be greater than or equal to zero, and less than the array ioial size of the
array.

valid fill pointer n. (of an array) a jiznum suitable for use as a fill pointer for the
array. Such a fiznum must be greater than or equal to zero, and less than or equal to
the army iota1 size of the array.

valid logical patlmame host n. a string that has been defined as the name of a
logical host. See the function load-logical-pathname-translations.

26-50 Glossary

Programming Language-Common Lisp ANSI X3.226-1994

valid pathname device n. a string, nil, :unspecific, or some other objecf defined
by the implementation to be a valid pathname device.

valid pathname directory n. a string, a list of strings, nil, :vild, :unspecific, or
some other object defined by the implementation to be a valid directory component.

valid pathname host n. a valid physical pathname host or a valid logical pathname
host.

valid pathname name n. a string, nil, :uild, :unepecific, or some other object
defined by the implementation to be a valid pathname name.

valid pathname type n. a string, nil, :wild, :unspecific.

valid pathname version n. a non-negative integer, or one of :vild, :nevest,
:unepecific, or nil. The symbols :oldest, :previoue, and :installed are semi-
standard special version symbols.

valid physical pathname host n. any of a string, a list of strings, or the symbol
:unspecific, that is recognized by the implementation as the name of a host.

valid sequence index n. (of a sequence) an integer suitable for use to name an
element of the sequence. Such an integer must be greater than or equal to zero, and
must be less than the length of the sequence. (If the sequence is an army, the valid
sequence indez is further constrained to be a fixnum.)

value n. 1. a. one of possibly several objects that are the result of an evaluation. b.
(in a situation where exactly one value is expected from the evaluaiion of a form)
the primary value returned by the form. c. (of forms in an implicit progn) one of
possibly several objects that result from the evaluation of the last form, or nil if there
are no forms. 2. an object associated with a name in a binding. 3. (of a symbol) the
value of the dynamic variable named by that symbol. 4. an object associated with a
key in an association list, a property list, or a hash table.

value cell n. Trad. (of a symbol) The place which holds the value, if any, of the
dynamic variable named by that symbol, and which is accessed by symbol-value. See
cell.

variable n. a binding in the “variable” namespace. See Section 3.1.2.1.1 (Symbols as
Forms).

vector n. a on+dimensional array.

vertical-bar n. the standard character that is called “vertical bar” (I). See Fig-
ure 2-5.

W

whitespace n. 1. one or more characters that are either the graphic character
t\Space or else non-graphic characters such as #\Aevline that only move the print
position. 2. a. n. the syntax type of a character that is a token separator. For details,
see Section 2.1.4.7 (Whitespace Characters). b. adj. (of a character) having the
whitespacez, syntax typez. c. n. a whitespacezb character.

Glossary 2651

._ _ - _ . _

ANSI X3.226-1994 Programming Language-Common Lisp

wild adj. 1. (of a namesiring) using &I implementaiion-defined syntax for naming
files, which might “match” any of possibly several possible filenames, and which can
therefore be used to refer to the aggregate of the files named by those filenames. 2.
(of a pathname) a structured representation of a name which might “match” any of
possibly several pathnames, and which can therefore be used to refer to the aggregate
of the files named by those pathnames. The set of wild pathnames includes, but is
not restricted to, paihnames which have a component which is :uild, or which have
a directory component which contains : wild or :oild-inf erors. See the function
wild-pathname-p.

write v.L. 1. (a binding or slot or component) to change the value of the binding or
slot. 2. (an object to a siream) to output a representation of the object to the stream.

writer n. a function that writes1 a variable or slot.

Y

yield v.t. (values) to produce the values as the result of evaluaiion. “The form
(+ 2 3) yields 5.”

26-52 Glossary

ANSI X3.226-1994

Programming Language-Common Lisp

A. Appendix

ANSI X3.226- 1994 Programming Language--Common Lisp

ii Appendix

Programming Language-Common Lisp ANSI X3.226-1994

A.1

A.l.l

A.1.2

A.1.3

A.1.4

A.1.5

A.1.6

A.1.7

Removed Language Features

Requirements for removed and deprecated features
For this standard, some features from the language described in Common Lisp: The Language
have been removed, and others have been deprecated (and will most likely not appear in future
Common Lisp standards). Which features were removed and which were deprecated was decided
on a case-by-case basis by the X3J13 committee.

Conforming implementations that wish to retain any removed features for compatibility must as-
sure that such compatibility does not interfere with the correct function of conforming programs.
For example, symbols corresponding to the names of removed functions may not appear in the the
COHMON-LISP package. (Note, however, that this specification has been devised in such a way that
there can be a package named LISP which can contain such symbols.)

Conforming implementations must implement all deprecated features. For a list of deprecated
features, see Section 1.8 (Deprecated Language Features).

Removed Types
The type string-char was removed.

Removed Operators
The functions int-char, char-bits, char-font, rake-char, char-bit, set-char-bit, string-char-p,
and comraonp were removed.

The special operator compiler-let was removed.

Removed Argument Conventions
The font argument to digit-char was removed. The bits and font arguments to code-char were
removed.

Removed Variables
The variables char-font-limit, char-bits-lisit, char-control-bit, char-meta-bit,
char-super-bit, char-hyper-bit, and *break-on-warnings* were removed.

Removed Reader Syntax
The ‘91,” reader macro in standard syntax was removed.

Packages No Longer Required
The packages LISP, USER, and SYSTEN are no longer required. It is valid for packages with one or
more of these names to be provided by a conforming implementation as extensions.

Appendix A-l

ANSI X3.226-1994 Programming Language-Common Lisp

Appendix

Programming Language-Common Lisp ANSI X3.226-1994

Index

it 2-22
&allow-other-keys 3-29
&aux 3-30
&body 3-34
&environment 3-34
&key 3-29
&optional 3-28
&rest 3-29
&whole 3-34
’ 2-18
(2-18
() 1-12, 26-2
(setf class-mime) 7-73
(setf documentation) 25-15
1 2-18
* 12-30, 25-22
** 25-22
*** 25-22
break-on-signals 9-29
break-on-varnings A-l
compile-filt+pathname 24-10
compile-Ale-truename 24-10
compile-print 24-l 1
compile-verbose 24-11
debug-io 21-47
debugger-hook 9-28
default-pathname-defaults 19-22
error-output 21-47
features l-26, 2-29, 24-8
gensym-counter 10-8
load-pathname 24-l 1
load-print 24-12
load-truename 24-11
load-verbose 24-12
macroexpand-hook 3-67
modules 24-12
package 11-34
print-array 22-56
print-base 22-56
print-case 22-57
print-circle 2-28, 22-58
print-escape 22-59
print-gensym 22-60
print-length 22-60
print-level 22-60
print-lines 22-62
print-miser-width 22-62

print-pprint-dispatch 22-63
print-pretty 22-63
print-radix 22-56
print-readably 22-64
print-right-margin 22-66
query-io 21-47
random-state 12-45
read-base 2-25, 2-26, 23-16
read-default-float-format 23-17
read-eval 2-25, 23-17
read-suppress 23-18
readtable 23-19
standard-input 21-47
standard-output 21-47
terminal-io 21-49
trace-output 21-47
+ 7-21, 12-30, 25-22
++ 25-22
+++ 25-22

2-22
1 12-31, 25-21
. 2-18
. . 2-31, 22-62
. . . 2-31, 22-47
/ 12-32, 25-23
// 25-23
/// 25-23
/= 12-18
I+ 12-33
l- 12-33
: absolute 19-6
:back 19-6
:common 19-4
: compile-toplevel 3-49
: execute 3-49
:load-toplevel 3-49
:local 19-4
: relative 19-6
:unspecif ic 19-5
:up 19-6
:vild 19-5, 19-6
: vild-inf eriors 19-5, 19-6
; 2-19
< 12-18
<= 12-18
= 12-18
> 12-18
>= 12-18
A (format directive) 22-26
A (sharpsign reader macro) 2-27
abort 9-53, 9-56
abs 12-33
absolute 26-2
: absolute 19-6
access 26-2
accessibility 26-2

ANSI X3.226-1994 Programming Language---Common Lisp

accessible 1 l-2, 26-2
accessof 26-2
acons 14-35
aces 12-25
acosh 12-28
active 15-1, 26-2
actual adjustability 26-2
actual argument 26-2
actual array element type 15-2, 26-2
actual complex part type 26-3
actual parameter 26-3
actually adjustable 26-3
add-method 7-71
adjoin 14-44
adjust-array 15-11
adjustability 26-3
adjustable 26-3
adjustable-array-p 15-14
after method 26-3
alist 26-3
allocate-instance 7-25
alpha-char-p 13-12
alphabetic 26-3
alphanumeric 26-3
alphanumericp 13-12
ampersand 26-3
Ampersand (format directive) 22-21
and 4-22, 5-55, 7-21
anonymous 26-3
apparently unintemed 26-3
append 7-21, 14-25
applicable 26-3
applicable handler 26-3
applicable method 26-3
applicable restart 26-3
apply 26-4
apply 5-11
apropos 25-8
apropos-list 25-8
aref 15-15
argument 26-4
argument evaluation order 26-4
argument precedence order 26-4
arithmetic-error 12-74
arithmetic-error-operands 12-75
arithmetic-error-operation 12-75
around method 26-4
away 26-4
array 2-27, 15-4
array element type 26-4
array total size 26-4
array-dimension 15-16
array-dimension-limit 15-25
array-dimensions 15-16
array-displacement 15-18
array-element-type 15-17

array-has-All-pointer-p 15- 18
array-in- bounds-p 15- 19
array-rank 15-20
array-rank-limit 15-25
array-row-major-index 15-20
array-total-size 15-21
array-total-size-limit 15-25
arrayp 15-22
ash 12-54
asin 12-25
asinh 12-28
assert 9-12
assign 26-4
assoc 14-36
assoc-if 14-36
assoc-if-not 14-36
association list 14-2, 26-4
asterisk 26-4
Asterisk (format directive) 22-30
Asterisk (sharpsign reader macro) 2-24
at-sign 26-4
atan 12-25
atanh 12-28
atom 26-4
atom 14-4, 14-6
atomic 26-4
atomic type specifier 26-4
attribute 26-4
aux variable 26-5
auxiliary method 26-5
B (format directive) 22-23
B (sharpsign reader macro) 2-25
:back 19-6
backquote 26-5
Backquote (reader macro) 2-20
backslash 26-5

’ Backslash (sharpsign reader macro) 2-23
bar 1-13
base character 26-5
base string 26-5
base-char 13-7
base-string 16-2
baz 1-13
before method 26-5
bidirectional 21-1, 26-5
bignnm 12-18
binary 21-1, 26-5
bind 26-5
binding 3-1, 26-5
bit 26-5
bit 12-17, 15-30
bit away 26-5
bit vector 15-3, 26-5
bit-and 15-31
bit-andcl 15-31
bit-andc2 15-31

ii Index

Programming Language-Common Lisp ANSI X3.226-1994

bit-eqv 15-31
bit-ior 15-31
bit-nand 15-31
bit-nor 15-31
bit-not 15-31
bit-orcl 15-31
bit-or& 15-31
bit-vector Z-24, 15-7
bit-vector-p 15-32
bit-wise logical operation specijer 26-5
bit-xor 15-3 1
block 26-5
block 5-34
block tag 26-6
bnf key l-7
boa lambda lid 3-37, 26-6
body purameter 26-6
boole 12-57
book-1 12-59
book2 12-59
boole-and 12-59
book-andcl 12-59
book-and& 12-59
book+cl 12-59
bookc2 12-59
book&r 12-59
book-eqv 12-59
book-ior 12-59
book-nand 12-59
book-nor 12-59
book-orcl 12-59
book-orc2 12-59
book-set 12-59
book-xor 12-59
boolean 26-6
boolean 4-15
boolean equivalent 26-6
both-case-p 13-17
bound 26-6
bound declaration 3-25, 26-6
bounded 26-6
bounding index 26-6
bounding index designator 26-6
boundp lo-17
break 9-27
break loop 26-6
break-on-signals 9-29
broadcast stream 26-7
broadcast-stream 21-5
broadcast-stream-streams 21-39
built-in class 26-7
built-in type 26-7
built-in-class 4-18
butlast 14-27
byte 26-7
byte 12-64

byte speci$er 26-7
byte-position 12-64
byte-size 12-64
C (format directive) 22-21
C (sharpsign reader macro) 2-27
caaaar 14-7
caaadr 14-7
caaar 14-7
caadar 14-7
caaddr 14-7
c&&r 14-7
caar 14-7
cadaar 14-7
cadadr 14-7
cadar 14-7
caddar 14-7
cadddr 14-7
caddr 14-7
cadr 26-7
cadr 14-7
call 26-7
call-arguments-limit 5-24
call-method 7-60
call-next-method 7-61
captured initialization form 26-7
car 26-7
car 14-7
case 26-7
case 5-60
case in symbol names l-11
case sensitivity mode 26-7
catch 26-7
catch 5-34
catch tag 26-7
cease 5-60
cdaaar 14-7
cdaadr 14-7
cdaar 14-7
cdadar 14-7
cdaddr 14-7
cdadr 14-7
cdar 14-7
cddaar 14-7
cddadr 14-7
cddar 14-7
cdddar 14-7
cddddr 14-7
cdddr 14-7
cddr 26-7
cddr 14-7
cdr 26-8
cdr 14-7
ceiling 12-22
cell 26-8
cell-error 9-l 1
cell-error-name 9-l 1

Index . . . Ill

ANSI X3.226-1994 Programming Language-Common Lisp

terror 9-16
change-cll%3s 7-31
char 164
char-bit A-l
char-bits A-l
char-bits-limit A-l
char-code 13-18
char-code-limit 13-19
chat-control-bit A-l
char-downcase 13-16
char-equal 13-8
char-font A-l
char-font-limit A-l
char-greaterp 13-8
char-hyper-bit A-l
char&t 13-18
char-lessp 13-8
char-rata-bit A-l
char-name 13-20
char-not-equal 13-8
char-not-greaterp 13-8
char-not-1-p 13-8
char-super-bit A-l
char-upcase 13-16
char/= 13-8
char< 13-8
chart= 13-8
char= 13-8
char> 13-8
char>= 13-8
character 13-1, 21-1, 26-8
character 2-23, 13-7, 13-10
character code 26-8
character designator 26-8
characterp 13-11
check-type 9-18
circular 26-8
circular list 14-1, 14-3, 26-8
Circumflex (format directive) 22-34
cis 1247
CL package 11-3
CL-USER package 11-5
class 4-6, 26-8
class 4-18
class designator 26-8
class precedence list 4-6, 4-9, 26-8
class-name 7-72
class-of 7-73
clear-input 21-34
clear-output 21-35
close 26-8
close 21-32
closed 21-2, 26-9
closure 26-9
clrhash 18-13
coalesce 3-12, 26-9

code 26-9
code-char A-l, 13-19
coerce 26-9
coerce 4-24
colon 26-9
Colon (sharpsign reader macro) 2-25
comma 26-9
Comma (reader macro) 2-22
comment 2-19, 2-29
:common 19-4
COHHOU-LISPpackage l-30,11-3
COI¶MOI-LISP-USERpackage 11-5
commonp A-l
compilation 26-9
compila2ion environment 3-12, 26-9
compilation unil 26-9
compilation-speed 3-80
compile 26-9
compile 3-15, 347,349
compile time 3-12, 26-9
compile-file 3-15, 24-3
compile-file-pathname 244
compile-Ale-pathname 24-10
compile-Ale-truename 24-10
compik+print 24-l 1
compile-iime definition 3-13, 26-9
:compile-toplevel 349
compile-verbose 24-l 1
compiled code 3-12, 24-1, 26-9
compiled file 24-1, 2610
compiled function 26-10
compiled-function 4-17
compiled-function-p 5-23
compiler 3-12, 26-10
compiler macro 3-15,26-10
compiler macro expansion 26-10
compiler macro form 26-10
compiler macro function 26-10
compiler-macro 25-16
compiler-macro-function 3-55
complement 5-53
complez 26-10
complex 2-27, 12-10, 1247, 22-3
complez float 26-10
complez pari lype 26-10
complez rational 26-10
complez single float 26-10
complexp 1248
composite dream 26-10
compound form 26-10
compound hype specifier 4-3, 26-11
compute-applicable-methods 7-62
compute-restarts 9-40
concatenate 17-24
concatenated stream 26-11
concatenated-stream 21-6

iv
Index

Programming Language-Common Lisp ANSI X3.226- 1994

concatenated-stream-streams 21-42
cond 5-56
condition 26-11
condition 9-9
condition designator 9-3, 26-l 1
condition handler 26-11
condition reporter 9-3, 26-11
conditional newline 26-11
conditional newlines 22-12
conformance 26-11
conforming code l-25, 26-11
conforming implementation l-24, 26-11
conforming processor 26-11
conforming program l-25, 26-l 1
congruence 7-15
congruent 26-11
conjugate 12-48
cons 14-1, 26-11
cons 2-20, 2-22, 14-4, 14-5
consequences 1-15
consp 14-5
constant 26-11
constant form 26-12
constant object 26-12
constant variable 26-12
constantly 5-53
constantp 3-86
constituent 26-12
constituent trait 26-12
constructed stream 26-12
contagion 26-12
continuable 26-12
continue 9-54, 9-56
control form 26-12
control-error 5-86
copy 26-12
copy-alist 14-37
copy-list 14-15
copy-pprint-dispatch 22-39
copy-readtable 23-4
copy-seq 17-5
copy-structure 8-15
copy-symbol 1 O-6
copy-tree 14-10
correctable 26-12
cos 12-24
cash 12-28
count 17-13
count-if 17-13
count-if-not 17-13
ctypecase 5-62
current input base 23-16, 26-13
current logical block 26-13
current output base 22-56, 26-13
current package 11-1, 26-13
current ppn’nt dispatch table 22-14, 26-13

current random state 26-13
current readtable 2-1, 26-13
D (format directive) 22-22
data type 26-13
debug 3-80
debug I/O 26-13
debug-io 2147
debugger 26-13
debugger-hook 9-28
decf 12-37
declaim 3-69
declaration 3-24, 26-13
declaration 3-24, 3-79
declaration identifier 3-24, 26-13
declaration specifier 3-24, 26-14
declare 26-14
declare 3-69
decline 26-14
decode-float 12-69
decode-universal-time 25-5
decoded time 25-2, 26-14
default method 7-16, 26-14
default-pathname-defaults 19-22
defaulted initialization argument list 26-14
defclass 7-50
defconstant 5-25
defgeneric 7-53
define-compiler-macro 3-55
define-condition 9-34
define-method-combination 7-63
define-method-combination arguments lambda list 3-
26-14
define-modify-macro 5-76
define-modify-macro lambda list 3-39, 26-14
define-setf-expander 5-79
define-symbol-macro 3-64
defined name 26-14
defining form 26-14
defmacro 3-58
defmethod 7-56
defpackage 1 l-24
defparameter 5-26
defsetf 5-77
defsetf lambda list 3-38, 26-14
defstruct 8-l
deftype 4-26
deftype lambda list 3-39, 26-14
defun 5-12
defvar 5-26
delete 17-27
delete-duplicates 17-29
delete-file 20-8
delete-if 17-27
delete-if-not 17-27
delete-package 11-15
denominator 12-51

Index V

ANSI X3.226-1994 Programming Language-Common Lisp

denormalited 26-14
deposit-field 12-64
derived type 26-14
derived type specijier 4-4, 26-15
describe 25-9
describe-object 25-9
design&or 1-13, 26-15
destructive 26-15
de&u&wing lambda lisl 3-36, 26-15
destructuring-bind 5-28
diflereni 26-15
digit 26-15
digit-char A-l, 13-13
digit-char-p 13-14
dimension 15-1, 26-15
direct instance 26-15
direct subclass 4-6, 26-15
direct superclass 4-6, 26-15
directory 20-3
directory-name&ring 19-23
disassemble 25-15
disestablish 26-15
disjoint 26-15
dispakhing macro character 26-15
displaced array 26-15
distinct 26-15
division-by-zero 12-75
do 6-26
do* 6-26
do-all-symbols 1 l-28
d+external-symbols 1 l-28
do-symbols 1 l-28
documentation 25-15
documentation string 26-16
dolist 6-30
Dollarsign (format directive) 22-26
dot 2-18, 22-47, 26-16
Dot (sharpsign reader macro) 2-25
Dot Dot 2-31, 22-62
Dot Dot Dot 2-31,22-47
dotimes 6-29
dotted lisl 14-1, 14-3, 26-16
doided pair 26-16
double float 26-16
double-float 12-13
double-float-epsilon 12-74
double-float-negative-epsilon 12-74
double-quote 26-16
Double-Quote (reader macro) 2-20
dpb 12-65
dribble 25-20
dynamic binding 26-16
dynamic environment 3-1, 26-16
dynamic eden2 26-16
dynamic scope 26-16
dynamic variable 26-16

dynamic-extent 3-71
E (format directive) 22-24
ease 5-60
echo stream 26-16
echo-stream 21-6
echo-stream-input-stream 21-41
echo-stream-output-stream 21-41
ed 25-19
effective method 7-18, 26-16
eighth 14-21
element 26-16
element type 26-17
elt 17-6
em 26-17
empty list 14-3, 26-17
empty type 26-17
encode-universal-time 25-6
end of file 26-17
end-of-file 21-51
endp 14-23
enough-name&ring 19-23
ensure-directories-exist 20-4
ensure-generic-function 7-24
environment 3-1, 26-17
environment object 3-2, 26-17
environmen parameter 26-17
eq 5-46
eql 4-24, 5-47
equal 5-48
Equal-Sign (sharpsign reader macro) 2-28
equalp 5-50
error 26-17
error 9-11, 9-14
error output 26-17
error terminology 1-14
error-output 21-47
escape 26-17
establish 26-17
etypecase 5-62
eval 2-25, 3-48, 3-49
eval-when 3-17, 3-49
evaluate 26-17
evaluation 3-1, 26-18
evaluation environment 3-12, 26-18
evaluation order 3-52, 5-1, 5-2, 5-35, 5-68, 6-5,
6-8, 7-3, 9-13, 12-66
evenp 12-34
every 5-54
execute 26-18
: execute 3-49
execution time 26-18
exhaustive partition 26-18
exhaustive union 26-18
ezit point 26-18
exp 12-35
explicit return 26-18

vi
Index

Programming Language-Common Lisp ANSI X3.226-1994

ezplicit use 26-18
exponent marker 26-18
export 26-19
export 11-7
exported 26-19
expressed adjustability 26-19
expressed array element type 15-2, 26-19
expressed complex part type 26-19
expression 26-19
expressly adjustable 26-19
expt 12-35
extended character 26-19
extended function designator 26-19
extended lambda list 26-19
extended-char 13-8
extension 26-19
extensions 1-15, 1-16
extent 26-19
external file format 26-20
external file format designator 26-20
external symbol 11-1, 26-20
externalizable object 3-19, 26-20
F (format directive) 22-23
false 26-20
fbound 26-20
fboundp 5-14
fceiling 12-22
fdekition 5-13
feature 24-1, 26-20
feature expression 24-1, 26-20
features list 24-1, 26-20
features l-26, 2-29, 24-8
Boor 12-22
Afth 14-21
file 20-1, 26-20
file compiler 26-20
file position 26-20
file position designator 26-21
file stream 21-2, 26-21
file system 26-21
Ale-author 20-6
Ale-error 20-9
Ale-error-pathname 20-10
Ale-length 21-23
file-namestring 19-23
Ale-position 21-24
Ale-stream 21-7
Ale-string-length 21-26
Ale-write-date 20-7
filename 20-1, 26-21
All 17-6
fill pointer 15-1, 26-21
All-pointer 15-23
fill-style conditional newline 22-15, 22-46
And 17-17
find-all-symbols 11-l 0

find-class 7-59
find-if 17-17
And-if-not 17-17
And-method 7-70
find-package 1 l-9
And-restart 942
And-symbol 1 l-8
finish-output 21-35
finite 26-21
first 14-21
fixnum 26-21
flxnum 12-17
flet 5-16
float 26-21
float 12-12, 12-71, 22-3
float-digits 12-69
float-precision 12-69
float-radix 12-69
float-sign 12-69
floating-point-inexact 12-76
floating-point-invalid-operation 12-76
floating-point-overflow 12-76
floating-point-underflow 12-77
floatp 12-72
floor 12-22
fmakunbound 5-15
font key l-7
foo 1-13
for-value 26-21
force-output 21-35
form 26-21
formal argument 26-21
formal parameter 26-21
format 26-21
format 22-67
format argument 26-21
format control 22-13, 26-21
format directive 26-22
format string 26-22
formatter 22-39
fourth 14-21
free declaration 3-25, 26-22
fresh 26-22
fresh-line 21-16
freshline 26-22
fround 12-22
ftruncate 12-22
ftype 3-79
funbound 26-22
funcall 5-19
function 26-22
function 2-24, 4-15, S-20, 25-16
function block name 26-22
function cell 26-22
function designator 26-22
function form 26-22

ANSI X3.226-1994 Programming Language-Common Lisp

funcdion name 26-22
function-keywords 7-23
function-lambda-expression 5-21
functional evaluaiion 26-23
functional value 26-23
functionp 5-22
further compilation 3-12, 26-23
G (format directive) 22-25
gcd 12-36
general 26-23
generalized boolean 26-23
generalized instance 26-23
generalized reference 5-1, 26-23
generalized synonym stream 26-23
generic function 4-17, 7-14, 26-23
generic function lambda list 3-32, 26-23
generic-function 4-17
gensym 26-23
gensym 10-7
gensym-counter 10-8
gentemp 10-8
get lo-14
get-decoded-time 25-6
get-dispatch-macro-character 23-l 1
get-internal-real-time 25-14
get-internal-run-time 25-14
get-macrw&a.racter 23-13
get-output-stream-string 21-43
get-properties 14-40
get-setf-expansion 5-81
get-universal-time 25-6
getf 14-41
gethash 18-9
global declaration 3-24, 26-24
global environment 3-1, 26-24
global variable 26-24
glyph 26-24
go 26-24
go 5-36
go point 26-24
go 2ag 26-24
graphic 13-2, 26-24
graphic-char-p 13-15
Greater-Than-Sign (format directive) 22-30
handle 26-24
handler 26-24
handler-bind 9-30
handler-case 9-3 1
hash table 26-24
hash-table 18-4
hash-table-count 18-6
hash-table-p 18-5
hash-table-rehash-size 18-6
hash-table-rehash-threshold 18-7
hash-table-size 18-8
hash-table-test 18-8

home package 26-24
host-name&ring 19-23
I (format directive) 22-28
I/O cusiomitaiion variable 26-24
identical 26-24
identifier 26-24
identity 5-52
if 5-57
ignorable 3-70
ignore 3-70
ignore-errors 9-33
imagpart 12-50
immutable 26-25
implemeniaZion 26-25
implemeniation limit 26-25
impleme&a2ion-defined 26-25
implementation-dependent 26-25
implementation-independent 26-25
implicit block 26-25
implicit compilation 3-12, 26-25
implicit progn 26-25
implicit tagbody 26-25
import 26-25
import 1 l-10
improper list 14-1, 26-25
in-package 1 l-22
inaccessible 26-25
incf 12-37
indefinite extent 26-25
indefinite scope 26-25
indicator 26-25
indirect instance 26-25
inherit 26-26
initial pprint dispatch table 26-26
initial readiable 2-1, 26-26
initialization argument lisi 7-1, 26-26
initializaiion form 26-26
initialize-instance 7-72
inline 3-77
input 21-1, 26-26
input-stream-p 21-8
inspect 25-20
instance 4-6, 26-26
int-char A-l
integer 26-26
integer 12-15
integer-decode-float 12-69
integer-length 12-54
integerp 12-55
interactive stream 21-2, 26-26
interactive-stream-p 21-9
intern 26-26
intern 1 l-30
internal symbol 11-1, 26-26
internal time 25-3, 26-26
internal iime unit 26-26

. . .
Ml1

Index

internal-time-units-per-second 25-13
interned 26-26
interpreted function 26-26
interpreted implementation 26-27
intersection 14-43
interval designator 26-27
invalid 26-27
invalid-method-error 9-21
invoke-debugger 9-26
invoke-restart 9-43 ‘
invoke-restart-interactively 9-44
is signaled 1-14
isqrt 12-41
iteration form 26-27
iteration variable 26-27
key 26-27
keyword 26-27
KEYWORD package 1 l-6
keyword 10-3
keyword parameter 26-27
keyword/value pair 26-27
keywordp 1 O-4
labels 5-16
lambda 3-46
lambda combination 26-27
lambda expression 26-27
lambda form 26-28
lambda list 3-27, 26-28
lambda list keyword 26-28
lambda variable 26-28
lambda-list-keywords 5-24
lambda-parameters-limit 5-24
last 14-28
lcm 12-38
ldb 12-66
ldb-test 12-67
ldiff 14-29
leaf 26-20
leap seconds 26-28
least-negative-double-float 12-73
least-negative-long-float 12-73
least-negative-normalized-double-float 12-73
least-negative-normalized-long-float 12-73
least-negative-normalized-short-float 12-73
least-negative-normalized-single-float 12-73
least-negative-short-float 12-73
least-negative-single-fioat 12-73
least-positive-double-float 12-73
least-positive-long-float 12-73
least-positive-normalized-double-float 12-73
least-positive-normalized-long-float 12-73
least-positive-normalized-short-float 12-73
least-positive-normalized-single-float 12-73
least-positive-short-float 12-73
least-positive-single-float 12-73
leaves 14-1

Left-Brace (format directive) 22-31
Left-Bracket (format directive) 22-30
Left-Paren (format directive) 22-33
Zefl-parenthesis 26-28
Left-Parenthesis (reader macro) 2-18
Left-Parenthesis (sharpsign reader.macro) 2-24
length 26-28
length 17-14
Less-Than-Sign (format directive) 22-27, 22-29
Less-Than-Sign (sharpsign reader macro) 2-30
let 5-29
let* 5-29
lexical binding 26-28
lexical closure 26-28
lexical environment 3-2, 26-28
lexical scope 26-28
lexical variable 26-28
linear-style conditional newline 22-14, 22-45
LISP aackaae A-l
Lisp image- 26-28
Lisp printer 26-29
Lisp read-eval-print loop 26-29
Lisp reader 26-29
l isp-implementation-type 25-24
lisp-implementation-version 25-24
list 14-1, 14-3, 26-29
list 2-18, 2-20, 2-22, 7-21, 14-3, 14-16
list designator 26-29
list structure 26-29
list* 14-16
l ist-all-packages 1 l-l 1
list-length 14-17
listen 21-34
listp 14-18
literal 26-29
literal object 3-12
load 26-29
load 3-49,24-5
load time 26-29
load time value 26-29
load-logical-pathname-translations 19-18
load-pathname 24-11
load-print 24-12
load-time-value 3-15, 3-52
:load-toplevel 3-49
load-truename 24-l 1
load-verbose 24-12
loader 26-29
:local 19-4
local declaration 3-24, 26-29
local precedence order 4-6, 4-9, 26-30
local slot 26-30
locally 3-83
log 12-38
logand 12-59
logandcl 12-59

Programming Language-Common Lisp ANSI X3.226- 1994

Index ix

ANSI X3.226-1994

logandc2 12-59 make-load-form 7-42
logbitp 1261 make-load-form-saving-slots 7-45
logcount 12-62 make-method 7-60
logeqv 12-59 make-package 1 l-l 7
logical block 26-30 make-pathname 19-13
logical blocks 22-12 make-random-state 12-43
logical host 26-30 make-sequence 17-7
logical host designator 26-30 make-string 16-11
logical pathname 26-30 make-string-input-stream 21-43
logical-pathname 19-12, 19-22 make-string-output-stream 21-44
logical-pathname-translations 19-19 make-symbol 10-5
logier 12-59 make-synonym-stream 21-37
lognand 12-59 make-two-way-stream 21-40
lognor 12-59 makunbound 10-l 8
lognot 12-59 mandatory-style conditional newline 22-46
logorcl 12-59 map 17-9
logorcl 12-59 map-into 17-10
logtest 12-63 mapc 14-33
logxor 12-59 mapcan 14-33
long float 26-30 mapcar 14-33
long-float 12-13 mapcon 14-33
long-float-epsilon 12-74 maphash 18-10
Iong-float-negative-epsilon 12-74 map1 14-33
long-site-name 25-25 maplist 14-33
loop 6-32 mapping 26-31
loop keyword 26-30 mask-field 12-68
loop-finish 6-35 max 7-21, 12-20
lower-case-p 13-17
lowercase 26-30

member 4-21, 14-32
member-if 14-32

machine-instance 25-25 member-if-not 14-32
machine-type 25-26 merge 17-25
machine-version 25-26 merge-pathnames 19-31
macro 3-15, 26-30
macro character 26-30

metaclass 4-1, 4-7, 26-31
Metaobject Protocol 26-31

macro ezpansion 26-30 method 26-31
macro form 26-30 method 4-19
macro function 26-30 method combination 26-31
macro lambda list 3-33, 26-31
macro name 26-31

method-combination 4-20, 25-16
method-combination-error 9-21

macro-function 3-61 method-defining form 26-31
macroexpand 3-62
macroexpand hook 26-31

method-defining operator 7-14,26-31
method-qualifiers 7-38

macroexpand-l 3-62
macroexpand-hook 3-67

might signal 1-15

macrolet 3-15, 5-16
min 7-21, 12-20

make-array 15-8
minimal compilation 3-12, 26-31

make-broadcast-stream 21-39
Minus (sharpsign reader macro) 2-29

make-char A-l
minusp 12-21

make-concatenated-stream 21-42
miser-style conditional newline 22-15, 22-45
mismatch 17-20

make-condition 9-39
make-dispatch-macrccharacter 23-5

mod 12-17, 12-40

make-echo-stream 21-41
modified lambda list 26-31
modules 24-12

make-hash-table 18-4 most recent 26-31
make-instance 7-4 1
make-instances-obsolete 7-41

most-negative-double-float 12-73

make-list 14-18
most-negative-fixnum 12-68
most-negative-long-float 12-73

Programming Language-Common Lisp

X
Index

Programming LanguageCommon Lisp ANSI X3.226-1994

most-negative-short-float 12-73
most-negative-single-float 12-73
most-positive-double-float 12-73
most-positive-fixnum 12-68
most-positive-long-float 12-73
most-positive-short-float 12-73
most-positive-single-float 12-73
muffle-warning 9-54, 9-56
multiple escape 2-7, 26-31
multiple values 26-32
multiple-value-bind 5-65
multiple-value-call 5-66
multiple-vahre-list 5-67
multiple-value-progl 5-67
multiple-value-setq 5-68
multiple-vahres-limit 5-70
must signal 1-14
name 1-7, 26-32
name-char 13-2 1
named constant 26-32
namespace 3-1, 26-32
namestring 19-1, 26-32
namestring 19-23
nbutlast 14-27
nconc 7-21, 14-24
newline 26-32
Newline (format directive) 22-35
next method 7-19, 26-32
next-method-p 7-59
nickname 26-32
nil 1-12, 26-32
nil l-12,4-15,5-44
nintersection 14-43
ninth 14-21
no-applicable-method 7-39
no-next-method 7-39
non-atomic 26-32
non-constant vanable 26-32
non-correctable 26-32
non-empty 26-33
non-generic function 26-33
non-graphic 13-2, 26-33
non-list 26-33
non-local exit 26-33
non-nil 26-33
non-null lexical environment 26-33
non-simple 26-33
non-terminating 2-7, 26-33
non-top-level form 26-33
normal return 26-33
normalized 26-33
not 4-22, 5-44
notany 5-54
notation l-7
notevery 5-54
notinline 3-24, 3-77

nreconc 14-26
nreverse 17-14
nset-difference 14-46
nset-exclusive-or 14-48
nstring-capitalize 16-6
n&ring-downcase 16-6
nstring-upcase 16-6
nsublis 14-11
nsubst 14-12
nsubst-if 14-12
nsubst-if-not 14-12
nsubstitute 17-22
nsubstitute-if 17-22
nsubstitute-if-not 17-22
nth 14-22
nth-value 5-71
nthcdr 14-31
null 13-2, 26-33
null 14-3, 14-23
null lexical environment 3-2, 26-33
number 26-33
number 12-10
numberp 12-46
numerator 12-51
numeric 26-33
nunion 14-50
0 (format directive) 22-23
0 (sharpsign reader macro) 2-26
object 26-34
object-traversing 26-34
oddp 12-34
open 21-2, 26-34
open 21-26
open-stream-p 21-10
operator 26-34
optimize 3-80
optimize quality 26-34
optional parameter 26-34
or 4-23, 5-58, 7-21
order of evaluation 3-52, 5-1, 5-2, 5-35, 5-68, 6-5,
6-8, 7-3, 9-13, 12-66
ordinary function 26-34
ordinary lambda list 3-27, 26-34
otherwise 5-60, 5-63
otherwise inaccessible part 26-34
output 21-1, 26-34
output-stream-p 21-8
P (format directive) 22-33
P (sharpsign reader macro) 2-28
package 11-1, 26-34
package 1 l-7
package cell 26-34
package designator 26-35
package marker 26-35
package prefix 26-35
package registry 26-35

Index xi

ANSI X3.226-1994

package 1 l-34
package-error 11-35
package-error-package 1 l-35
package-name 11-31
package-nicknames 1 I-31
package-shadowing-symbols 11-32
package-use-list 1 l-33
package-used-by-list 1 l-33
packagep 1 l-34
pairlis 14-38
pairwise 26-35
parallel 26-35
parameter 26-35
parameter specializer 26-35
parameter specializer name 26-35
parse-error 9-12
parse-integer 12-56
parse-name&ring 19-25
pathname 19-1, 26-35
pathname 2-28, 19-12
pathname designator 26-35
pathname-device 19-16
pathname-directory 19-16
pathnamehost 19-16
pathname-match-p 19-27
pathname-name 19-16
pathname-type 19-16
pathname-version 19-16
pathnamep 19-15
peek-char 21-13
Percent (format directive) 22-21
phase 12-49
physical pathname 26-36
pi 12-27
place 5-1, 26-36
plist 26-36
PIUS (sharpsign reader macro) 2-29
plusp 12-21
pop 14-20
portable 26-36
position 17-18
position-if 17-18
position-if-not 17-18
potential copy 26-36
potential number 26-36
pprint 22-52
pprint dispatch table 22-14, 26-36
pprint-dispatch 22-40
pprint-exit-if-lit-exhausted 22-41
pprint-ffll 22-41
pprint-indent 2243
pprint-linear 22-41
pprint-logical-block 2243
pprint-newline 22-45
pprint-pop 2246
pprint-tab 22-48

Programming Language-Common Lisp

pprint-tabular 22-41
predicate 26-36
prepared to signal 1-14
presenf 11-2, 24-1,26-36
pretty print 26-36
pretty printer 22-12, 26-36
pretty printing stream 26-36
primary method 26-36
primary value 26-36
prinl 22-52
prinl-to-string 22-54
print 22-52
print-to-string 22-54
principal 26-36
print 22-52
print name 26-37
print-array 22-56
print-base 22-56
print-case 22-57
print-circle 2-28, 22-58
print-escape 22-59
print-gensym 22-60
print-length 22-60
print-level 22-60
print-lines 22-62
print-miser-width 22-62
print-not-readable 22-66
print-not-readable-object 22-67
print-object 2248
print-pprint-dispatch 22-63
print-pretty 22-63
print-radix 22-56
print-readably 22-64
print-right-margin 22-66
print-unreadable-object 22-50
printer control variable 22-1, 26-37
printer escaping 22-2, 26-37
printing 26-37
probe-file 20-3
process 3-12, 26-37
processor 26-37
proclaim 26-37
proclaim 3-67
proclamation 3-24, 26-37
prog 5-72
prog tag 26-37
prog* 5-72
progl 5-74
prog2 5-74
progn 5-75,7-21
program 26-37
program-error 5-86
programmer 26-37
programmer code 26-37
progv 5-31
proper list 14-1, 14-3, 26-37

xii
Indz

Programming Language-Common Lisp ANSI X3.226-1994

proper name 26-37
proper sequence 26-37
proper subtype 26-37
property 26-37
property indicator 26-37
property list 26-37
property value 26-38
provide 24-13
psetf 5-82
psetq 5-32
purports to conform 26-38
push 14-19
pushnew 14-45
qualified method 26-38
qualifier 26-38
query I/O 26-38
query-io 21-47
Question-Mark (format directive) 22-32
quotation (of forms) 2-18, 2-20, 2-22
quotation (of strings) 2-20
quote 2-18, 2-20, 2-22, 3-54
quoted object 26-38
qullz 1-13
R (format directive) 22-22
R (sharpsign reader macro) 2-26
radiz 26-38
random 12-44
random state 26-38
random-state 12-43
random-state 12-45
random-state-p 12-45
rank 15-1,26-38
rassoc 14-39
rassoc-if 14-39
rassoc-if-not 14-39
ratio 26-38
ratio 12-15, 22-2
ratio marker 26-38
rational 26-38
rational 12-14, 12-52
rationalize 12-52
rationalp 12-53
read 26-38 .
read 23-6
read-base 2-25, 2-26, 23-16
read-byte 21-12
read-char 21-14
read-char-no-hang 21-15
read-default-float-format 23-17
read-delimited-list 23-8
read-eval 2-25,23-17
read-from-string 23-9
read-line 21-19
read-preserving-whitespace 23-6
read-sequence 2 l-2 1
read-suppress 23-18

readably 26-38
reader 26-38
reader macro 26-39
reader macro function 2-7, 26-39
reader-error 23-20
readtable 2-1, 26-39
readtable 23-4
readtable case 26-39
readtable designator 26-39
readtable 23-19
readtable-case 23-10
readtablep 23-11
real 12-11
realp 12-51
realpart 12-50
recognizable subtype 26-39
redefinition 114
reduce 17-11
reference 26-39
registered package 26-39
reinitialize-instance 7-26
relative 26-39
: relat ive 19-6
rem 12-40
remf 1442
remhash 18-10
remove 17-27
remove-duplicates 17-29
remove-if 17-27
remove-if-not 17-27
remove-method 7-40
remprop lo-16
rename-file 20-7
rename-package 11-12
repertoire 13-2, 26-39
replace 17-2 1
report 26-39
report message g-3,26-39
require 24-13
required parameter 26-39
rest 14-32
rest list 26-39
rest parameter 26-40
restart 2640
restart 9-40
restart designator 2640
restart function 26-40
restart-bind 9-45
restart-case 9-46
restart-name 9-50
return 26-40
return 5-38
return value 26-40
return-from 5-37
revappend 14-26
reverse 17-14

Index . . . xlu

ANSI X3.226-1994 Programming Language-Common Lisp

Right-Brace (format directive) 22-32
Right-Bracket (format directive) 22-31
Right-Paren (format directive) 22-33
right-parenthesis 26-40
Right-Parenthesis (reader macro) 2-18
room 25-18
rotatef 5-85
round 12-22
row-major-aref 15-23
rplaca 14-6
rplacd 14-6
run time 3-13, 26-40
run-time compiler 3-13, 26-40
run-time definition 3-13, 26-40
run-time environment 3-12, 26-40
S (format directive) 22-26
S (sharpsign reader macro) 2-27
safe 1-14, 26-40
safe call 3-40, 26-40
safety 3-24, 3-80
same 26-40
satisfies 4-21
satisfy the test 17-2, 17-3, 26-41
sbit 15-30
scale-float 12-69
schar 16-4
scope 26-41
script 26-41
search 17-19
second 14-21
seconda y value 26-41
section 26-41
sections 22-12
self-evaluating object 26-41
semi-standard 26-41
semicolon 26-41
Semicolon (format directive) 22-33
Semicolon (reader macro) 2-19
sequence 17-1, 2641
sequence 17-5
sequence function 17-1, 26-41
sequential 26-41
sequentially 26-41
serious condition 26-41
serious-condition 9-10
session 26-42
set 26-42
set lo-18
set-char-bit A-l
set-difference 14-46
set-dispatch-macro-character 23-l 1
set-exclusive-or 14-43
set-macro-character 23-13
set-pprint-dispatch 22-51
set-syntax-from-char 23-14
setf 5-82, 25-16

setf expander 26-42
setf expansion 26-42
setf function 26-42
setf function name 26-42
setq 5-31
seventh 14-21
shadow 3-9, 4-6, 26-42
shadow 11-13
shadowing symbol ll-3,26-42
shadowing symbols list 26-42
shadowing-import 11-14
shared slot 26-42
shared-initialize 7-26
sharpsign 26-42
Sharpsign (reader macro) 2-22
Sharpsign (sharpsign reader macro) 2-28
Sharpsign A (reader macro) 2-27
Sharpsign Asterisk (reader macro) 2-24
Sharpsign B (reader macro) 2-25
Sharpsign Backslash (reader macro) 2-23
Sharpsign C (reader macro) 2-27
Sharpsign Colon (reader macro) 2-25
Sharpsign Dot (reader macro) 2-25
Sharpsign Equal-Sign (reader macro) 2-28
Sharpsign Left-Parenthesis (reader macro) 2-24
Sharpsign Less-Than-Sign (reader macro) 2-30
Sharpsign Minus (reader macro) 2-29
Sharpsign 0 (reader macro) 2-26
Sharpsign P (reader macro) 2-28
Sharpsign Plus (reader macro) 2-29
Sharpsign R (reader macro) 2-26
Sharpsign Right-Parenthesis 2-31
Sharpsign S (reader macro) 2-27
Sharpsign Sharpsign (reader macro) 2-28, 2247

Sharpsign Single-Quote (reader macro) 2-24
Sharpsign Vertical-Bar (reader macro) 2-29
Sharpsign Whitespace 2-31
Sharpsign X (reader macro) 2-26
shiftf 5-83
short float 26-42
short-float 12-13
short-float-epsilon 12-74
short-float-negative-epsilon 12-74
short-site-name 25-25
should signal 1-14
sign 26-42
signal 1-14, 1-15, 26-42
signal 9-22
signature 26-42
signed-byte 12-16
Signum 12-41
similar 3-19, 26-42
similarity 26-42
simple 26-43
simple array 26-43

xiv Index

Programming Language-Common Lisp ANSI X3.226-1994

simple bit array 26-43
simple bit vector 26-43
simple condition 26-43
simple general vector 26-43
simple string 26-43
simple vector 26-43
simple-array 15-5
simple-base-string 16-3
simple-bit-vector 2-24, 15-8
simple-bit-vector-p 15-33
simple-condition 9-23
simple-condition-format-arguments 9-24
simole-condition-format-control 9-24
simple-error 9-20
simple-string 16-3
simple-string-p 16-4
simple-type-error 4-34
simple-vector 2-24, 15-7
simple-vector-p 15-26
simple-warning 9-26
sin 12-24
single escape 2-8, 26-43
single float 26-43
single-float 12-13
single-float-epsilon 12-74
single-float-negative-epsilon 12-74
single-quote 26-43
Single-Quote (reader macro) 2-18
Single-Quote (sharpsign reader macro)
singleton 26-43
sinh 12-28
situation 26-43
sixth 14-21
slash 26-43
Slash (format directive) 22-28
sleep 25-7
slot 26-43
slot specifier 4-7, 26-43
slot-boundp 7-33
slot-exists-p 7-34
slot-makunbound 7-34
slot-missing 7-35
slot-unbound 7-36
slot-value 7-37
software-type 25-27
software-version 25-27
some 5-54
sort 17-15
source code 24-1, 26-43
source file 24-1, 26-43
space 26-43
space 3-80
special 3-24, 3-81
special form 26-43
special operator 26-44
special variable 26-44

2-24

special-operator-p 3-85
specialize 26-44
specialized 26-44
specialized lambda list 3-33, 2644
speed 3-80
spreadable argument list designator 26-44
sqrt 12-41
stable-sort 17-15
stack allocate 26-44
stack-allocated 26-44
standard 7-20, 7-21
standard character 2-2, 26-44
standard class 26-44
standard generic function 26-44
standard input 26-44
standard method combination 26-44
standard object 26-44
standard output 26-44
standard pprint dispatch table 26-45
standard readtable 2-1, 26-45
standard syntax 2-1, 26-45
standard-char 13-8
standard-char-p 13-15
standard-class 4-19
standard-generic-function 4-18
standard-input 21-47
standard-method 4-19
standard-object 4-20
standard-output 21-47
standardized 26-45
startup environment 3-12, 26-45
step 26-45
step 25-12
storage-condition 9-12
store-value 9-55, 9-56
stream 20-1, 21-1, 26-45
stream 21-5
stream associated with a file 20-1, 26-45
stream designator 26-45
stream element type 26-45
stream vanable 21-3, 26-45
stream variable designator 26-46
stream-element-type 21-10
stream-error 21-50
stream-error-stream 21-50
stream-external-format 21-30
streamp 21-11
string 15-3, 26-46
string 2-20, 16-2, 16-5
string designator 26-46
string equal 26-46
string stream 26-46
string-capitalize 16-6
string-char A-l
string-char-p A-l
string-downcase 16-6

Index xv

ANSI X3.226-1994

string-equal 16-8
string-greaterp 16-8
string-left-trim 16-7
string-lessp 16-8
string-not-equal 16-8
string-not-greaterp 16-8
string-not-lessp 16-8
string-right-trim 16-7
string-stream 21-7
string-trim 16-7
string-upcase 16-6
string/= 16-8
string< 16-8
string<= 16-8
string= 16-8
string> 16-8
string>= 16-8
stringp 16-10
structure 26-46
structure 2-27, 25-17
structure class 26-46
structure name 26-46
structure-class 4-18
structure-object 4-20
style warning 26-46
style-warning 9-10
subclass 4-6, 26-46
subexpression 26-46
subform 26-46
sublis 14-11
subrepertoire 26-46
subseq 17-8
subsetp 1449
subst 14-12
sub&-if 14-12
subst-if-not 14-12
substitute 17-22
substitute-if 17-22
substitute-if-not 17-22
subtype 26-46
subtypep 4-27
superclass 4-6, 26-46
supertype 26-46
supplied-p parameter 26-47
svref 15-26
sxhash 18-13
symbol 26-47
symbol 2-25, 10-2
symbol macro 3-15, 26-47
symbol-function 10-9
symbol-macrolet 3-15, 3-65
symbol-name 10-l 1
symbol-package 10-l 1
symbol-plist lo-12
symbol-value lo-13
symbolp 1 O-4

Programming Language-Common Lisp

synonym stream 26-47
synonym stream symbol 26-47
synonym-stream 21-8
synonym-stream-symbol 21-38
syntax type 24, 2647
SYSTEH pa&age A-l
system class 26-47
system code 2647
t 26-47
t 4-20, 5-45, 5-60, 5-63, 25-16, 25-17
T (format directive) 22-28
tag 26-47
tagbody 5-39
tail 2647
tai1p 14-29
tan 12-24
tanh 12-28
target 26-47
tenth 14-21
terminal I/O 26-47
terminal-io 21-49
terminating 2-7, 2648
terpri 21-16
tertiary value 26-48
the 3-84
third 14-21
throw 26-48
throw 5-40
tilde 2648
Tilde (format directive) 22-22
Tilde A (format directive) 22-26
Tilde Ampersand (format directive) 22-21
Tilde Asterisk (format directive) 22-30
Tilde B (format directive) 22-23
Tilde C (format directive) 22-21
Tilde Circumflex (format directive) 22-34
Tilde D (format directive) 22-22
Tilde Dollarsign (format directive) 22-26
Tilde E (format directive) 22-24
Tilde F (format directive) 22-23
Tilde G (format directive) 22-25
Tilde Greater-Than-Sign (format directive) 22-30

Tilde I (format directive) 22-28
Tilde Left-Brace (format directive) 22-31
Tilde Left-Bracket (format directive) 22-30
Tilde Left-Paren (format directive) 22-33
Tilde Less-Than-Sign (format directive) 22-27, 22-

Tilde Newline (format directive) 22-35
Tilde 0 (format directive) 22-23
Tilde P (format directive) 22-33
Tilde Percent (format directive) 22-21
Tilde Question-Mark (format directive) 22-32
Tilde R (format directive) 22-22
Tilde Right-Brace (format directive) 22-32

xvi
Index

Programming Language-Common Lisp ANSI X3.226-1994

c:

Tilde Right-Bracket (format directive) 22-31
Tilde Right-Paren (format directive) 22-33
Tilde S (format directive) 22-26
Tilde Semicolon (format directive) 22-33
Tilde Slash (format directive) 22-28
Tilde T (format directive) 22-28
Tilde Tilde (format directive) 22-22
Tilde Underscore (format directive) 22-27
Tilde Vertical-Bar (format directive) 22-21
Tilde W (format directive) 22-27
Tilde X (format directive) 22-23
time 26-48
t ime 25-13
time zone 26-48
token 2-5, 26-48
top level form 26-48
trace 25-l 1
trace output 26-48
trace-output 21-47
translate-logical-pathname 19-28
translate-pathname 19-29
tree 14-1, 26-48
tree structure 26-48
tree-equal 14-14
true 26-48
truename 20-2, 26-48
truename 20-5
truncate 12-22
two-way stream 26-48
tw*way-stream 21-8
two-way-stream-input-stream 21-40
two-way-stream-output-stream 21-40
type 26-48
type 3-74, 25-16, 25-17
type declaration 26-49
type equivalent 26-49
type expand 26-49
type specifier 26-49
type-error 4-33
type-error-datum 4-33
type-error-expected-type 4-33
type-of 4-30
typecase 5-62
typep 4-31
unbound 26-49
unbound variable 26-49
unbound-slot 7-74
unbound-slot-instance 7-74
unbound-variable lo-19
undefined consequences l-15
undefined function 26-49
undefined-function 5-86
Underscore (format directive) 22-27
unexport 1 l-20
unintern 26-49
unintern 11-21

unintemed 26-49
union 14-50
universal time 25-3, 26-49
unless 5-59
unqualified method 26-49
unread-char 21-17
unregistered package 26-49
unsafe l-14, 26-49
unsafe call 3-40, 26-49
unsigned-byte 12-16
:unspecific 19-5
unspecified consequences l-15
unspecified values l-15
untrace 25-l 1
unuse-package 1 l-23
unwind-protect 5-41
:up 19-6
update-instance-for-different-class 7-28
update-instance-for-redefined-class 7-29
upgrade 26-49
upgraded array element type 15-2, 26-50
upgraded complex part type 26-50
upgraded-array-element-type 15-24
upgraded-complex-part-type 12-50
upper-case-p 13-17
uppercase 26-50
use 26-50
use list 26-50
use-package 1 l-24
use-value 9-56
user 26-50
USER package A-l
user-homedir-pathname 25-27
valid array dimension 26-50
valid array index 26-50
valid array row-major index 26-50
valid f;ll pointer 26-50
valid logical pathname host 26-50
valid pathname device 26-51
valid pathname directory 26-51
valid pathname host 26-51
valid pathname name 26-53
valid pathname type 26-51
valid pathname version 26-51
valid physical pathname host 26-51
valid sequence index 26-51
value 26-51
value cell 26-51
values 4-23, 5-69
values-list 5-70
variable 26-51
variable 25-l 7
vector 15-1, 26-51
vector 2-24, 15-6, 15-27
vector-pop 15-28
vector-push 15-28

Index xvii

ANSI X3.226-1994 Programming Language-Common Lisp

vector-push-extend 15-28 1
vectorp 15-30
vertical-bar 26-51
Vertical-Bar (format directive) 22-21
Vertical-Bar (sharpsign reader macro) 2-29
W (format directive) 22-27
warn 9-24
warning 9-9
warning l-16
when 5-59
whitespace 26-51
wild 26-52
:vild 19-5, 19-6
:vild-inferiors 19-5, 19-6
wild-pathname-p 19-26
with-accessors 7-46
with-compilation-unit 24-7
with-condition-restarts 9-51
with-hash-table-iterator 18-11
with-input-from-string 21-45
with-open-file 21-30
with-open-stream 21-33
with-output-to-string 2146
with-package-iterator 11-18
with-simple-restart 9-52
with-slots 7-48
with-standard-k-syntax 23-15
write 26-52
write 22-52
write-byte 21-12
write-char 21-18
write-line 21-20
write-sequence 21-22
write-string 21-20
write-testring 22-54
writer 26-52
X (format directive) 22-23
X (sharpsign reader macro) 2-26
y-or-n-p 2 l-36
yes-or-n+p 21-36
yield 26-52
zerop 12-21
‘ 2-20

. . .
xsvlll

Index

